Lecture 22: Weighted LSE and linear mixed effects models

The weighted LSE

In the linear model

$$
\begin{equation*}
X=Z \beta+\varepsilon \tag{1}
\end{equation*}
$$

the unbiased LSE of $I^{\tau} \beta$ may be improved by a slightly biased estimator when $V=\operatorname{Var}(\varepsilon)$ is not $\sigma^{2} I_{n}$ and the LSE is not BLUE. Assume that Z is of full rank so that every $I^{\tau} \beta$ is estimable. If V is known, then the BLUE of $I^{\tau} \beta$ is $I^{\tau} \beta$, where

$$
\begin{equation*}
\breve{\beta}=\left(Z^{\tau} V^{-1} Z\right)^{-1} Z^{\tau} V^{-1} X \tag{2}
\end{equation*}
$$

(see the discussion after the statement of assumption A3 in §3.3.1). If V is unknown and \widehat{V} is an estimator of V, then an application of the substitution principle leads to a weighted least squares estimator

$$
\begin{equation*}
\widehat{\beta}_{w}=\left(Z^{\tau} \widehat{V}^{-1} Z\right)^{-1} Z^{\tau} \widehat{V}^{-1} X \tag{3}
\end{equation*}
$$

The weighted LSE is not linear in X and not necessarily unbiased for β.

If the weighted LSE $I^{\tau} \widehat{\beta}_{w}$ is unbiased, then the LSE $I^{\tau} \widehat{\beta}$ may not be a BLUE, since $\operatorname{Var}\left({ }^{\tau} \widehat{\beta}_{w}\right)$ may be smaller than $\operatorname{Var}\left(\tau^{\prime} \widehat{\beta}\right)$.
Asymptotic properties of the weighted LSE depend on the asymptotic behavior of \widehat{V}.
We say that \widehat{V} is consistent for V iff

$$
\begin{equation*}
\left\|\widehat{V}^{-1} V-I_{n}\right\|_{\max } \rightarrow_{p} 0 \tag{4}
\end{equation*}
$$

where $\|A\|_{\text {max }}=\max _{i, j}\left|a_{i j}\right|$ for a matrix A whose (i, j) th element is $a_{i j}$.

Theorem 3.17

Consider model (1) with a full rank Z. Let $\breve{\beta}$ and $\widehat{\beta}_{w}$ be defined by (2) and (3), respectively, with a \widehat{V} consistent in the sense of (4). Under the conditions in Theorem 3.12,

$$
I^{\tau}\left(\widehat{\beta}_{w}-\beta\right) / a_{n} \rightarrow_{d} N(0,1),
$$

where $I \in \mathscr{R}^{p}, I \neq 0$, and

$$
a_{n}^{2}=\operatorname{Var}\left(I^{\tau} \breve{\beta}\right)=I^{\tau}\left(Z^{\tau} V^{-1} Z\right)^{-1} l .
$$

Proof

Using the same argument as in the proof of Theorem 3.12, we obtain that

$$
I^{\tau}(\breve{\beta}-\beta) / a_{n} \rightarrow{ }_{d} N(0,1) .
$$

By Slutsky's theorem, the result follows from

$$
I^{\tau} \widehat{\beta}_{w}-I^{\tau} \breve{\beta}=o_{p}\left(a_{n}\right) .
$$

Define

$$
\xi_{n}=I^{\tau}\left(Z^{\tau} \widehat{V}^{-1} Z\right)^{-1} Z^{\tau}\left(\widehat{V}^{-1}-V^{-1}\right) \varepsilon
$$

and

$$
\zeta_{n}=I^{\tau}\left[\left(Z^{\tau} \widehat{V}^{-1} Z\right)^{-1}-\left(Z^{\tau} V^{-1} Z\right)^{-1}\right] Z^{\tau} V^{-1} \varepsilon .
$$

Then

$$
I^{\tau} \widehat{\beta}_{w}-I^{\tau} \breve{\beta}=\xi_{n}+\zeta_{n} .
$$

The result follows from $\xi_{n}=o_{p}\left(a_{n}\right)$ and $\zeta_{n}=o_{p}\left(a_{n}\right)$ (details are in the textbook).

