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Lecture 21: Properties and robustness of LSE
BLUE: Robustness of LSE against normality

We now study properties of lτ β̂ and σ̂2 under assumption A2, i.e.,
without the normality assumption on ε.

From Theorem 3.6 and the proof of Theorem 3.7(ii), lτ β̂ (with an
l ∈R(Z )) and σ̂2 are still unbiased without normality.

In what sense are lτ β̂ and σ̂2 optimal beyond being unbiased?
Some discussion about σ̂2 can be found in Rao (1973, p. 228).

In general,
Var(lτ

β̂ ) = lτ (Z τZ )−Z τVar(ε)Z (Z τZ )−l .

If l ∈R(Z ) and Var(ε) = σ2In (assumption A2), then by the property of
generalized inverse matrix,

Var(lτ
β̂ ) = σ

2lτ (Z τZ )−l

which attains the Cramér-Rao lower bound under assumption A1.

We have the following result for the LSE lτ β̂ .
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Theorem 3.9
Consider linear model

X = Zβ + ε. (1)

with assumption A2.
(i) A necessary and sufficient condition for the existence of a linear

unbiased estimator of lτβ (i.e., an unbiased estimator that is linear
in X ) is l ∈R(Z ).

(ii) (Gauss-Markov theorem). If l ∈R(Z ), then the LSE lτ β̂ is the best
linear unbiased estimator (BLUE) of lτβ in the sense that it has
the minimum variance in the class of linear unbiased estimators of
lτβ .

Proof of (i)
The sufficiency has been established in Theorem 3.6.
Suppose now a linear function of X , cτX with c ∈Rn, is unbiased for
lτβ . Then

lτ
β = E(cτX ) = cτEX = cτZβ .

Since this equality holds for all β , l = Z τc, i.e., l ∈R(Z ).
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Proof of (ii)
Let l ∈R(Z ) = R(Z τZ ).
Then l = (Z τZ )ζ for some ζ and lτ β̂ = ζ τ (Z τZ )β̂ = ζ τZ τX .
Let cτX be any linear unbiased estimator of lτβ .
From the proof of (i), Z τc = l , and

Cov(ζ
τZ τX ,cτX −ζ

τZ τX ) = E(X τZζcτX )−E(X τZζ ζ
τZ τX )

= σ
2tr(Zζcτ ) + β

τZ τZζcτZβ

− σ
2tr(Zζ ζ

τZ τ )−β
τZ τZζ ζ

τZ τZβ

= σ
2
ζ

τ l + (lτ
β )2−σ

2
ζ

τ l− (lτ
β )2

= 0.
Hence

Var(cτX ) = Var(cτX −ζ
τZ τX + ζ

τZ τX )

= Var(cτX −ζ
τZ τX ) + Var(ζ

τZ τX )

+ 2 Cov(ζ
τZ τX ,cτX −ζ

τZ τX )

= Var(cτX −ζ
τZ τX ) + Var(lτ

β̂ )

≥ Var(lτ
β̂ ).
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Robustness of LSE against violation of Var(ε) = σ2In
Consider linear model (5) under assumption A3 (E(ε) = 0 and Var(ε)
is an unknown matrix).
An interesting question is under what conditions on Var(ε) is the LSE
of lτβ with l ∈R(Z ) still the BLUE.

If lτ β̂ is still the BLUE, then we say that lτ β̂ , considered as a BLUE, is
robust against violation of assumption A2.

A procedure having certain properties under an assumption is said to
be robust against violation of the assumption iff the procedure still has
the same properties when the assumption is (slightly) violated.

For example, the LSE of lτβ with l ∈R(Z ), as an unbiased estimator,
is robust against violation of assumption A1 or A2, since the LSE is
unbiased as long as E(ε) = 0, which can be always assumed.

On the other hand, the LSE as a UMVUE may not be robust against
violation of assumption A1.
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Theorem 3.10
Consider model (5) with assumption A3.
The following are equivalent.

(a) lτ β̂ is the BLUE of lτβ for any l ∈R(Z ).

