Lecture 20: Linear model, the LSE, and UMVUE

Linear Models

One of the most useful statistical models is

$$
X_{i}=\beta^{\tau} Z_{i}+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where X_{i} is the i th observation and is often called the i th response; β is a p-vector of unknown parameters (main parameters of interest), $p<n$;
Z_{i} is the i th value of a p-vector of explanatory variables (or covariates); $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are random errors (not observed).
Data: $\left(X_{1}, Z_{1}\right), \ldots,\left(X_{n}, Z_{n}\right)$.
Z_{i} 's are nonrandom or given values of a random p-vector, in which case our analysis is conditioned on Z_{1}, \ldots, Z_{n}.
A matrix form of the model is

$$
\begin{equation*}
X=Z \beta+\varepsilon, \tag{1}
\end{equation*}
$$

where $X=\left(X_{1}, \ldots, X_{n}\right), \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, and $Z=$ the $n \times p$ matrix whose i th row is the vector $Z_{i}, i=1, \ldots, n$.

Definition 3.4 (LSE).

Suppose that the range of β in model (6) is $B \subset \mathscr{R}^{p}$.
A least squares estimator (LSE) of β is defined to be any $\widehat{\beta} \in B$ such that

$$
\|X-Z \widehat{\beta}\|^{2}=\min _{b \in B}\|X-Z b\|^{2}
$$

For any $I \in \mathscr{R}^{p}, I^{\tau} \widehat{\beta}$ is called an LSE of $I^{\tau} \beta$.
Throughout this book, we consider $B=\mathscr{R}^{p}$ unless otherwise stated. Differentiating $\|X-Z b\|^{2}$ w.r.t. b, we obtain that any solution of

$$
Z^{\tau} Z b=Z^{\tau} X
$$

is an LSE of β.

Full rank Z

If the rank of the matrix Z is p, in which case $\left(Z^{\tau} Z\right)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$
\widehat{\beta}=\left(Z^{\tau} Z\right)^{-1} Z^{\tau} X
$$

Not full rank Z

If Z is not of full rank, then there are infinitely many LSE's of β.
Any LSE of β is of the form

$$
\widehat{\beta}=\left(Z^{\tau} Z\right)^{-} Z^{\tau} X,
$$

where $\left(Z^{\tau} Z\right)^{-}$is called a generalized inverse of $Z^{\tau} Z$ and satisfies

$$
Z^{\tau} Z\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z=Z^{\tau} Z
$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $\left(Z^{\tau} Z\right)^{-}=\left(Z^{\tau} Z\right)^{-1}$

Assumptions

To study properties of LSE's of β, we need some assumptions on the distribution of X or ε (conditional on Z if Z is random and ε and Z are independent).
A1: ε is distributed as $N_{n}\left(0, \sigma^{2} I_{n}\right)$ with an unknown $\sigma^{2}>0$.
A2: $E(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)=\sigma^{2} I_{n}$ with an unknown $\sigma^{2}>0$.
A3: $E(\varepsilon)=0$ and $\operatorname{Var}(\varepsilon)$ is an unknown matrix.

Remarks

- Assumption A1 is the strongest and implies a parametric model.
- We may assume a slightly more general assumption that ε has the $N_{n}\left(0, \sigma^{2} D\right)$ distribution with unknown σ^{2} but a known positive definite matrix D.
Let $D^{-1 / 2}$ be the inverse of the square root matrix of D.
Then model (6) with assumption A1 holds if we replace X, Z, and ε by the transformed variables $\tilde{X}=D^{-1 / 2} X, \tilde{Z}=D^{-1 / 2} Z$, and $\tilde{\varepsilon}=D^{-1 / 2} \varepsilon$, respectively.
- A similar conclusion can be made for assumption A2.
- Under assumption A1, the distribution of X is $N_{n}\left(Z \beta, \sigma^{2} I_{n}\right)$, which is in an exponential family \mathscr{P} with parameter
$\theta=\left(\beta, \sigma^{2}\right) \in \mathscr{R}^{p} \times(0, \infty)$.
- However, if the matrix Z is not of full rank, then \mathscr{P} is not identifiable (see §2.1.2), since $Z \beta_{1}=Z \beta_{2}$ does not imply $\beta_{1}=\beta_{2}$.

Remarks

- Suppose that the rank of Z is $r \leq p$.