- Theorem 3.17 shows that as long as \widehat{V} is consistent in the sense of (4), the weighted LSE $\widehat{\beta}_{w}$ is asymptotically as efficient as $\breve{\beta}$, which is the BLUE if V is known.
- By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the LSE $I^{\tau} \widehat{\beta}$ w.r.t. the weighted LSE $I^{\tau} \widehat{\beta}_{w}$ is

$$
\frac{I^{\tau}\left(Z^{\tau} V^{-1} Z\right)^{-1} \mid}{\tau^{\tau}\left(Z^{\tau} Z\right)^{-1} Z^{\tau} V Z\left(Z^{\tau} Z\right)^{-1} \mid},
$$

which is always less than 1 and equals 1 if $\iota \hat{\beta}$ is a $\operatorname{BLUE}(\widehat{\beta}=\breve{\beta})$.

- Finding a consistent \widehat{V} is possible when V has a certain type of structure.

Example 3.29

Consider model (1).
Suppose that $V=\operatorname{Var}(\varepsilon)$ is a block diagonal matrix with the i th diagonal block

$$
\begin{equation*}
\sigma^{2} I_{m_{i}}+U_{i} \Sigma U_{i}^{\tau}, \quad i=1, \ldots, k \tag{5}
\end{equation*}
$$

where m_{i} 's are integers bounded by a fixed integer $m, \sigma^{2}>0$ is an unknown parameter, Σ is a $q \times q$ unknown nonnegative definite matrix,
U_{i} is an $m_{i} \times q$ full rank matrix whose columns are in $\mathscr{R}\left(W_{i}\right)$, $q<\inf _{i} m_{i}$, and W_{i} is the $p \times m_{i}$ matrix such that $Z^{\tau}=\left(W_{1} W_{2} \ldots W_{k}\right)$. Under (5), a consistent \widehat{V} can be obtained if we can obtain consistent estimators of σ^{2} and Σ.
Let $X=\left(Y_{1}, \ldots, Y_{k}\right)$, where Y_{i} is an m_{i}-vector, and let R_{i} be the matrix whose columns are linearly independent rows of W_{i}. If Y_{i} 's are independent and $\sup _{i} E\left|\varepsilon_{i}\right|^{2+\delta}<\infty$ for some $\delta>0$, then

$$
\widehat{\sigma}^{2}=\frac{1}{n-k q} \sum_{i=1}^{k} Y_{i}^{\tau}\left[I_{m_{i}}-R_{i}\left(R_{i}^{\tau} R_{i}\right)^{-1} R_{i}^{\tau}\right] Y_{i}
$$

is an unbiased and consistent estimator of σ^{2}.
Let $r_{i}=Y_{i}-W_{i}^{\tau} \widehat{\beta}$ and

$$
\widehat{\Sigma}=\frac{1}{k} \sum_{i=1}^{k}\left[\left(U_{i}^{\tau} U_{i}\right)^{-1} U_{i}^{\tau} r_{i} r_{i}^{\tau} U_{i}\left(U_{i}^{\tau} U_{i}\right)^{-1}-\widehat{\sigma}^{2}\left(U_{i}^{\tau} U_{i}\right)^{-1}\right] .
$$

It can be shown (exercise) that $\hat{\Sigma}$ is consistent for Σ in the sense that $\|\widehat{\Sigma}-\Sigma\|_{\max } \rightarrow_{p} 0$ or, equivalently, $\|\widehat{\Sigma}-\Sigma\| \rightarrow_{p} 0$ (see Exercise 116).

Linear mixed effects models

Adding random effects to a linear model

Consider linear model (1), $X=Z \beta+\varepsilon$.
In many applications we need to add random-effect terms, which leads to the linear mixed effects model

$$
\begin{equation*}
X=Z \beta+U_{1} \xi_{1}+\cdots+U_{k} \xi_{k}+\varepsilon \tag{6}
\end{equation*}
$$

where U_{j} 's are fixed matrices and ξ_{1}, \ldots, ξ_{k} are independent unobserved random effects (vectors), and ε and ξ_{j} 's are independent.
The following are two main reasons for adding random effects.

- We want to model the correlation among the errors, since $U_{1} \xi_{1}+\cdots+U_{k} \xi_{k}+\varepsilon$ can be viewed as error in a linear model.
- Random effects present unobserved variables of interests.

