Lecture 18: U- and V-statistics

U-statistics

Let X_{1}, \ldots, X_{n} be i.i.d. from an unknown population P in a nonparametric family \mathscr{P}.
If the vector of order statistic is sufficient and complete for $P \in \mathscr{P}$, then a symmetric unbiased estimator of an estimable ϑ is the UMVUE of ϑ. In many problems, parameters to be estimated are of the form

$$
\vartheta=E\left[h\left(X_{1}, \ldots, X_{m}\right)\right]
$$

with a positive integer m and a Borel function h that is symmetric and satisfies $E\left|h\left(X_{1}, \ldots, X_{m}\right)\right|<\infty$ for any $P \in \mathscr{P}$.
An effective way of obtaining an unbiased estimator of ϑ (which is a UMVUE in some nonparametric problems) is to use

$$
\begin{equation*}
U_{n}=\binom{n}{m}^{-1} \sum_{c} h\left(X_{i_{i}}, \ldots, X_{i_{m}}\right), \tag{1}
\end{equation*}
$$

where \sum_{c} denotes the summation over the $\binom{n}{m}$ combinations of m distinct elements $\left\{i_{1}, \ldots, i_{m}\right\}$ from $\{1, \ldots, n\}$.

Definition 3.2

The statistic in (1) is called a U-statistic with kernel h of order m.

Examples

Consider the estimation of μ^{m}, where $\mu=E X_{1}$ and m is an integer >0. Using $h\left(x_{1}, \ldots, x_{m}\right)=x_{1} \cdots x_{m}$, we obtain the following U-statistic for μ^{m} :

$$
U_{n}=\binom{n}{m}^{-1} \sum_{c} X_{i_{1}} \cdots X_{i_{m}}
$$

Consider next the estimation of

$$
\sigma^{2}=\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\right] / 2=E\left[\left(X_{1}-X_{2}\right)^{2} / 2\right]
$$

we obtain the following U-statistic with kernel $h\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2} / 2$:

$$
U_{n}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \frac{\left(X_{i}-X_{j}\right)^{2}}{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right)=S^{2}
$$

which is the sample variance.

Examples

In some cases, we would like to estimate $\vartheta=E\left|X_{1}-X_{2}\right|$, a measure of concentration.
Using kernel $h\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$, we obtain the following U-statistic unbiased for $\vartheta=E\left|X_{1}-X_{2}\right|$:

$$
U_{n}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right|,
$$

which is known as Gini's mean difference.
Let $\vartheta=P\left(X_{1}+X_{2} \leq 0\right)$.
Using kernel $h\left(x_{1}, x_{2}\right)=I_{(-\infty, 0]}\left(x_{1}+x_{2}\right)$, we obtain the following U-statistic unbiased for ϑ :

$$
U_{n}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} I_{(-\infty, 0]}\left(X_{i}+X_{j}\right),
$$

which is known as the one-sample Wilcoxon statistic.

Variance of a U-statistic

The variance of a U-statistic U_{n} with kernel h has an explicit form. For $k=1, \ldots, m$, let

$$
\begin{aligned}
h_{k}\left(x_{1}, \ldots, x_{k}\right) & =E\left[h\left(X_{1}, \ldots, X_{m}\right) \mid X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right] \\
& =E\left[h\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{m}\right)\right] \\
\tilde{h}_{k} & =h_{k}-E\left[h\left(X_{1}, \ldots, X_{m}\right)\right]
\end{aligned}
$$

For any U-statistic with kernel h,

$$
\begin{equation*}
U_{n}-E\left(U_{n}\right)=\binom{n}{m}^{-1} \sum_{c} \tilde{h}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tag{2}
\end{equation*}
$$

Theorem 3.4 (Hoeffding's theorem)

For a U-statistic U_{n} with $E\left[h\left(X_{1}, \ldots, X_{m}\right)\right]^{2}<\infty$,

$$
\operatorname{Var}\left(U_{n}\right)=\binom{n}{m}^{-1} \sum_{k=1}^{m}\binom{m}{k}\binom{n-m}{m-k} \zeta_{k}
$$

where $\zeta_{k}=\operatorname{Var}\left(h_{k}\left(X_{1}, \ldots, X_{k}\right)\right)$.