Then there is an $n \times r$ submatrix Z_{*} of Z such that

$$
\begin{equation*}
Z=Z_{*} Q \tag{2}
\end{equation*}
$$

and Z_{*} is of rank r, where Q is a fixed $r \times p$ matrix, and

$$
Z \beta=Z_{*} Q \beta
$$

- \mathscr{P} is identifiable if we consider the reparameterization $\tilde{\beta}=Q \beta$.
- The new parameter $\tilde{\beta}$ is in a subspace of \mathscr{R}^{p} with dimension r.
- In many applications, we are interested in estimating some linear functions of β, i.e., $\vartheta=I^{\tau} \beta$ for some $I \in \mathscr{R}^{p}$.
- From the previous discussion, however, estimation of $I^{\tau} \beta$ is meaningless unless $I=Q^{\tau} c$ for some $c \in \mathscr{R}^{r}$ so that

$$
I^{\tau} \beta=c^{\tau} Q \beta=c^{\tau} \tilde{\beta} .
$$

The following result shows that $I^{\tau} \beta$ is estimable if $I=Q^{\tau} c$, which is also necessary for $I^{\tau} \beta$ to be estimable under assumption A1.

Theorem 3.6

Assume model (6) with assumption A3.
(i) A necessary and sufficient condition for $I \in \mathscr{R}^{p}$ being $Q^{\tau} c$ for some $c \in \mathscr{R}^{r}$ is $I \in \mathscr{R}(Z)=\mathscr{R}\left(Z^{\tau} Z\right)$, where Q is given by (2) and $\mathscr{R}(A)$ is the smallest linear subspace containing all rows of A.
(ii) If $I \in \mathscr{R}(Z)$, then the LSE $\tau^{\imath} \widehat{\beta}$ is unique and unbiased for $I^{\tau} \beta$.
(iii) If $I \notin \mathscr{R}(Z)$ and assumption A 1 holds, then $I^{\tau} \beta$ is not estimable.

Proof

(i) Note that $a \in \mathscr{R}(A)$ iff $a=A^{\tau} b$ for some vector b.

If $I=Q^{\tau} c$, then

$$
I=Q^{\tau} c=Q^{\tau} Z_{*}^{\tau} Z_{*}\left(Z_{*}^{\tau} Z_{*}\right)^{-1} c=Z^{\tau}\left[Z_{*}\left(Z_{*}^{\tau} Z_{*}\right)^{-1} c\right] .
$$

Hence $I \in \mathscr{R}(Z)$.

Proof (continued)

If $I \in \mathscr{R}(Z)$, then $I=Z^{\tau} \zeta$ for some ζ and

$$
I=\left(Z_{*} Q\right)^{\tau} \zeta=Q^{\tau} c, \quad c=Z_{*}^{\tau} \zeta .
$$

(ii) If $I \in \mathscr{R}(Z)=\mathscr{R}\left(Z^{\tau} Z\right)$, then $I=Z^{\tau} Z \zeta$ for some ζ and by $\widehat{\beta}=\left(Z^{\tau} Z\right)^{-} Z^{\tau} X$,

$$
E\left(I^{\tau} \widehat{\beta}\right)=E\left[I^{\tau}\left(Z^{\tau} Z\right)^{-} Z^{\tau} X\right]=\zeta^{\tau} Z^{\tau} Z\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z \beta=\zeta^{\tau} Z^{\tau} Z \beta=I^{\tau} \beta .
$$

If $\bar{\beta}$ is any other LSE of β, then, by $Z^{\tau} Z \bar{\beta}=Z^{\tau} X$,

$$
\digamma^{\tau} \widehat{\beta}-I^{\tau} \bar{\beta}=\zeta^{\tau}\left(Z^{\tau} Z\right)(\widehat{\beta}-\bar{\beta})=\zeta^{\tau}\left(Z^{\tau} X-Z^{\tau} X\right)=0 .
$$

(iii) Under A1, if there is an estimator $h(X, Z)$ unbiased for $I^{\tau} \beta$, then

$$
I^{\tau} \beta=\int_{\mathscr{R} n} h(x, Z)(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\frac{1}{2 \sigma^{2}}\|x-Z \beta\|^{2}\right\} d x .
$$

Differentiating w.r.t. β and applying Theorem 2.1 lead to

$$
I^{\tau}=Z^{\tau} \int_{\mathscr{R}^{n}} h(x, Z)(2 \pi)^{-n / 2} \sigma^{-n-2}(x-Z \beta) \exp \left\{-\frac{1}{2 \sigma^{2}}\|x-Z \beta\|^{2}\right\} d x,
$$

which implies $I \in \mathscr{R}(Z)$.

