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Lecture 18: U- and V-statistics
U-statistics
Let X1, ...,Xn be i.i.d. from an unknown population P in a
nonparametric family P.
If the vector of order statistic is sufficient and complete for P ∈P, then
a symmetric unbiased estimator of an estimable ϑ is the UMVUE of ϑ .
In many problems, parameters to be estimated are of the form

ϑ = E [h(X1, ...,Xm)]

with a positive integer m and a Borel function h that is symmetric and
satisfies E |h(X1, ...,Xm)|< ∞ for any P ∈P.
An effective way of obtaining an unbiased estimator of ϑ (which is a
UMVUE in some nonparametric problems) is to use

Un =

(
n
m

)−1

∑
c

h(Xi1 , ...,Xim ), (1)

where ∑c denotes the summation over the
(n

m

)
combinations of m

distinct elements {i1, ..., im} from {1, ...,n}.
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Definition 3.2
The statistic in (1) is called a U-statistic with kernel h of order m.

Examples
Consider the estimation of µm, where µ = EX1 and m is an integer > 0.
Using h(x1, ...,xm) = x1 · · ·xm, we obtain the following U-statistic for µm:

Un =

(
n
m

)−1

∑
c

Xi1 · · ·Xim .

Consider next the estimation of

σ
2 = [ Var(X1) + Var(X2)]/2 = E [(X1−X2)2/2],

we obtain the following U-statistic with kernel h(x1,x2) = (x1−x2)2/2:

Un =
2

n(n−1) ∑
1≤i<j≤n

(Xi −Xj)
2

2
=

1
n−1

(
n

∑
i=1

X 2
i −nX̄ 2

)
= S2,

which is the sample variance.
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Examples
In some cases, we would like to estimate ϑ = E |X1−X2|, a measure of
concentration.
Using kernel h(x1,x2) = |x1−x2|, we obtain the following U-statistic
unbiased for ϑ = E |X1−X2|:

Un =
2

n(n−1) ∑
1≤i<j≤n

|Xi −Xj |,

which is known as Gini’s mean difference.

Let ϑ = P(X1 + X2 ≤ 0).
Using kernel h(x1,x2) = I(−∞,0](x1 + x2), we obtain the following
U-statistic unbiased for ϑ :

Un =
2

n(n−1) ∑
1≤i<j≤n

I(−∞,0](Xi + Xj),

which is known as the one-sample Wilcoxon statistic.
UW-Madison (Statistics) Stat 709 Lecture 18 2018 3 / 17



beamer-tu-logo

Variance of a U-statistic
The variance of a U-statistic Un with kernel h has an explicit form.
For k = 1, ...,m, let

hk (x1, ...,xk ) = E [h(X1, ...,Xm)|X1 = x1, ...,Xk = xk ]

= E [h(x1, ...,xk ,Xk+1, ...,Xm)]

h̃k = hk −E [h(X1, ...,Xm)]

For any U-statistic with kernel h,

Un−E(Un) =

(
n
m

)−1

∑
c

h̃(Xi1 , ...,Xim ). (2)

Theorem 3.4 (Hoeffding’s theorem)

For a U-statistic Un with E [h(X1, ...,Xm)]2 < ∞,

Var(Un) =

(
n
m

)−1 m

∑
k=1

(
m
k

)(
n−m
m−k

)
ζk ,

where ζk = Var(hk (X1, ...,Xk )).
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Proof
Consider two sets {i1, ..., im} and {j1, ..., jm} of m distinct integers from
{1, ...,n} with exactly k integers in common.
The number of distinct choices of two such sets is

(n
m

)(m
k

)(n−m
m−k

)
.

By the symmetry of h̃m and independence of X1, ...,Xn,

E [h̃(Xi1 , ...,Xim )h̃(Xj1 , ...,Xjm )] = ζk

for k = 1, ...,m.
Then, by (2),

Var(Un) =

(
n
m

)−2

∑
c

∑
c

E [h̃(Xi1 , ...,Xim )h̃(Xj1 , ...,Xjm )]

=

(
n
m

)−2 m

∑
k=1

(
n
m

)(
m
k

)(
n−m
m−k

)
ζk .