Proof

Consider two sets $\left\{\dot{i}_{1}, \ldots, i_{m}\right\}$ and $\left\{j_{1}, \ldots, j_{m}\right\}$ of m distinct integers from $\{1, \ldots, n\}$ with exactly k integers in common.
The number of distinct choices of two such sets is $\binom{n}{m}\binom{m}{k}\binom{n-m}{m-k}$. By the symmetry of \tilde{h}_{m} and independence of X_{1}, \ldots, X_{n},

$$
E\left[\tilde{h}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tilde{h}\left(X_{j_{1}}, \ldots, X_{j_{m}}\right)\right]=\zeta_{k}
$$

for $k=1, \ldots, m$.
Then, by (2),

$$
\begin{aligned}
\operatorname{Var}\left(U_{n}\right) & =\binom{n}{m}^{-2} \sum_{c} \sum_{c} E\left[\tilde{h}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tilde{h}\left(X_{j_{1}}, \ldots, X_{j_{m}}\right)\right] \\
& =\binom{n}{m}^{-2} \sum_{k=1}^{m}\binom{n}{m}\binom{m}{k}\binom{n-m}{m-k} \zeta_{k} .
\end{aligned}
$$

This proves the result.

Corollary 3.2

Under the condition of Theorem 3.4,
(i) $\frac{m^{2}}{n} \zeta_{1} \leq \operatorname{Var}\left(U_{n}\right) \leq \frac{m}{n} \zeta_{m}$;
(ii) $(n+1) \operatorname{Var}\left(U_{n+1}\right) \leq n \operatorname{Var}\left(U_{n}\right)$ for any $n>m$;
(iii) For any fixed m and $k=1, \ldots, m$, if $\zeta_{j}=0$ for $j<k$ and $\zeta_{k}>0$, then

$$
\operatorname{Var}\left(U_{n}\right)=\frac{k!\binom{m}{k}^{2} \zeta_{k}}{n^{k}}+O\left(\frac{1}{n^{k+1}}\right) .
$$

For any fixed m, if $\zeta_{j}=0$ for $j<k$ and $\zeta_{k}>0$, then the mse of U_{n} is of the order n^{-k} and, therefore, U_{n} is $n^{k / 2}$-consistent.

Example 3.11

Consider $h\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, the U-statistic unbiased for $\mu^{2}, \mu=E X_{1}$. Note that $h_{1}\left(x_{1}\right)=\mu x_{1}, \tilde{h}_{1}\left(x_{1}\right)=\mu\left(x_{1}-\mu\right)$,
$\zeta_{1}=E\left[\tilde{h}_{1}\left(X_{1}\right)\right]^{2}=\mu^{2} \operatorname{Var}\left(X_{1}\right)=\mu^{2} \sigma^{2}, \tilde{h}\left(x_{1}, x_{2}\right)=x_{1} x_{2}-\mu^{2}$, and $\zeta_{2}=\operatorname{Var}\left(X_{1} X_{2}\right)=E\left(X_{1} X_{2}\right)^{2}-\mu^{4}=\left(\mu^{2}+\sigma^{2}\right)^{2}-\mu^{4}$.
By Theorem 3.4, for $U_{n}=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n} X_{i} X_{j}$,

$$
\begin{aligned}
\operatorname{Var}\left(U_{n}\right) & =\binom{n}{2}^{-1}\left[\binom{2}{1}\binom{n-2}{1} \zeta_{1}+\binom{2}{2}\binom{n-2}{0} \zeta_{2}\right] \\
& =\frac{2}{n(n-1)}\left[2(n-2) \mu^{2} \sigma^{2}+\left(\mu^{2}+\sigma^{2}\right)^{2}-\mu^{4}\right] \\
& =\frac{4 \mu^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n(n-1)} .
\end{aligned}
$$