Example 3.12 (Simple linear regression)

Let $\beta=\left(\beta_{0}, \beta_{1}\right) \in \mathscr{R}^{2}$ and $Z_{i}=\left(1, t_{i}\right), t_{i} \in \mathscr{R}, i=1, \ldots, n$.
Then model (6) is called a simple linear regression model.
It turns out that

$$
\left(\begin{array}{cc}
n & \sum_{i=1}^{n} t_{i} \\
\sum_{i=1}^{n} t_{i} & \sum_{i=1}^{n} t_{i}^{2}
\end{array}\right) .
$$

This matrix is invertible iff some t_{i} 's are different.
Thus, if some t_{i} 's are different, then the unique unbiased LSE of $I^{\tau} \beta$ for any $I \in \mathscr{R}^{2}$ is $I^{\tau}\left(Z^{\tau} Z\right)^{-1} Z^{\tau} X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression of order p in which $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p-1}\right)$ and $Z_{i}=\left(1, t_{i}, \ldots, t_{i}^{p-1}\right)$.

Example 3.13 (One-way ANOVA)

Suppose that $n=\sum_{j=1}^{m} n_{j}$ with m positive integers n_{1}, \ldots, n_{m} and that

$$
X_{i}=\mu_{j}+\varepsilon_{i}, \quad i=k_{j-1}+1, \ldots, k_{j}, j=1, \ldots, m
$$

where $k_{0}=0, k_{j}=\sum_{l=1}^{j} n_{l}, j=1, \ldots, m$, and $\left(\mu_{1}, \ldots, \mu_{m}\right)=\beta$.

Let J_{m} be the m-vector of ones.
Then the matrix Z in this case is a block diagonal matrix with $J_{n_{j}}$ as the j th diagonal column.
Consequently, $Z^{\tau} Z$ is an $m \times m$ diagonal matrix whose j th diagonal element is n_{j}.
Thus, $Z^{\tau} Z$ is invertible and the unique LSE of β is the m-vector whose j th component is

$$
\frac{1}{n_{j}} \sum_{i=k_{j-1}+1}^{k_{j}} X_{i}, \quad j=1, \ldots, m
$$

Sometimes it is more convenient to use the following notation:

$$
X_{i j}=X_{k_{i-1}+j}, \varepsilon_{i j}=\varepsilon_{k_{i-1}+j}, \quad j=1, \ldots, n_{i}, i=1, \ldots, m
$$

and

$$
\mu_{i}=\mu+\alpha_{i}, \quad i=1, \ldots, m
$$

Then our model becomes

$$
\begin{equation*}
X_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, \quad j=1, \ldots, n_{i}, i=1, \ldots, m \tag{3}
\end{equation*}
$$

which is called a one-way analysis of variance (ANOVA) model.

Under model (3), $\beta=\left(\mu, \alpha_{1}, \ldots, \alpha_{m}\right) \in \mathscr{R}^{m+1}$.
The matrix Z under model (3) is not of full rank.
An LSE of β under model (3) is

$$
\widehat{\beta}=\left(\bar{X}, \bar{X}_{1 .}-\bar{X}, \ldots, \bar{X}_{m .}-\bar{X}\right),
$$

where \bar{X} is still the sample mean of $X_{i j}$'s and \bar{X}_{i}. is the sample mean of the i th group $\left\{X_{i j}, j=1, \ldots, n_{i}\right\}$.

The notation used in model (3) allows us to generalize the one-way ANOVA model to any s-way ANOVA model with a positive integer s under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

$$
\begin{equation*}
X_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{i j k}, \quad i=1, \ldots, a, j=1, \ldots, b, k=1, \ldots, c \tag{4}
\end{equation*}
$$

where a, b, and c are some positive integers.
Model (4) is called a two-way balanced ANOVA model.

If we view model (4) as a special case of model (6), then the parameter vector β is

$$
\begin{equation*}
\beta=\left(\mu, \alpha_{1}, \ldots, \alpha_{a}, \beta_{1}, \ldots, \beta_{b}, \gamma_{11}, \ldots, \gamma_{1 b}, \ldots, \gamma_{a 1}, \ldots, \gamma_{a b}\right) . \tag{5}
\end{equation*}
$$