It is typically assumed that ξ_{j} 's and ε have mean 0 and finite covariance matrices and $\operatorname{Var}(\varepsilon)=\sigma^{2} I_{n}$ so that

$$
E(X)=Z \beta \quad \text { and } \quad \operatorname{Var}(X)=U_{1} \operatorname{Var}\left(\xi_{1}\right) U_{1}^{\tau}+\cdots+U_{k} \operatorname{Var}\left(\xi_{k}\right) U_{k}^{\tau}+\sigma^{2} I_{n}
$$

A special case is that $\operatorname{Var}\left(\xi_{i}\right)=\sigma_{i}^{2} I_{m_{i}}$, where m_{i} is the dimension of ξ_{i}, $i=1, \ldots, k$, in which case $\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}$ are called variance components so that model (6) is also called variance components models.

Example: One-way random effects model

The one-way random effect model

$$
Y_{i j}=\mu+A_{i}+e_{i j}, \quad j=1, \ldots, n_{i}, i=1, \ldots, m
$$

discussed previously is a special case of model (6), $\xi_{1}=\left(A_{1}, \ldots, A_{m}\right)$, $Z=J_{n}$, and U_{1} is block diagonal whose ith diagonal block is $J_{n_{i}}$.

Parameter estimation

Besides β, parameters of interests in a linear mixed effects model are $\Sigma_{i}=\operatorname{Var}\left(\xi_{i}\right), i=1, \ldots, k$, and σ^{2}.
We carry out the estimation in two steps.
(1) Obtain estimators $\widehat{\Sigma}_{1}, \ldots, \widehat{\Sigma}_{k}$, and $\widehat{\sigma}^{2}$.
(2) Let $\Sigma=\operatorname{Var}(X)$ and $\hat{\Sigma}=U_{1} \widehat{\Sigma}_{1} U_{1}^{\tau}+\cdots+U_{k} \widehat{\Sigma}_{k} U_{k}^{\tau}+\hat{\sigma}^{2} I_{n}$.

We then estimate β by the weighted LSE

$$
\widehat{\beta}_{W}=\left(Z^{\tau} \widehat{\Sigma}^{-1} Z\right)^{-1} Z^{\tau} \widehat{\Sigma}^{-1} X
$$

Main approaches for estimating variance components

(1) The ANOVA method.
(2) The MINQUE (developed by C.R. Rao)
(3) The maximum likelihood estimation.
(9) The restricted maximum likelihood estimation.

Three steps in estimating variance components
We consider the ANOVA method and the special case where $\Sigma_{i}=\sigma_{i}^{2} l_{m_{i}}, i=1, \ldots, k$.
(1) Treat ξ_{i} 's as fixed effects and apply the ANOVA technique to obtain sums of squares.
(2) Treat ξ_{i} 's as random and derive the expectations of the sums of squares, which are linear functions of variance components.
(3) Set each sum of squares equal to its expectation, and then follow the method of moments to estimate variance components.
To achieve (1), we need to get the decomposition

$$
X^{\tau} X=S S_{\beta}+S S_{\xi_{1}}+\cdots+S S_{\xi_{k}}+S S_{\varepsilon}
$$

Deriving sums of squares

To obtain $S S_{\beta}$, we consider model $X=Z \beta+\varepsilon$ and the sum of squares due to regression:

$$
S S_{\beta}=R S S(\beta)=X^{\tau} Z\left(Z^{\tau} Z\right)^{-1} Z^{\tau} X
$$

To obtain $S S_{\xi_{1}}$, we treat ξ_{1} as fixed effect in the linear model after removing the β effect, i.e., consider model $X-Z \beta=U_{1} \xi_{1}+\varepsilon$ and the sum of squares due to regression, which is equal to the SS due to regression in model $X=Z \beta+U_{1} \xi_{1}+\varepsilon$ minus the SS due to regression in model $X=Z \beta+\varepsilon$, i.e.,

$$
S S_{\xi_{1}}=R S S\left(\beta, \xi_{1}\right)-R S S(\beta)
$$

Similarly, the SS due to regression in model $X=Z \beta+U_{1} \xi_{1}+U_{2} \xi_{2}+\varepsilon$ minus the SS due to regression in model $X=Z \beta+U_{1} \xi_{1} \varepsilon$ gives

$$
\begin{gathered}
S S_{\xi_{2}}=R S S\left(\beta, \xi_{1}, \xi_{2}\right)-\operatorname{RSS}\left(\beta, \xi_{1}\right) \\
S S_{\xi_{k}}=R S S\left(\beta, \xi_{1}, \ldots, \xi_{k}\right)-R S S\left(\beta, \xi_{1}, \ldots, \xi_{k-1}\right)
\end{gathered}
$$