Next, consider $h\left(x_{1}, x_{2}\right)=I_{(-\infty, 0]}\left(x_{1}+x_{2}\right)$, which leads to the one-sample Wilcoxon statistic.
Note that $h_{1}\left(x_{1}\right)=P\left(x_{1}+X_{2} \leq 0\right)=F\left(-x_{1}\right)$, where F is the c.d.f. of P.
Then $\zeta_{1}=\operatorname{Var}\left(F\left(-X_{1}\right)\right)$.
Let $\vartheta=E\left[h\left(X_{1}, X_{2}\right)\right]$.
Then $\zeta_{2}=\operatorname{Var}\left(h\left(X_{1}, X_{2}\right)\right)=\vartheta(1-\vartheta)$.
Hence, for U_{n} being the one-sample Wilcoxon statistic,

$$
\operatorname{Var}\left(U_{n}\right)=\frac{2}{n(n-1)}\left[2(n-2) \zeta_{1}+\vartheta(1-\vartheta)\right] .
$$

If F is continuous and symmetric about 0 , then ζ_{1} can be simplified as

$$
\zeta_{1}=\operatorname{Var}\left(F\left(-X_{1}\right)\right)=\operatorname{Var}\left(1-F\left(X_{1}\right)\right)=\operatorname{Var}\left(F\left(X_{1}\right)\right)=\frac{1}{12}
$$

Asymptotic distributions of U-statistics

For nonparametric \mathscr{P}, the exact distribution of U_{n} is hard to derive. We study the method of projection, which is particularly effective for studying asymptotic distributions of U -statistics.

Definition 3.3

Let T_{n} be a given statistic based on X_{1}, \ldots, X_{n}. The projection of T_{n} on k_{n} random elements $Y_{1}, \ldots, Y_{k_{n}}$ is defined to be

$$
\check{T}_{n}=E\left(T_{n}\right)+\sum_{i=1}^{k_{n}}\left[E\left(T_{n} \mid Y_{i}\right)-E\left(T_{n}\right)\right]
$$

Let \check{Y}_{n} be the projection of T_{n} on X_{1}, \ldots, X_{n}, and $\psi_{n}\left(X_{i}\right)=E\left(T_{n} \mid X_{i}\right)$.
If T_{n} is symmetric (as a function of $\left.X_{1}, \ldots, X_{n}\right)$, then $\psi_{n}\left(X_{1}\right), \ldots, \psi_{n}\left(X_{n}\right)$ are i.i.d. with mean $E\left[\psi_{n}\left(X_{i}\right)\right]=E\left(\check{T}_{n}\right)=E\left[E\left(T_{n} \mid X_{i}\right)\right]=E\left(T_{n}\right)$. If $E\left(T_{n}^{2}\right)<\infty$ and $\operatorname{Var}\left(\psi_{n}\left(X_{i}\right)\right)>0$, then, by the CLT,

$$
\begin{equation*}
\frac{1}{\sqrt{n \operatorname{Var}\left(\psi_{n}\left(X_{1}\right)\right)}} \sum_{i=1}^{n}\left[\psi_{n}\left(X_{i}\right)-E\left(T_{n}\right)\right] \rightarrow_{d} N(0,1) \tag{3}
\end{equation*}
$$

If we can show $T_{n}-\check{T}_{n}$ has a negligible order, then we can derive the asymptotic distribution of T_{n} by using (3) and Slutsky's theorem.

Lemma 3.1

Let T_{n} be a symmetric statistic with $\operatorname{Var}\left(T_{n}\right)<\infty$ for every n and \check{T}_{n} be the projection of T_{n} on X_{1}, \ldots, X_{n}.
Then $E\left(T_{n}\right)=E\left(\check{T}_{n}\right)$ and

$$
E\left(T_{n}-\check{T}_{n}\right)^{2}=\operatorname{Var}\left(T_{n}\right)-\operatorname{Var}\left(\check{T}_{n}\right) .
$$