One can obtain the matrix Z and show that it is $n \times p$, where $n=a b c$ and $p=1+a+b+a b$, and is of rank $a b<p$.
It can also be shown that an LSE of β is given by the right-hand side of (5) with $\mu, \alpha_{i}, \beta_{j}$, and $\gamma_{i j}$ replaced by $\widehat{\mu}, \widehat{\alpha}_{i}, \widehat{\beta}_{j}$, and $\widehat{\gamma}_{i j}$, respectively, where

$$
\begin{gathered}
\widehat{\mu}=\bar{X}_{\ldots}, \\
\widehat{\alpha}_{i}=\bar{X}_{i . .}-\bar{X}_{\ldots}, \\
\widehat{\beta}_{j}=\bar{X}_{. j .}-\bar{X}_{\ldots}, \\
\widehat{\gamma}_{i j}=\bar{X}_{i j .}-\bar{X}_{i . .}-\bar{X}_{. j .}+\bar{X}_{\ldots \ldots},
\end{gathered}
$$

and a dot is used to denote averaging over the indicated subscript, e.g., with a fixed j,

$$
\bar{X}_{. j .}=\frac{1}{a c} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{i j k}
$$

Theorem 3.7 (UMVUE).

Consider model

$$
\begin{equation*}
X=Z \beta+\varepsilon \tag{6}
\end{equation*}
$$

with assumption A 1 (ε is distributed as $N_{n}\left(0, \sigma^{2} I_{n}\right)$ with an unknown $\sigma^{2}>0$).
Then
(i) The LSE $I^{\tau} \widehat{\beta}$ is the UMVUE of $I^{\tau} \beta$ for any estimable $I^{\tau} \beta$.
(ii) The UMVUE of σ^{2} is $\widehat{\sigma}^{2}=(n-r)^{-1}\|X-Z \widehat{\beta}\|^{2}$, where r is the rank of Z.

Proof of (i)

Let $\widehat{\beta}$ be an LSE of β.
By $Z^{\tau} Z b=Z^{\tau} X$,

$$
(X-Z \widehat{\beta})^{\tau} Z(\widehat{\beta}-\beta)=\left(X^{\tau} Z-X^{\tau} Z\right)(\widehat{\beta}-\beta)=0
$$

and, hence,

$$
\begin{aligned}
\|X-Z \beta\|^{2} & =\|X-Z \widehat{\beta}+Z \widehat{\beta}-Z \beta\|^{2} \\
& =\|X-Z \widehat{\beta}\|^{2}+\|Z \widehat{\beta}-Z \beta\|^{2} \\
& =\|X-Z \widehat{\beta}\|^{2}-2 \beta^{\tau} Z^{\tau} X+\|Z \beta\|^{2}+\|Z \widehat{\beta}\|^{2}
\end{aligned}
$$

Using this result and assumption A1, we obtain the following joint Lebesgue p.d.f. of X :

$$
\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{\frac{\beta^{\tau} Z^{\tau} X}{\sigma^{2}}-\frac{\|x-Z \widehat{\beta}\|^{2}+\|Z \widehat{\beta}\|^{2}}{2 \sigma^{2}}-\frac{\|Z \beta\|^{2}}{2 \sigma^{2}}\right\} .
$$

By Proposition 2.1 and the fact that $Z \widehat{\beta}=Z\left(Z^{\tau} Z\right)^{-} Z^{\tau} X$ is a function of $Z^{\tau} X$, the statistic $\left(Z^{\tau} X,\|X-Z \widehat{\beta}\|^{2}\right)$ is complete and sufficient for $\theta=\left(\beta, \sigma^{2}\right)$.
Note that $\widehat{\beta}$ is a function of $Z^{\tau} X$ and, hence, a function of the complete sufficient statistic.
If $I^{\tau} \beta$ is estimable, then $I^{\tau} \widehat{\beta}$ is unbiased for $I^{\tau} \beta$ (Theorem 3.6) and, hence, $I^{\tau} \widehat{\beta}$ is the UMVUE of $I^{\tau} \beta$.

Proof of (ii)

From $\|X-Z \beta\|^{2}=\|X-Z \widehat{\beta}\|^{2}+\|Z \widehat{\beta}-Z \beta\|^{2}$ and $E(Z \widehat{\beta})=Z \beta$ (Theorem 3.6),

$$
\begin{aligned}
E\|X-Z \widehat{\beta}\|^{2} & =E(X-Z \beta)^{\tau}(X-Z \beta)-E(\beta-\widehat{\beta})^{\tau} Z^{\tau} Z(\beta-\widehat{\beta}) \\
& =\operatorname{tr}(\operatorname{Var}(X)-\operatorname{Var}(Z \widehat{\beta})) \\
& =\sigma^{2}\left[n-\operatorname{tr}\left(Z\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right)\right] \\
& =\sigma^{2}\left[n-\operatorname{tr}\left(\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z\right)\right] .
\end{aligned}
$$