This proves the result.
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Corollary 3.2
Under the condition of Theorem 3.4,

(i) m2

n ζ1 ≤ Var(Un)≤ m
n ζm;

(ii) (n + 1) Var(Un+1)≤ n Var(Un) for any n > m;
(iii) For any fixed m and k = 1, ...,m, if ζj = 0 for j < k and ζk > 0, then

Var(Un) =
k !
(m

k

)2
ζk

nk + O
(

1
nk+1

)
.

For any fixed m, if ζj = 0 for j < k and ζk > 0, then the mse of Un is of
the order n−k and, therefore, Un is nk/2-consistent.

Example 3.11

Consider h(x1,x2) = x1x2, the U-statistic unbiased for µ2, µ = EX1.
Note that h1(x1) = µx1, h̃1(x1) = µ(x1−µ),
ζ1 = E [h̃1(X1)]2 = µ2 Var(X1) = µ2σ2, h̃(x1,x2) = x1x2−µ2, and
ζ2 = Var(X1X2) = E(X1X2)2−µ4 = (µ2 + σ2)2−µ4.
By Theorem 3.4, for Un =

(n
2

)−1
∑1≤i<j≤n XiXj ,
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Var(Un) =

(
n
2

)−1[(2
1

)(
n−2

1

)
ζ1 +

(
2
2

)(
n−2

0

)
ζ2

]
=

2
n(n−1)

[
2(n−2)µ

2
σ

2 + (µ
2 + σ

2)2−µ
4
]

=
4µ2σ2

n
+

2σ4

n(n−1)
.

Next, consider h(x1,x2) = I(−∞,0](x1 + x2), which leads to the
one-sample Wilcoxon statistic.
Note that h1(x1) = P(x1 + X2 ≤ 0) = F (−x1), where F is the c.d.f. of P.
Then ζ1 = Var(F (−X1)).
Let ϑ = E [h(X1,X2)].
Then ζ2 = Var(h(X1,X2)) = ϑ(1−ϑ).
Hence, for Un being the one-sample Wilcoxon statistic,

Var(Un) =
2

n(n−1)
[2(n−2)ζ1 + ϑ(1−ϑ)] .

If F is continuous and symmetric about 0, then ζ1 can be simplified as

ζ1 = Var(F (−X1)) = Var(1−F (X1)) = Var(F (X1)) = 1
12
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Asymptotic distributions of U-statistics
For nonparametric P, the exact distribution of Un is hard to derive.
We study the method of projection, which is particularly effective for
studying asymptotic distributions of U-statistics.

Definition 3.3
Let Tn be a given statistic based on X1, ...,Xn. The projection of Tn on
kn random elements Y1, ...,Ykn is defined to be

Ťn = E(Tn) +
kn

∑
i=1

[E(Tn|Yi)−E(Tn)].

Let Ťn be the projection of Tn on X1, ...,Xn, and ψn(Xi) = E(Tn|Xi).
If Tn is symmetric (as a function of X1, ...,Xn), then ψn(X1), ...,ψn(Xn)
are i.i.d. with mean E [ψn(Xi)] = E(Ťn) = E [E(Tn|Xi)] = E(Tn).
If E(T 2

n ) < ∞ and Var(ψn(Xi)) > 0, then, by the CLT,

1√
n Var(ψn(X1))

n

∑
i=1

[ψn(Xi)−E(Tn)]→d N(0,1) (3)
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If we can show Tn− Ťn has a negligible order, then we can derive the
asymptotic distribution of Tn by using (3) and Slutsky’s theorem.

Lemma 3.1
Let Tn be a symmetric statistic with Var(Tn) < ∞ for every n and Ťn be
the projection of Tn on X1, ...,Xn.
Then E(Tn) = E(Ťn) and

E(Tn− Ťn)2 = Var(Tn)− Var(Ťn).