Proof

Since $E\left(T_{n}\right)=E\left(\check{T}_{n}\right)$,

$$
\begin{aligned}
E\left(T_{n}-\check{T}_{n}\right)^{2} & =\operatorname{Var}\left(T_{n}\right)+\operatorname{Var}\left(\check{T}_{n}\right)-2 \operatorname{Cov}\left(T_{n}, \check{T}_{n}\right) \\
\operatorname{Cov}\left(T_{n}, \check{T}_{n}\right) & =E\left(T_{n} \check{T}_{n}\right)-\left[E\left(T_{n}\right)\right]^{2} \\
& =n E\left[T_{n} E\left(T_{n} \mid X_{i}\right)\right]-n\left[E\left(T_{n}\right)\right]^{2} \\
& =n E\left\{E\left[T_{n} E\left(T_{n} \mid X_{i}\right) \mid X_{i}\right]\right\}-n\left[E\left(T_{n}\right)\right]^{2} \\
& =n E\left\{\left[E\left(T_{n} \mid X_{i}\right)\right]^{2}\right\}-n\left[E\left(T_{n}\right)\right]^{2} \\
& =n \operatorname{Var}\left(E\left(T_{n} \mid X_{i}\right)\right)=\operatorname{Var}\left(\check{T}_{n}\right)
\end{aligned}
$$

For a U-statistic U_{n}, one can show (exercise) that

$$
\check{U}_{n}=E\left(U_{n}\right)+\frac{m}{n} \sum_{i=1}^{n} \tilde{h}_{1}\left(X_{i}\right),
$$

where \breve{U}_{n} is the projection of U_{n} on X_{1}, \ldots, X_{n} and

$$
\tilde{h}_{1}(x)=h_{1}(x)-E\left[h\left(X_{1}, \ldots, X_{m}\right)\right], \quad h_{1}(x)=E\left[h\left(x, X_{2}, \ldots, X_{m}\right)\right] .
$$

Hence, if $\zeta_{1}=\operatorname{Var}\left(\tilde{h}_{1}\left(X_{i}\right)\right)>0$,

$$
\operatorname{Var}\left(\breve{U}_{n}\right)=m^{2} \zeta_{1} / n
$$

and, by Corollary 3.2 and Lemma 3.1,

$$
E\left(U_{n}-\check{U}_{n}\right)^{2}=O\left(n^{-2}\right) .
$$

This is enough for establishing the asymptotic distribution of U_{n}. If $\zeta_{1}=0$ but $\zeta_{2}>0$, then we can show that

$$
E\left(U_{n}-\breve{U}_{n}\right)^{2}=O\left(n^{-3}\right) .
$$

One may derive results for the cases where $\zeta_{2}=0$, but the case of either $\zeta_{1}>0$ or $\zeta_{2}>0$ is the most interesting case in applications.

Theorem 3.5

Let U_{n} be a U-statistic with $E\left[h\left(X_{1}, \ldots, X_{m}\right)\right]^{2}<\infty$.
(i) If $\zeta_{1}>0$, then

$$
\sqrt{n}\left[U_{n}-E\left(U_{n}\right)\right] \rightarrow_{d} N\left(0, m^{2} \zeta_{1}\right) .
$$

(ii) If $\zeta_{1}=0$ but $\zeta_{2}>0$, then

$$
\begin{equation*}
n\left[U_{n}-E\left(U_{n}\right)\right] \rightarrow d \frac{m(m-1)}{2} \sum_{j=1}^{\infty} \lambda_{j}\left(\chi_{1 j}^{2}-1\right), \tag{4}
\end{equation*}
$$

where $\chi_{1 j}^{2}$'s are i.i.d. random variables having the chi-square distribution χ_{1}^{2} and λ_{j} 's are some constants (which may depend on $P)$ satisfying $\sum_{j=1}^{\infty} \lambda_{j}^{2}=\zeta_{2}$.

Lemma 3.2

Let Y be the random variable on the right-hand side of (4).
Then $E Y^{2}=\frac{m^{2}(m-1)^{2}}{2} \zeta_{2}$.