(b) E(lτ β̂ητX ) = 0 for any l ∈R(Z ) and any η such that E(ητX ) = 0.
(c) Z τ Var(ε)U = 0, where U is a matrix such that Z τU = 0 and

R(Uτ ) +R(Z τ ) = Rn.
(d) Var(ε) = Z Λ1Z τ + UΛ2Uτ for some Λ1 and Λ2.
(e) The matrix Z (Z τZ )−Z τ Var(ε) is symmetric.

Proof
We first show that (a) and (b) are equivalent, which is an analogue of
Theorem 3.2(i).
Suppose that (b) holds.
Let l ∈R(Z ).
If cτX is unbiased for lτβ , then E(ητX ) = 0 with η = c−Z (Z τZ )−l .
Hence, (b) implies (a) because
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Proof (continued)

Var(cτX ) = Var(cτX − lτ
β̂ + lτ

β̂ )

= Var(cτX − lτ (Z τZ )−Z τX + lτ
β̂ )

= Var(η
τX + lτ

β̂ )

= Var(η
τX ) + Var(lτ

β̂ ) + 2 Cov(η
τX , lτ

β̂ )

= Var(η
τX ) + Var(lτ

β̂ ) + 2E(lτ
β̂η

τX )

= Var(η
τX ) + Var(lτ

β̂ )

≥ Var(lτ
β̂ ).

Suppose now that there are l ∈R(Z ) and η such that E(ητX ) = 0 but
δ = E(lτ β̂ητX ) 6= 0.
Let ct = tη + Z (Z τZ )−l .
From the previous proof,

Var(cτ
t X ) = t2 Var(η

τX ) + Var(lτ
β̂ ) + 2δ t .

As long as δ 6= 0, there exists a t such that Var(cτ
t X ) < Var(lτ β̂ ).
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Proof (continued)

This shows that lτ β̂ cannot be a BLUE and, therefore, (a) implies (b).

Next, we show that (b) implies (c).
Suppose that (b) holds.
Since l ∈R(Z ), l = Z τγ for some γ.
Let η ∈R(Uτ ).
Then E(ητX ) = ητZβ = 0 and, hence,

0 = E(lτ
β̂η

τX ) = E [γτZ (Z τZ )−Z τXX τ
η] = γ

τZ (Z τZ )−Z τ Var(ε)η .

Since this equality holds for all l ∈R(Z ), it holds for all γ.
Thus,

Z (Z τZ )−Z τ Var(ε)U = 0,
which implies

Z τZ (Z τZ )−Z τ Var(ε)U = Z τ Var(ε)U = 0,

since Z τZ (Z τZ )−Z τ = Z τ .
Thus, (c) holds.
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Proof (continued)
Next, we show that (c) implies (d).
We need to use the following facts from the theory of linear algebra:
there exists a nonsingular matrix C such that Var(ε) = CCτ and
C = ZC1 + UC2 for some matrices Cj (since R(Uτ ) +R(Z τ ) = Rn).
Let Λ1 = C1Cτ

1, Λ2 = C2Cτ

2, and Λ3 = C1Cτ

2.
Then

Var(ε) = Z Λ1Z τ + UΛ2Uτ + Z Λ3Uτ + UΛτ

3Z τ (2)
and Z τ Var(ε)U = Z τZ Λ3UτU, which is 0 if (c) holds.
Hence, (c) implies

0 = Z (Z τZ )−Z τZ Λ3UτU(UτU)−Uτ = Z Λ3Uτ ,

which with (2) implies (d).
We now show that (d) implies (e).
If (d) holds, then Z (Z τZ )−Z τ Var(ε) = Z Λ1Z τ , which is symmetric.
Hence (d) implies (e).
To complete the proof, we need to show that (e) implies (b), which is
left as an exercise.
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As a corollary of this theorem, the following result shows when the
UMVUE’s in model (5) with assumption A1 are robust against the
violation of Var(ε) = σ2In.