Proof
Since E(Tn) = E(Ťn),

E(Tn− Ťn)2 = Var(Tn) + Var(Ťn)−2 Cov(Tn, Ťn)

Cov(Tn, Ťn) = E(TnŤn)− [E(Tn)]2

= nE [TnE(Tn|Xi)]−n[E(Tn)]2

= nE{E [TnE(Tn|Xi)|Xi ]}−n[E(Tn)]2

= nE{[E(Tn|Xi)]2}−n[E(Tn)]2

= n Var(E(Tn|Xi)) = Var(Ťn)
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For a U-statistic Un, one can show (exercise) that

Ǔn = E(Un) +
m
n

n

∑
i=1

h̃1(Xi),

where Ǔn is the projection of Un on X1, ...,Xn and

h̃1(x) = h1(x)−E [h(X1, ...,Xm)], h1(x) = E [h(x ,X2, ...,Xm)].

Hence, if ζ1 = Var(h̃1(Xi)) > 0,

Var(Ǔn) = m2
ζ1/n

and, by Corollary 3.2 and Lemma 3.1,

E(Un− Ǔn)2 = O(n−2).

This is enough for establishing the asymptotic distribution of Un.
If ζ1 = 0 but ζ2 > 0, then we can show that

E(Un− Ǔn)2 = O(n−3).

One may derive results for the cases where ζ2 = 0, but the case of
either ζ1 > 0 or ζ2 > 0 is the most interesting case in applications.
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Theorem 3.5
Let Un be a U-statistic with E [h(X1, ...,Xm)]2 < ∞.

(i) If ζ1 > 0, then
√

n[Un−E(Un)]→d N(0,m2
ζ1).

(ii) If ζ1 = 0 but ζ2 > 0, then

n[Un−E(Un)]→d
m(m−1)

2

∞

∑
j=1

λj(χ
2
1j −1), (4)

where χ2
1j ’s are i.i.d. random variables having the chi-square

distribution χ2
1 and λj ’s are some constants (which may depend on

P) satisfying ∑
∞

j=1 λ 2
j = ζ2.

Lemma 3.2
Let Y be the random variable on the right-hand side of (4).
Then EY 2 = m2(m−1)2

2 ζ2.
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It follows from Corollary 3.2(iii) and Lemma 3.2 that if ζ1 = 0, then

amseUn (P) =
m2(m−1)2

2
ζ2/n2 = Var(Un) + O(n−3)

Proof of Lemma 3.2.
Define

Yk =
m(m−1)

2

k

∑
j=1

λj(χ
2
1j −1), k = 1,2, ....

It can be shown (exercise) that {Y 2
k } is uniformly integrable.

Since Yk →d Y as k → ∞, limk→∞ EY 2
k = EY 2 (Theorem 1.8(viii)).

Since χ2
1j ’s are independent chi-square random variables with Eχ2

1j = 1
and Var(χ2

1j) = 2, EYk = 0 for any k and

EY 2
k =

m2(m−1)2

4

k

∑
j=1

λ
2
j Var(χ

2
1j)

=
m2(m−1)2

4

(
2

k

∑
j=1

λ
2
j

)

→ m2(m−1)2

2
ζ2.

UW-Madison (Statistics) Stat 709 Lecture 18 2018 12 / 17



beamer-tu-logo

A statistic closely related to U-statistic is described as follows.

V-statistics
Let X1, ...,Xn be i.i.d. from P.
For every U-statistic Un as an estimator of ϑ = E [h(X1, ...,Xm)], there is
a closely related V-statistic defined by

Vn =
1

nm

n

∑
i1=1
· · ·

n

∑
im=1

h(Xi1 , ...,Xim ). (5)

As an estimator of ϑ , Vn is biased; but the bias is small asymptotically.
For a fixed n, Vn may be better than Un in terms of the mse.