It follows from Corollary 3.2(iii) and Lemma 3.2 that if $\zeta_{1}=0$, then

$$
\operatorname{amse}_{U_{n}}(P)=\frac{m^{2}(m-1)^{2}}{2} \zeta_{2} / n^{2}=\operatorname{Var}\left(U_{n}\right)+O\left(n^{-3}\right)
$$

Proof of Lemma 3.2.

Define

$$
Y_{k}=\frac{m(m-1)}{2} \sum_{j=1}^{k} \lambda_{j}\left(\chi_{1 j}^{2}-1\right), \quad k=1,2, \ldots
$$

It can be shown (exercise) that $\left\{Y_{k}^{2}\right\}$ is uniformly integrable. Since $Y_{k} \rightarrow_{d} Y$ as $k \rightarrow \infty, \lim _{k \rightarrow \infty} E Y_{k}^{2}=E Y^{2}$ (Theorem 1.8(viii)).
Since $\chi_{1 j}^{2}$'s are independent chi-square random variables with $E \chi_{1 j}^{2}=1$ and $\operatorname{Var}\left(\chi_{1 j}^{2}\right)=2, E Y_{k}=0$ for any k and

$$
\begin{aligned}
E Y_{k}^{2} & =\frac{m^{2}(m-1)^{2}}{4} \sum_{j=1}^{k} \lambda_{j}^{2} \operatorname{Var}\left(\chi_{1 j}^{2}\right) \\
& =\frac{m^{2}(m-1)^{2}}{4}\left(2 \sum_{j=1}^{k} \lambda_{j}^{2}\right) \\
& \rightarrow \frac{m^{2}(m-1)^{2}}{2} \zeta_{2}
\end{aligned}
$$

A statistic closely related to U-statistic is described as follows.

V-statistics

Let X_{1}, \ldots, X_{n} be i.i.d. from P.
For every U-statistic U_{n} as an estimator of $\vartheta=E\left[h\left(X_{1}, \ldots, X_{m}\right)\right]$, there is a closely related V-statistic defined by

$$
\begin{equation*}
V_{n}=\frac{1}{n^{m}} \sum_{i_{1}=1}^{n} \cdots \sum_{i_{m}=1}^{n} h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right) \tag{5}
\end{equation*}
$$

As an estimator of ϑ, V_{n} is biased; but the bias is small asymptotically. For a fixed n, V_{n} may be better than U_{n} in terms of the mse.

Proposition 3.5

Let V_{n} be defined by (5).
(i) Assume that $E\left|h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right|<\infty$ for all $1 \leq i_{1} \leq \cdots \leq i_{m} \leq m$. Then the bias of V_{n} satisfies

$$
b_{v_{n}}(P)=O\left(n^{-1}\right)
$$

Proposition 3.5 (continued)

(ii) Assume that $E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right]^{2}<\infty$ for all $1 \leq i_{1} \leq \cdots \leq i_{m} \leq m$. Then the variance of V_{n} satisfies

$$
\operatorname{Var}\left(V_{n}\right)=\operatorname{Var}\left(U_{n}\right)+O\left(n^{-2}\right)
$$

where U_{n} is the U-statistic corresponding to V_{n}.

Theorem 3.16

Let V_{n} be a V-statistic with $E\left[h\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right]^{2}<\infty$ for all
$1 \leq i_{1} \leq \cdots \leq i_{m} \leq m$.
(i) If $\zeta_{1}=\operatorname{Var}\left(h_{1}\left(X_{1}\right)\right)>0$, then $\sqrt{n}\left(V_{n}-\vartheta\right) \rightarrow_{d} N\left(0, m^{2} \zeta_{1}\right)$.
(ii) If $\zeta_{1}=0$ but $\zeta_{2}=\operatorname{Var}\left(h_{2}\left(X_{1}, X_{2}\right)\right)>0$, then

$$
n\left(V_{n}-\vartheta\right) \rightarrow_{d} \frac{m(m-1)}{2} \sum_{j=1}^{\infty} \lambda_{j} \chi_{1 j}^{2}
$$

where $\chi_{1 j}^{2}$'s and λ_{j} 's are the same as those in Theorem 3.5.