Finally,

$$
S S_{\varepsilon}=X^{\tau} X-R S S\left(\beta, \xi_{1}, \ldots, \xi_{k}\right)
$$

For a square matrix M, M^{-}is its generalized inverse if $M=M M^{-} M$. To derive a form for $S S_{\xi_{1}}$, we use the following result:

$$
\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)^{-}=\left(\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12} B^{-} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12} B^{-} \\
-B^{-} A_{21} A_{11}^{-1} & B^{-}
\end{array}\right)
$$

where $B=A_{22}-A_{21} A_{11}^{-1} A_{12}$.
Under model $X=Z \beta+U_{1} \xi_{1}+\varepsilon$,

$$
\operatorname{RSS}\left(\beta, \xi_{1}\right)=X^{\tau}\left(Z U_{1}\right)\left(\begin{array}{cc}
Z^{\tau} Z & Z^{\tau} U_{1} \\
U_{1}^{\tau} Z & U_{1}^{\tau} U_{1}
\end{array}\right)^{-}\binom{Z^{\tau}}{U_{1}^{\tau}} X
$$

Letting $H_{Z}=Z\left(Z^{\tau} Z\right)^{-1} Z^{\tau}, D=I-H_{Z}, B=U_{1}^{\tau} D U_{1}$, and applying the generalized inverse formula, we obtain that

$$
\begin{aligned}
R S S\left(\beta, \xi_{1}\right)= & X^{\tau}\left[H_{Z}+H_{Z} U_{1} B^{-} U_{1}^{\tau} H_{Z}-H_{Z} U_{1} B^{-} U_{1}^{\tau}\right. \\
& \left.-U_{1} B^{-} U_{1}^{\tau} H_{Z}+U_{1} B^{-} U_{1}^{\tau}\right] X \\
= & R S S(\beta)+X^{\tau} D U_{1} B^{-} U_{1}^{\tau} D X
\end{aligned}
$$

Hence

$$
S S_{\xi_{1}}=X^{\tau} D U_{1}\left(U_{1}^{\tau} D U_{1}\right)^{-} U_{1}^{\tau} D X=X^{\tau}\left(D-D_{1}\right) X
$$

where $D_{1}=D-D U_{1}\left(U_{1}^{\tau} D U_{1}\right)^{-} U_{1}^{\tau} D$

Similarly, we can obtain

$$
S S_{\xi_{2}}=X^{\tau}\left(D_{1}-D_{2}\right) X, \quad D_{2}=D_{1}-D_{1} U_{2}\left(U_{2}^{\tau} D_{1} U_{2}\right)^{-} U_{2}^{\tau} D_{1}
$$

$$
S S_{\xi_{k}}=X^{\tau}\left(D_{k-1}-D_{k}\right) X, \quad D_{k}=D_{k-1}-D_{k-1} U_{k}\left(U_{k}^{\tau} D_{k-1} U_{k}\right)^{-} U_{k}^{\tau} D_{k-1}
$$

Furthermore, $S S_{\varepsilon}=X^{\tau} D_{k} X$ so that

$$
X^{\tau} X=S S_{\beta}+S S_{\xi_{1}}+\cdots+S S_{\xi_{k}}+S S_{\varepsilon}
$$

Expectations of SS

To derive the expectation of $S S_{\xi_{j}}$, we use the following result.
Lemma. For a random vector $X \in \mathscr{R}^{n}$, if $E(X)=\mu, \operatorname{Var}(X)=\Sigma$, and A is an $n \times n$ symmetric matrix, then

$$
E\left(X^{\tau} A X\right)=\mu^{\tau} A \mu+\operatorname{tr}(A \Sigma)
$$

For $S S_{\xi_{1}}$, since $D Z=D_{1} Z=0$,

$$
\begin{aligned}
E\left(S S_{\xi_{1}}\right) & =E\left[X^{\tau}\left(D-D_{1}\right) X\right] \\
& =\beta^{\tau} Z^{\tau}\left(D-D_{1}\right) Z \beta+\operatorname{tr}\left[\left(D-D_{1}\right) \operatorname{Var}(X)\right] \\
& =\operatorname{tr}\left[\left(D-D_{1}\right)\left(U_{1} \operatorname{Var}\left(\xi_{1}\right) U_{1}^{\tau}+\cdots+U_{k} \operatorname{Var}\left(\xi_{k}\right) U_{k}^{\tau}\right)+\sigma^{2} I_{n}\right]
\end{aligned}
$$