Proposition 3.5
Let Vn be defined by (5).

(i) Assume that E |h(Xi1 , ...,Xim )|< ∞ for all 1≤ i1 ≤ ·· · ≤ im ≤m.
Then the bias of Vn satisfies

bVn (P) = O(n−1).

UW-Madison (Statistics) Stat 709 Lecture 18 2018 13 / 17



beamer-tu-logo

Proposition 3.5 (continued)

(ii) Assume that E [h(Xi1 , ...,Xim )]2 < ∞ for all 1≤ i1 ≤ ·· · ≤ im ≤m.
Then the variance of Vn satisfies

Var(Vn) = Var(Un) + O(n−2),

where Un is the U-statistic corresponding to Vn.

Theorem 3.16
Let Vn be a V-statistic with E [h(Xi1 , ...,Xim )]2 < ∞ for all
1≤ i1 ≤ ·· · ≤ im ≤m.

(i) If ζ1 = Var(h1(X1)) > 0, then
√

n(Vn−ϑ)→d N(0,m2ζ1).
(ii) If ζ1 = 0 but ζ2 = Var(h2(X1,X2)) > 0, then

n(Vn−ϑ)→d
m(m−1)

2

∞

∑
j=1

λj χ
2
1j ,

where χ2
1j ’s and λj ’s are the same as those in Theorem 3.5.
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Discussion
Theorem 3.16 shows that if ζ1 > 0, then the amse’s of Un and Vn
are the same.
If ζ1 = 0 but ζ2 > 0, then an argument similar to that in the proof of
Lemma 3.2 leads to

amseVn (P) =
m2(m−1)2ζ2

2n2 +
m2(m−1)2

4n2

(
∞

∑
j=1

λj

)2

= amseUn (P) +
m2(m−1)2

4n2

(
∞

∑
j=1

λj

)2

(see Lemma 3.2).
Hence Un is asymptotically more efficient than Vn, unless
∑

∞

j=1 λj = 0.

Example.

Let X1, ...,Xn be i.i.d. from a population with mean µ, variance σ2, and
finite 4th moment.
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To estimate µ2, the U-statistic and the corresponding V-statistic are

Un =
2

n(n−1) ∑
i<j

XiXj , Vn =
1
n2

n

∑
i=1

n

∑
j=1

XiXj = X̄ 2

We now compare Un and Vn.
Note that ζ1 = µ2σ2.
If µ 6= 0, by the CLT and delta-method,

√
n(Vn−µ

2) =
√

n(X̄ 2−µ
2)→d N(0,4µ

2
σ

2)

For Un, the result in Theorem 3.5(i) holds with ζ1 = µ2σ2, i.e.,
√

n(Un−µ
2)→d N(0,22

ζ1) = N(0,4µ
2
σ

2)

Thus, Un and Vn are asymptotically the same.

Now consider µ = 0.
Note that ζ1 = 0, ζ2 = σ4 > 0, and Theorems 3.5(ii) and 3.16(ii) apply.
However, it is not convenient to use Theorems 3.5(ii) and 3.16(ii) to
find the limiting distributions of Un and Vn.
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For Vn, by the CLT and Theorem 1.10,

nVn/σ
2 = nX̄ 2/σ

2→d χ
2
1

where χ2
1 is a random variable having the chi-square distribution χ2

1 .
Note that

nX̄ 2

σ2 =
1

σ2n

n

∑
i=1

X 2
i +

(n−1)Un

σ2 .

By the SLLN,
1

σ2n

n

∑
i=1

X 2
i →a.s. 1.

An application of Slutsky’s theorem leads to

nUn/σ
2→d χ

2
1 −1.

Since µ = 0, by Theorem 3.5(ii),

nUn→d

∞

∑
j=1

λj(χ
2
1j −1)

which implies that λ1 = σ2 and λj = 0 when j > 1.
The amse of Un is 2σ4/n2 whereas the amse of Vn is 3σ4/n2.
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