Discussion

- Theorem 3.16 shows that if $\zeta_{1}>0$, then the amse's of U_{n} and V_{n} are the same.
- If $\zeta_{1}=0$ but $\zeta_{2}>0$, then an argument similar to that in the proof of Lemma 3.2 leads to

$$
\begin{aligned}
\operatorname{amse}_{v_{n}}(P) & =\frac{m^{2}(m-1)^{2} \zeta_{2}}{2 n^{2}}+\frac{m^{2}(m-1)^{2}}{4 n^{2}}\left(\sum_{j=1}^{\infty} \lambda_{j}\right)^{2} \\
& =\operatorname{amse}_{U_{n}}(P)+\frac{m^{2}(m-1)^{2}}{4 n^{2}}\left(\sum_{j=1}^{\infty} \lambda_{j}\right)^{2}
\end{aligned}
$$

(see Lemma 3.2).

- Hence U_{n} is asymptotically more efficient than V_{n}, unless $\sum_{j=1}^{\infty} \lambda_{j}=0$.

Example.

Let X_{1}, \ldots, X_{n} be i.i.d. from a population with mean μ, variance σ^{2}, and finite 4th moment.

To estimate μ^{2}, the U-statistic and the corresponding V-statistic are

$$
U_{n}=\frac{2}{n(n-1)} \sum_{i<j} X_{i} X_{j}, \quad V_{n}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}=\bar{X}^{2}
$$

We now compare U_{n} and V_{n}.
Note that $\zeta_{1}=\mu^{2} \sigma^{2}$.
If $\mu \neq 0$, by the CLT and delta-method,

$$
\sqrt{n}\left(V_{n}-\mu^{2}\right)=\sqrt{n}\left(\bar{X}^{2}-\mu^{2}\right) \rightarrow_{d} N\left(0,4 \mu^{2} \sigma^{2}\right)
$$

For U_{n}, the result in Theorem 3.5(i) holds with $\zeta_{1}=\mu^{2} \sigma^{2}$, i.e.,

$$
\sqrt{n}\left(U_{n}-\mu^{2}\right) \rightarrow_{d} N\left(0,2^{2} \zeta_{1}\right)=N\left(0,4 \mu^{2} \sigma^{2}\right)
$$

Thus, U_{n} and V_{n} are asymptotically the same.
Now consider $\mu=0$.
Note that $\zeta_{1}=0, \zeta_{2}=\sigma^{4}>0$, and Theorems 3.5(ii) and 3.16(ii) apply. However, it is not convenient to use Theorems 3.5 (ii) and 3.16 (ii) to find the limiting distributions of U_{n} and V_{n}.

For V_{n}, by the CLT and Theorem 1.10,

$$
n V_{n} / \sigma^{2}=n \bar{X}^{2} / \sigma^{2} \rightarrow_{d} \chi_{1}^{2}
$$

where χ_{1}^{2} is a random variable having the chi-square distribution χ_{1}^{2}. Note that

$$
\frac{n \bar{X}^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2} n} \sum_{i=1}^{n} X_{i}^{2}+\frac{(n-1) U_{n}}{\sigma^{2}}
$$

By the SLLN,

$$
\frac{1}{\sigma^{2} n} \sum_{i=1}^{n} X_{i}^{2} \rightarrow_{\text {a.s. }} 1
$$

An application of Slutsky's theorem leads to

$$
n U_{n} / \sigma^{2} \rightarrow_{d} \chi_{1}^{2}-1
$$

Since $\mu=0$, by Theorem 3.5(ii),

$$
n U_{n} \rightarrow_{d} \sum_{j=1}^{\infty} \lambda_{j}\left(\chi_{1 j}^{2}-1\right)
$$

which implies that $\lambda_{1}=\sigma^{2}$ and $\lambda_{j}=0$ when $j>1$.
The amse of U_{n} is $2 \sigma^{4} / n^{2}$ whereas the amse of V_{n} is $3 \sigma^{4} / n^{2}$.