Since each row of $Z \in \mathscr{R}(Z), Z \widehat{\beta}$ does not depend on the choice of $\left(Z^{\tau} Z\right)^{-}$in $\widehat{\beta}=\left(Z^{\tau} Z\right)^{-} Z^{\tau} X$ (Theorem 3.6).
Hence, we can evaluate $\operatorname{tr}\left(\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z\right)$ using a particular $\left(Z^{\tau} Z\right)^{-}$.
From the theory of linear algebra, there exists a $p \times p$ matrix C such that $C C^{\tau}=I_{p}$ and

$$
C^{\tau}\left(Z^{\tau} Z\right) C=\left(\begin{array}{ll}
\Lambda & 0 \\
0 & 0
\end{array}\right)
$$

Then, a particular choice of $\left(Z^{\tau} Z\right)^{-}$is

$$
\left(Z^{\tau} Z\right)^{-}=C\left(\begin{array}{cc}
\Lambda^{-1} & 0 \tag{7}\\
0 & 0
\end{array}\right) C^{\tau}
$$

and

$$
\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z=C\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) C^{\tau}
$$

whose trace is r.
Hence $\widehat{\sigma}^{2}$ is the UMVUE of σ^{2}, since it is a function of the complete sufficient statistic and

$$
E \widehat{\sigma}^{2}=(n-r)^{-1} E\|X-Z \widehat{\beta}\|^{2}=\sigma^{2}
$$

Residual vector

- The vector $X-Z \widehat{\beta}$ is called the residual vector and $\|X-Z \widehat{\beta}\|^{2}$ is called the sum of squared residuals and is denoted by SSR.
- The estimator $\widehat{\sigma}^{2}$ is then equal to $S S R /(n-r)$.
- The Fisher information matrix is

$$
\frac{1}{\sigma^{2}}\left(\begin{array}{cc}
Z^{\tau} Z & 0 \\
0 & \frac{n}{2 \sigma^{2}}
\end{array}\right)
$$

- The UMVUE $\tau \uparrow \widehat{\beta}$ attains the information lower bound, but not $\hat{\sigma}^{2}$.
- Since

$$
X-Z \widehat{\beta}=\left[I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] X
$$

and

$$
I^{\tau} \widehat{\beta}=I^{\tau}\left(Z^{\tau} Z\right)^{-} Z^{\tau} X
$$

are linear in X, they are normally distributed under assumption A1.

- Also, using the generalized inverse matrix in (7), we obtain that $\left[I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] Z\left(Z^{\tau} Z\right)^{-}=Z\left(Z^{\tau} Z\right)^{-}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau} Z\left(Z^{\tau} Z\right)^{-}=0$, which implies that $\widehat{\sigma}^{2}$ and $I^{\tau} \widehat{\beta}$ are independent (Exercise 58 in $\S 1.6)$ for any estimable $I^{\tau} \beta$.
- $Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}$ is a projection matrix, $\left[Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right]^{2}=Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}$, hence

$$
S S R=X^{\tau}\left[I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] X
$$

- The rank of $Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}$ is $\operatorname{tr}\left(Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right)=r$.
- Similarly, the rank of the projection matrix $I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}$ is $n-r$.
- From

$$
X^{\tau} X=X^{\tau}\left[Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] X+X^{\tau}\left[I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] X
$$

and Theorem 1.5 (Cochran's theorem), SSR/ σ^{2} has the chi-square distribution $\chi_{n-r}^{2}(\delta)$ with

$$
\delta=\sigma^{-2} \beta^{\tau} Z^{\tau}\left[I_{n}-Z\left(Z^{\tau} Z\right)^{-} Z^{\tau}\right] Z \beta=0 .
$$

Thus, we have proved the following result.

Theorem 3.8.

Consider model (6) with assumption A1. For any estimable parameter $I^{\tau} \beta$, the UMVUE's $I^{\tau} \widehat{\beta}$ and $\widehat{\sigma}^{2}$ are independent; the distribution of $\tau^{\tau} \widehat{\beta}$ is $N\left(I^{\tau} \beta, \sigma^{2} I^{\tau}\left(Z^{\tau} Z\right)^{-} l\right)$; and $(n-r) \hat{\sigma}^{2} / \sigma^{2}$ has the chi-square distribution χ_{n-r}^{2}.