Since $\Sigma_{i}=\sigma_{i}^{2} I_{m_{i}}, i=1, \ldots, k$,

$$
\begin{aligned}
E\left(S S_{\xi_{1}}\right) & =\operatorname{tr}\left[\left(D-D_{1}\right)\left(\sigma_{1}^{2} U_{1} U_{1}^{\tau}+\cdots+\sigma_{k}^{2} U_{k} U_{k}^{\tau}\right)+\sigma^{2} I_{n}\right] \\
& =\sigma_{1}^{2} \operatorname{tr}\left[\left(D-D_{1}\right) U_{1} U_{1}^{\tau}\right]+\cdots+\sigma_{k}^{2} \operatorname{tr}\left[\left(D-D_{1}\right) U_{k} U_{k}^{\tau}\right]+\sigma^{2} \operatorname{tr}\left(D-D_{1}\right)
\end{aligned}
$$

Note that

$$
\operatorname{tr}\left(D-D_{1}\right)=\operatorname{tr}\left[D U_{1}\left(U_{1}^{\tau} D U_{1}\right)^{-} U_{1}^{\tau} D\right]=\operatorname{rank}\left(U_{1}^{\tau} D U_{1}\right)=r_{1}
$$

$$
U_{1}^{\tau} D_{1} U_{1}=U_{1}^{\tau} D U_{1}-U_{1}^{\tau} D U_{1}\left(U_{1}^{\tau} D U_{1}\right)^{-} U_{1}^{\tau} D U_{1}=U_{1}^{\tau} D U_{1}-U_{1}^{\tau} D U_{1}=0
$$

Hence

$$
\begin{aligned}
E\left(S S_{\xi_{1}}\right)= & \sigma_{1}^{2} \operatorname{tr}\left(U_{1}^{\tau} D U_{1}\right)+\sigma_{2}^{2}\left[\operatorname{tr}\left(U_{2}^{\tau} D U_{2}\right)-\operatorname{tr}\left(U_{2}^{\tau} D_{1} U_{2}\right)\right]+\cdots \\
& \cdots+\sigma_{k}^{2}\left[\operatorname{tr}\left(U_{k}^{\tau} D U_{k}\right)-\operatorname{tr}\left(U_{k}^{\tau} D_{1} U_{k}\right)\right]+r_{1} \sigma^{2}
\end{aligned}
$$

which is a linear function of variance components.
Since $D_{i} Z=0$ and $D_{i} U_{j}=0, i=2, \ldots, k, i \geq j$, for $i=2, \ldots, k$,

$$
\begin{aligned}
E\left(S S_{\xi_{i}}\right)= & \operatorname{tr}\left[\left(D_{i-1}-D_{i}\right)\left(\sigma_{i}^{2} U_{i} U_{i}^{\tau}+\cdots+\sigma_{k}^{2} U_{k} U_{k}^{\tau}\right)+\sigma^{2} I_{n}\right] \\
= & \sigma_{i}^{2} \operatorname{tr}\left(U_{i}^{\tau} D_{i-1} U_{i}\right)+\sigma_{i+1}^{2}\left[\operatorname{tr}\left(U_{i+1}^{\tau} D_{i-1} U_{i+1}\right)-\operatorname{tr}\left(U_{i+1}^{\tau} D_{i} U_{i+1}\right)\right]+ \\
& \cdots+\sigma_{k}^{2}\left[\operatorname{tr}\left(U_{k}^{\tau} D_{i-1} U_{k}\right)-\operatorname{tr}\left(U_{k}^{\tau} D_{i} U_{k}\right)\right]+r_{i} \sigma^{2}
\end{aligned}
$$

$$
E\left(S S_{\varepsilon}\right)=E\left(X^{\tau} D_{k} X\right)=\sigma^{2} \operatorname{tr}\left(D_{k}\right)=\left(n-p-r_{1}-\cdots-r_{k}\right) \sigma^{2}
$$

$$
\text { where } r_{i}=\operatorname{rank}\left(D_{i-1}-D_{i}\right)=\operatorname{rank}\left(Z, U_{1}, \ldots, U_{i}\right)-\operatorname{rank}\left(Z, U_{1}, \ldots, U_{i-1}\right)
$$