Corollary 3.3
Consider model (5) with a full rank Z , ε = Nn(0,Σ), and an unknown
positive definite matrix Σ.
Then lτ β̂ is a UMVUE of lτβ for any l ∈Rp iff one of (b)-(e) in Theorem
3.10 holds.

Example 3.16

Consider model (5) with β replaced by a random vector ~β that is
independent of ε.
Such a model is called a linear model with random coefficients.
Suppose that Var(ε) = σ2In and E(~β ) = β .
Then

X = Zβ + Z (~β −β ) + ε = Zβ + e, (3)
where e = Z (~β −β ) + ε satisfies E(e) = 0 and
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Var(e) = Z Var(~β )Z τ + σ
2In.

Since
Z (Z τZ )−Z τ Var(e) = Z Var(~β )Z τ + σ

2Z (Z τZ )−Z τ

is symmetric, by Theorem 3.10, the LSE lτ β̂ under model (3) is the
BLUE for any lτβ , l ∈R(Z ).
If Z is of full rank and ε is normal, then, by Corollary 3.3, lτ β̂ is the
UMVUE of lτβ for any l ∈Rp.

Example 3.17 (Random effects models)
Suppose that

Xij = µ + Ai + eij , j = 1, ...,ni , i = 1, ...,m, (4)

where µ ∈R is an unknown parameter, Ai ’s are i.i.d. random variables
having mean 0 and variance σ2

a , eij ’s are i.i.d. random errors with
mean 0 and variance σ2, and Ai ’s and eij ’s are independent.
Model (4) is called a one-way random effects model and Ai ’s are
unobserved random effects.
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Model (4) is a special case of model (5) with εij = Ai + eij and

Var(ε) = σ
2
a Σ + σ

2In,

where Σ is a block diagonal matrix whose i th block is Jni J
τ
ni

and Jk is
the k -vector of ones.
Under this model, Z = Jn, n = ∑

m
i=1 ni , and Z (Z τZ )−Z τ = n−1JnJτ

n .
Note that

JnJτ
nΣ =


n1Jn1Jτ

n1
n2Jn1Jτ

n2
· · · nmJn1Jτ

nm

n1Jn2Jτ
n1

n2Jn2Jτ
n2
· · · nmJn2Jτ

nm

· · · · · · · · · · · · · · · · · · · · ·
n1JnmJτ

n1
n2JnmJτ

n2
· · · nmJnmJτ

nm

 ,

which is symmetric if and only if n1 = n2 = · · ·= nm.
Since JnJτ

n Var(ε) is symmetric if and only if JnJτ
nΣ is symmetric, a

necessary and sufficient condition for the LSE of µ to be the BLUE is
that all ni ’s are the same.
This condition is also necessary and sufficient for the LSE of µ to be
the UMVUE when εij ’s are normal.
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In some cases, we are interested in some (not all) linear functions of β .
For example, consider lτβ with l ∈R(H), where H is an n×p matrix
such that R(H)⊂R(Z ).

Proposition 3.4
Consider model (5) with assumption A3.
Suppose that H is a matrix such that R(H)⊂R(Z ).
A necessary and sufficient condition for the LSE lτ β̂ to be the BLUE of
lτβ for any l ∈R(H) is H(Z τZ )−Z τ Var(ε)U = 0, where U is the same
as that in (c) of Theorem 3.10.

Example 3.18
Consider model (5) with assumption A3 and Z = (H1 H2), where
Hτ

1H2 = 0.
Suppose that under the reduced model

X = H1β1 + ε,

lτ β̂1 is the BLUE for any lτβ1, l ∈R(H1)
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Example 3.18 (continued)
and that under the reduced model

X = H2β2 + ε,

lτ β̂2 is not a BLUE for some lτβ2, l ∈R(H2), where β = (β1,β2) and
β̂j ’s are LSE’s under the reduced models.
Let H = (H1 0) be n×p.
Note that

H(Z τZ )−Z τ Var(ε)U = H1(Hτ

1H1)−Hτ

1 Var(ε)U,

which is 0 by Theorem 3.10 for the U given in (c) of Theorem 3.10, and

Z (Z τZ )−Z τ Var(ε)U = H2(Hτ

2H2)−Hτ

2 Var(ε)U,

which is not 0 by Theorem 3.10.
This implies that some LSE lτ β̂ is not a BLUE of lτβ but lτ β̂ is the
BLUE of lτβ if l ∈R(H).
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Asymptotic properties of LSE

Without normality on ε or Var(ε) = σ2In, properties of the LSE may be
derived under the asymptotic framework.

