Lecture 18: U- and V-statistics

U-statistics

Let Xj,..., X, be i.i.d. from an unknown population P in a
nonparametric family &.

If the vector of order statistic is sufficient and complete for P € &2, then
a symmetric unbiased estimator of an estimable ¥ is the UMVUE of 4.

In many problems, parameters to be estimated are of the form

® = E[h(X1,..., Xm)]
with a positive integer m and a Borel function h that is symmetric and
satisfies E|h(X1,...,Xm)| < e forany P € .

An effective way of obtaining an unbiased estimator of ¥ (which is a
UMVUE in some nonparametric problems) is to use

Ur= (1) B OG- X 0

where ¥, denotes the summation over the (/') combinations of m

distinct elements {ii,...,im} from {1,....n}.
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Definition 3.2
The statistic in (1) is called a U-statistic with kernel h of order m.

Examples

Consider the estimation of u™, where u = EX; and m s an integer > 0.
Using h(x1,...,Xm) = Xy - -- Xm, we obtain the following U-statistic for u™:

N
U,= <m> ;Xh e X
Consider next the estimation of
02 = [ Var(X;) + Var(X)]/2 = E[(Xi — X2)?/2],

we obtain the following U-statistic with kernel h(xy,X2) = (x1 — Xx2)?/2:

. X.)2 n _
Up= 2 Y S-X) _ (ZX,?—nX2>:82,

n(n—1)1§i<jgn 2 - n-1\&

which is the sample variance.
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Examples

In some cases, we would like to estimate ¥ = E|X; — Xz|, a measure of
concentration.

Using kernel h(xq,x2) = |x1 — X2/, we obtain the following U-statistic
unbiased for ¥ = E| X1 — X3/

1<i<j<n

which is known as Gini’'s mean difference.

Let 9 = P(X; + X2 <0).
Using kernel h(xy,X2) = f_e0(X1 + X2), we obtain the following
U-statistic unbiased for :

U, = I 01(Xi + X5),
n n(n—1)1§%§n( a(Xit+X)

which is known as the one-sample Wilcoxon statistic.
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Variance of a U-statistic
The variance of a U-statistic U, with kernel h has an explicit form.
Fork=1,...m,let
he(Xq, .., Xk) = E[h( X1, .., Xm) | X1 = X9, .0, Xk = Xk]
= E[h(X1,...,Xk,Xk+1,...,Xm)]
b = hk— E[A(Xq, ..., Xim)]

For any U-statistic with kernel h,

Un— E(Up) = (2) Y A(X;,,

c

Theorem 3.4 (Hoeffding’s theorem)
For a U-statistic U, with E[h(Xj, ..., Xm)]? < o,

Var(Up) = (;) B kg (':) <m k> &,

where Ck = Var(hk(X1,...,Xk)).

UW-Madison (Statistics) Stat 709 Lecture 18 2018 4/17



Proof

Consider two sets {/,...,im} and {ji,...,jm} of m distinct integers from
{1,...,n} with exactly k integers in common.
The number of distinct choices of two such sets is () () (7).

By the symmetry of A, and independence of Xj, ..., X,

E[h( fhy 9 =c )(im)h()(jw'"a)(jm)]:g(

o)
- EG >< ><,’;‘_’Z)ck~

This proves the result.

v
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Corollary 3.2

Under the condition of Theorem 3.4,
() & < Var(Up) < 2&m;
(i) (n+1) Var(Upy1) < nVar(Up) for any n> m;
(iii) For any fixed mand k=1,...,m, if ;=0 for j < k and {x > 0, then

kI(T)?
Var(Up) = '(;Z Ck+o(nk1+1>.

For any fixed m, if {; = 0 for j < k and (x > 0, then the mse of U, is of
the order n—* and, therefore, U, is n*/2-consistent.

A,

Example 3.11

Consider h(x1,X2) = X4 Xz, the U-statistic unbiased for u?, u=EXj.
Note that hi(x1) = pxy, hy(x1) = p(xs — ),

C1 = E[h1 (X1 )]2 = [,LZ Var(X1) = [,1262, h(X1 ,Xz) = X1 Xo — ,LLZ, and

fo = Var(XiX) = E(Xi X)? — u* = (u? + 0%)? — p*.