Estimation of variance components by ANOVA

Set

$$
\begin{aligned}
S S_{\xi_{i}}= & \sigma_{i}^{2} \operatorname{tr}\left(U_{i}^{\tau} D_{i-1} U_{i}\right)+\sigma_{i+1}^{2}\left[\operatorname{tr}\left(U_{i+1}^{\tau} D_{i-1} U_{i+1}\right)-\operatorname{tr}\left(U_{i+1}^{\tau} D_{i} U_{i+1}\right)\right]+ \\
& \cdots+\sigma_{k}^{2}\left[\operatorname{tr}\left(U_{k}^{\tau} D_{i-1} U_{k}\right)-\operatorname{tr}\left(U_{k}^{\tau} D_{i} U_{k}\right)\right]+r_{i} \sigma^{2} \\
i= & 1, \ldots, k \\
S S_{\varepsilon}= & \left(n-p-r_{1}-\cdots-r_{k}\right) \sigma^{2}
\end{aligned}
$$

These equations can be easily solved by first obtaining

$$
\widehat{\sigma}^{2}=\frac{S S_{\varepsilon}}{n-p-r_{1}-\cdots-r_{k}}
$$

then $\hat{\sigma}_{k}^{2}$, then $\hat{\sigma}_{k-1}^{2}, \ldots$, then $\hat{\sigma}_{1}^{2}$.

- Advantage: estimators can be easily computed and are unbiased.
- Disadvantage: except for $\widehat{\sigma}^{2}$, each $\widehat{\sigma}_{i}^{2}$ may be negative.

Example: one-way random effects model

The one-way random effects model is

$$
X_{i j}=\mu+A_{i}+e_{i j}, \quad j=1, \ldots, n_{i}, i=1, \ldots, m
$$

where $\mu \in \mathscr{R}$ is an unknown parameter, A_{i} 's are iid unobserved random variables having mean 0 and variance $\sigma_{1}^{2}=\sigma_{a}^{2}, e_{i j}$'s are iid unobserved random errors with mean 0 and variance σ^{2}, and A_{i} 's and $e_{i j}$'s are independent.
This is a special case of (6) with $k=1, X$ and ε being vectors of $X_{i j}$'s and $e_{i j}$'s, $Z=J_{n}, n=n_{1}+\cdots+n_{m}, U_{1}$ being the block diagonal matrix whose i th block is $J_{n_{i}}, i=1, \ldots, m, \xi_{1}=\left(A_{1}, \ldots, A_{m}\right), p=1$, and $\beta=\mu$. It is easy to see that $R S S(\beta)=n^{-1} \bar{X}^{2}$, where \bar{X} is the mean of all $X_{i j}$'s. It can be shown that

$$
S S_{\varepsilon}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i}\right)^{2}, \quad S S_{\xi_{1}}=\sum_{i=1}^{m} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}, \quad \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}
$$

Also, the matrix $\left(Z, U_{1}\right)=\left(J_{n}, U_{1}\right)$ has rank m, so $r_{1}=m-1$, and

$$
U_{1}^{\tau} D U_{1}=U_{1}^{\tau}\left[I_{n}-J_{n}\left(J_{n}^{\tau} J_{n}\right)^{-1} J_{n}^{\tau}\right] U_{1}
$$

$$
\begin{aligned}
& =U_{1}^{\tau} U_{1}-n^{-1} U_{1}^{\tau} J_{n} J_{n}^{\tau} U_{1} \\
& =\left(\begin{array}{ccc}
n_{1} & & \\
& \ddots & \\
& & n_{m}
\end{array}\right)-n^{-1}\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{m}
\end{array}\right)\left(n_{1} \cdots n_{m}\right)
\end{aligned}
$$

Hence, $q=\operatorname{tr}\left(U_{1}^{\tau} D U_{1}\right)=n-\left(n_{1}^{2}+\cdots+n_{m}^{2}\right) / n$ and

$$
\widehat{\sigma}^{2}=(n-m)^{-1} S S_{\varepsilon}, \quad \hat{\sigma}_{a}^{2}=\left[S S_{\xi_{1}}-(m-1) \hat{\sigma}^{2}\right] / q
$$