Theorem 3.11 (Consistency)
Consider model

X = Zβ + ε (5)

under assumption A3 (E(ε) = 0 and Var(ε) is an unknown matrix).
Consider the LSE lτ β̂ with l ∈R(Z ) for every n.
Suppose that supn λ+[ Var(ε)] < ∞, where λ+[A] is the largest
eigenvalue of the matrix A, and that limn→∞ λ+[(Z τZ )−] = 0.
Then lτ β̂ is consistent in mse for any l ∈R(Z ).

Proof

The result follows from the fact that lτ β̂ is unbiased and

Var(lτ
β̂ ) = lτ (Z τZ )−Z τ Var(ε)Z (Z τZ )−l ≤ λ+[ Var(ε)]lτ (Z τZ )−l .
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Without the normality assumption on ε, the exact distribution of lτ β̂ is
very hard to obtain.
The asymptotic distribution of lτ β̂ is derived in the following result.

Theorem 3.12
Consider model (5) with assumption A3.
Suppose that 0 < infn λ−[ Var(ε)], where λ−[A] is the smallest
eigenvalue of the matrix A, and that

lim
n→∞

max
1≤i≤n

Z τ

i (Z τZ )−Zi = 0. (6)

Suppose further that n = ∑
k
j=1 mj for some integers k , mj , j = 1, ...,k ,

with mj ’s bounded by a fixed integer m, ε = (ξ1, ...,ξk ), ξj ∈Rmj , and
ξj ’s are independent.

(i) If supi E |εi |2+δ < ∞, then for any l ∈R(Z ),

lτ (β̂ −β )

/√
Var(lτ β̂ )→d N(0,1). (7)

(ii) Result (7) holds for any l ∈R(Z ) if, when mi = mj , 1≤ i < j ≤ k ,
ξi and ξj have the same distribution.
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Proof
For l ∈R(Z ),

lτ (Z τZ )−Z τZβ − lτ
β = 0

and

lτ (β̂ −β ) = lτ (Z τZ )−Z τ
ε =

k

∑
j=1

cτ

njξj ,

where cnj is the mj -vector whose components are lτ (Z τZ )−Zi ,
i = kj−1 + 1, ...,kj , k0 = 0, and kj = ∑

j
t=1 mt , j = 1, ...,k .

Note that
k

∑
j=1
‖cnj‖2 = lτ (Z τZ )−Z τZ (Z τZ )−l = lτ (Z τZ )−l . (8)

Also,
max

1≤j≤k
‖cnj‖2 ≤m max

1≤i≤n
[lτ (Z τZ )−Zi ]

2

≤mlτ (Z τZ )−l max
1≤i≤n

Z τ

i (Z τZ )−Zi ,

which, together with (8) and condition (6), implies that
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Proof (continued)

lim
n→∞

(
max

1≤j≤k
‖cnj‖2

/ k

∑
j=1
‖cnj‖2

)
= 0.

The results then follow from Corollary 1.3.

Remarks
Under the conditions of Theorem 3.12, Var(ε) is a diagonal block
matrix with Var(ξj) as the j th diagonal block, which includes the
case of independent εi ’s as a special case.
Exercise 80 shows that condition (6) is almost a necessary
condition for the consistency of the LSE.

Lemma 3.3
The following are sufficient conditions for (6).
(a) λ+[(Z τZ )−]→ 0 and Z τ

n (Z τZ )−Zn→ 0, as n→ ∞.
(b) There is an increasing sequence {an} such that an→ ∞,

an/an+1→ 1, and Z τZ/an converges to a positive definite matrix.
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