By Theorem 3.4, for U, = (’2’)*1 Yi<icj<n XiXj,
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i =) [()(77)s+ O)(77)4]

2
_ =T [2(!7—2)[.12624-(/.124-62)2—#4}
2.2 4
_ 4u“c H 20 .
n n(n—1)
Next, consider h(xy,x2) = . 0(X1 + X2), which leads to the
one-sample Wilcoxon statistic.
Note that hy(x1) = P(xy + X2 <0) = F(—x4), where F is the c.d.f. of P.
Then C1 = Var(F(—X1 ))
Let ¥ = E[h(X1 ,Xg)].
Then Cg = Var(h(X1 ,Xg)) = 19(1 — 19)
Hence, for U, being the one-sample Wilcoxon statistic,

2

nn—1) [2(n—2)& +3(1 - 9)].

If Fis continuous and symmetric about 0, then {; can be simplified as
§y = Var(F(—X;)) = Var(1 — F(Xy)) = Var(F(X1)) = 15
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Asymptotic distributions of U-statistics

For nonparametric &2, the exact distribution of Uy, is hard to derive.
We study the method of projection, which is particularly effective for
studying asymptotic distributions of U-statistics.

Definition 3.3

Let T, be a given statistic based on Xj,..., X,. The projection of T, on
kn random elements Yj,..., Y, is defined to be

|

2
T = E(Tn)+ ;[E(Tn\ Yi) = E(Tn)].

Let T, be the projection of T, on Xi,..., Xn, and wp(X;) = E( T4 X)).

If T, is symmetric (as a function of Xj, ..., Xp), then w,(X7), ..., wa(Xn)
are i.i.d. with mean E[w,(X))] = E(T,) = E[E(Ta|X))] = E(T»).

If E(T?) < o and Var(l[/n(X-)) > 0, then, by the CLT,

[wn(Xi) — E(Th)] —a N(O,1) (3)

/N Var(yp(X7)) Z
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If we can show T, — T, has a negligible order, then we can derive the
asymptotic distribution of T, by using (3) and Slutsky’s theorem.

Lemma 3.1

Let T, be a symmetric statistic with Var(T,) < e for every nand T, be
the projection of 7:,, on Xi,..., Xp.
Then E(T,) = E(T,) and

E( Tn — 7-n)2 = Var( Tn) — Var( 7-n)

Proof
Since E(T,) = E(Tp),
E(T,— Th)? = Var(T,)+ Var(T,) —2 Cov(Tp, Tp)
Cov(Tp, Tn) = E(TaTn) — [E(T)P
= NE[ToE(Tal X;)] — n[E(TH))?
= NE{E[ToE(Ta|X)| X1} — n[E(T,)?
— nE{[E(TalX)]?} — N[E(Tn)]?
=nVar(E(T,| X)) = Var('vl'n)
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For a U-statistic U,, one can show (exercise) that
. m -
Un=E(Un) + n Y hi(X),
i=1

where U, is the projection of U, on Xi, ..., X, and
hi(x) = hy(x) — E[h(X1,.... Xm)], h1(X) = E[h(X, Xz, ..., Xm)].
Hence, if {; = Var(hy(X;)) > 0,
Var(Up) = m?¢y/n

and, by Corollary 3.2 and Lemma 3.1,

E(U,—Un)?=0(n?).
This is enough for establishing the asymptotic distribution of U,,.
If & =0 but &, > 0, then we can show that

E(Un—Uy)? =0(n3).

One may derive results for the cases where {, = 0, but the case of
either {; > 0 or {, > 0 is the most interesting case in applications.
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Theorem 3.5

Let U, be a U-statistic with E[A(X1, ..., Xm)]? < oo.
(i) 1f & > 0, then

V[Un — E(Up)] = N(O,m2E1).

(i) If & =0 but & > 0, then

mim—1) &
Uy~ EUn)] 0 =D Y 2,08 ), @
=
where y3;’s are i.i.d. random variables having the chi-square

distribution 2 and Aj's are some constants (which may depend on
P) satisfying Y7y A7 = o.