In this example, let's find out what the estimator of $\beta=\mu$ is.
First, we find $\widehat{\mu}_{V^{-1}}=\left(J_{n}^{\tau} V^{-1} J_{n}\right)^{-1} J_{n}^{\tau} V^{-1} X$ with $V=\sigma_{a}^{2} U_{1} U_{1}^{\tau}+\sigma^{2} I_{n}$.
V is a block diagonal matrix with the i th diagonal block $\sigma^{2} I_{n_{i}}+\sigma_{a}^{2} J_{n_{i}} J_{n_{i}}^{\tau}$. Using the formula

$$
\left(A+B B^{\tau}\right)^{-1}=A^{-1}-A^{-1} B\left(I+B^{\tau} A^{-1} B\right)^{-1} B^{\tau} A^{-1}
$$

we obtain that each block has the inverse

$$
\left(\sigma^{2} I_{n_{i}}+\sigma_{a}^{2} J_{n_{i}} J_{n_{i}}^{\tau}\right)^{-1}=\frac{1}{\sigma^{2}} I_{n_{i}}-\frac{\sigma_{a}^{2}}{\sigma^{2}\left(\sigma^{2}+n_{i} \sigma_{a}^{2}\right)} J_{n_{i}} J_{n_{i}}^{\tau}
$$

Then, V^{-1} is the block diagonal matrix whose i th block diagonal is given by the previous expression, and

$$
\begin{aligned}
\mathcal{J}_{n}^{\tau} V^{-1} J_{n} & =\sum_{i=1}^{m} J_{n_{i}}^{\tau}\left[\frac{1}{\sigma^{2}} I_{n_{i}}-\frac{\sigma_{a}^{2}}{\sigma^{2}\left(\sigma^{2}+n_{i} \sigma_{a}^{2}\right)} J_{n_{i}} J_{n_{i}}^{\tau}\right] J_{n_{i}} \\
& =\left(\frac{n}{\sigma^{2}}-\frac{\sigma_{a}^{2}}{\sigma^{2}} \sum_{i=1}^{m} \frac{n_{i}^{2}}{\sigma^{2}+n_{i} \sigma_{a}^{2}}\right)=\sum_{i=1}^{m} \frac{n_{i}}{\sigma^{2}+n_{i} \sigma_{a}^{2}}
\end{aligned}
$$

Writing $X_{i}=\left(X_{i 1}, \ldots, X_{i n_{i}}\right)$, we obtain

$$
\begin{aligned}
J_{n}^{\tau} V^{-1} X & =\sum_{i=1}^{m} J_{n_{i}}^{\tau}\left[\frac{1}{\sigma^{2}} I_{n_{i}}-\frac{\sigma_{a}^{2}}{\sigma^{2}\left(\sigma^{2}+n_{i} \sigma_{a}^{2}\right)} J_{n_{i}} J_{n_{i}}^{\tau}\right] X_{i} \\
& =\left(\frac{n \bar{X}}{\sigma^{2}}-\frac{\sigma_{a}^{2}}{\sigma^{2}} \sum_{i=1}^{m} \frac{n_{i}^{2} \bar{X}_{i}}{\sigma^{2}+n_{i} \sigma_{a}^{2}}\right)=\sum_{i=1}^{m} \frac{n_{i} \bar{X}_{i}}{\sigma^{2}+n_{i} \sigma_{a}^{2}}
\end{aligned}
$$

Thus, the WLSE of μ is

$$
\begin{aligned}
\widehat{\mu}_{W} & =\left(J_{n}^{\tau} V^{-1} J_{n}\right)^{-1} J_{n}^{\tau} V^{-1} X \quad \sigma^{2}=\widehat{\sigma}^{2}, \sigma_{a}^{2}=\widehat{\sigma}_{a}^{2} \\
& =\left(\sum_{i=1}^{m} \frac{n_{i} \bar{X}_{i}}{\hat{\sigma}^{2}+n_{i} \widehat{\sigma}_{a}^{2}}\right) /\left(\sum_{i=1}^{m} \frac{n_{i}}{\hat{\sigma}^{2}+n_{i} \widehat{\sigma}_{a}^{2}}\right)
\end{aligned}
$$

Asymptotic normality of the WLSE $\widehat{\mu}_{W}, \widehat{\sigma}^{2}$ and $\widehat{\sigma}_{a}^{2}$ can be proved.