Lemma 3.2

Let Y be the random variable on the right-hand side of (4).
2 2

Then EY2 = 01V ¢,
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It follows from Corollary 3.2(iii) and Lemma 3.2 that if {y =0, then

MM - 102 = Var(Up)+ O(n~2)

amsey, (P) 5

: Il
|
—
o
o
o

Proof of Lemma 3.2
Define

Y Zk x-ll 7 k:1,2,

It can be shown (exerC|se that {Y2} is uniformly integrable.
Since Yy —q Y as k — oo, limg_, EY,? = EY? (Theorem 1.8(viii)).
Since x3j ’s are independent chi-square random variables with EXU =1

and Var(xu) 2, EYx =0 for any k and

m—1)2 &
Z?L Var( x”)

EYf = (4
_ mz(m—1)2 ( ilfz)
1=

m2(m—1)

Co.
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A statistic closely related to U-statistic is described as follows.

Do

V-statistics

Let Xi,..., X, be i.i.d. from P.
For every U-statistic U, as an estimator of & = E[h(Xj, ..., Xm)], there is
a closely related V-statistic defined by

V= nm Z Z h(X; s ()

im=1

As an estimator of ¥, V, is blased, but the bias is small asymptotically.
For a fixed n, V, may be better than U, in terms of the mse.

|

Proposition 3.5
Let V, be defined by (5).

(i) Assume that E|h(X,,...,X,)| <eoforall1 <iy <--- <jm<m.
Then the bias of V, satlsfies

by, (P)=0(n").

V.
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Proposition 3.5 (continued)
(ii) Assume that E[h()(,-1,...,)(,-m)]2 <ooforall1<ip <---<ip<m.
Then the variance of V, satisfies
Var(V,) = Var(Up) + O(n2),

where U, is the U-statistic corresponding to V.

Theorem 3.16

Let V,, be a V-statistic with E[h(Xj,,..., X;,)]? < « for all
1<ih < <ip<m.

(i) If €1 = Var(h1 (X1 )) > 0, then ﬁ( V,— 19') —d N(O7 m2§1 )
(ii) If C1 =0 but Cg = Var(hg(X1 ,Xg)) > 0, then

|

mim—-1) &
n(Vp—19) =4 (2) 2%%12/»
=

where y3;’'s and 4;’s are the same as those in Theorem 3.5.

v
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Discussion

@ Theorem 3.16 shows that if {; > 0, then the amse’s of U, and V,
are the same.

@ If £ =0 but & > 0, then an argument similar to that in the proof of
Lemma 3.2 leads to

amsey, (P) = iln )i + m2 Z k)

= amsey, (P)+ m2(m (i?t)
(see Lemma 3.2).

@ Hence U, is asymptotically more efficient than V,,, unless
3l

|
| >
I
=
A

Example

Let Xi,..., X, be i.i.d. from a population with mean u, variance ¢2, and
finite 4th moment.
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To estimate u?, the U-statistic and the corresponding V-statistic are

2
Un:ﬁz:xx, Vi = 2ZZXX X2

i<J i=1j=

We now compare U, and V.
Note that & = pu?o?.
If u#0, by the CLT and delta-method,

Vn(Vo— p?) = v/n(X? = u?) =4 N(0,4u%0?)
For Up, the result in Theorem 3.5(i) holds with {; = u20?, i.e.,
ﬁ(Un - ,LLZ) —d N(0>22C1) = N(0,4‘L1202)

Thus, U, and V,, are asymptotically the same.
Now consider u = 0.
Note that & =0, & = o* > 0, and Theorems 3.5(ii) and 3.16(ii) apply.

However, it is not convenient to use Theorems 3.5(ii) and 3.16(ii) to
find the limiting distributions of U, and V.
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For V,, by the CLT and Theorem 1.10,

nVn/c? =nX?/0% =4 x2

where x2 is a random variable having the chi-square distribution x2.

Note that
nX? 1 ¢ (n—1)Up

By the SLLN,
1 & o
E;é;;[Z; )q' —9515.1.
An application of Slutsky’s theorem leads to
nUp/02 =4 32 —1.
Since u =0, by Theorem 3.5(ii),

nLjn'—>d 2: Ajcxfj—'1)
Jj=1

which implies that 2, = 62 and 4; = 0 when j > 1.

The amse of U, is 26*/n? whereas the amse of V), is 36*/n?.
UW-Madison (Statistics) Stat 709 Lecture 18 2018

17 /17



