Lecture 34: Ridge regression and LASSO

Ridge regression

Consider linear model $X=Z \beta+\varepsilon, \beta \in \mathscr{R}^{p}$ and $\operatorname{Var}(\varepsilon)=\sigma^{2} I_{n}$.
The LSE is obtained from the minimization problem

$$
\begin{equation*}
\min _{\beta \in \mathscr{R}^{\boldsymbol{p}}}\|X-Z \beta\|^{2} \tag{1}
\end{equation*}
$$

A type of shrinkage estimator is obtained though (1) by adding a penalty on $\|\beta\|^{2}$, i.e.,

$$
\begin{equation*}
\min _{\beta \in \mathscr{R}^{p}}\left(\|X-Z \beta\|^{2}+\lambda\|\beta\|^{2}\right) \tag{2}
\end{equation*}
$$

where $\lambda \geq 0$ is a constant controlling the penalization.

$$
\frac{\partial}{\partial \beta}\left(\|X-Z \beta\|^{2}+\lambda\|\beta\|^{2}\right)=-2 Z^{\tau}(X-Z \beta)+2 \lambda \beta
$$

which gives the solution to (2) as

$$
\widehat{\beta}_{\lambda}=\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} X
$$

This estimator is better than the LSE when $Z^{\tau} Z$ is nearly singular.

This gives a class of estimators called ridge regression estimators; in particular, $\lambda=0$ gives the LSE.

Bias and covariance matrix

$$
E\left(\widehat{\beta}_{\lambda}\right)=\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} E(X)=\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} Z \beta
$$

The bias of $\widehat{\beta}_{\lambda}$ is then

$$
b(\beta)=\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} Z \beta-\beta=-\lambda\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \beta
$$

The bias is not 0 , but converges to 0 as $\lambda \rightarrow 0$.

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{\lambda}\right) & =\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} \operatorname{Var}(X) Z\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \\
& =\sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} Z\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \\
& =\sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}-\sigma^{2} \lambda\left(Z^{\tau} Z+\lambda I_{p}\right)^{-2}
\end{aligned}
$$

It can be seen that the variance converges to 0 if $\lambda \rightarrow \infty$ and to $\sigma^{2}\left(Z^{\tau} Z\right)^{-1}$ if $\lambda \rightarrow 0$.
Combining the bias and variance, we get

$$
\begin{aligned}
E\left\|\widehat{\beta}_{\lambda}-\beta\right\|^{2} & \left.=\|b(\beta)\|^{2}+E \| \widehat{\beta}_{\lambda}-\widehat{E(} \beta_{\lambda}\right) \|^{2} \\
& =\lambda^{2}\left\|\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \beta\right\|^{2}+\sigma^{2} \operatorname{tr}\left[Z^{\tau} Z\left(Z^{\tau} Z+\lambda I_{p}\right)^{-2}\right]
\end{aligned}
$$

Theorem (Comparison between ridge regression and LSE)

Let $\widehat{\beta}=\widehat{\beta}_{0}$ be the LSE.
(i) If $0<\lambda<2 \sigma^{2} /\|\beta\|^{2}$, then $E\left\|\widehat{\beta}_{\lambda}-\beta\right\|^{2}<E\|\widehat{\beta}-\beta\|^{2}$.
(ii) Assume that the smallest eigenvalue of $Z^{\tau} Z=O(n)$.

If $\lambda>2 \sigma^{2} /\|\beta\|^{2}$, then $E\left\|\widehat{\beta}_{\lambda}-\beta\right\|^{2}>E\|\widehat{\beta}-\beta\|^{2}$ for sufficiently large n; if $\lambda=2 \sigma^{2} /\|\beta\|^{2}$, then $E\left\|\widehat{\beta}_{\lambda}-\beta\right\|^{2}=E\|\widehat{\beta}-\beta\|^{2}+O\left(n^{-3}\right)$.

Proof.

Let

$$
\begin{aligned}
A= & \sigma^{2}\left(Z^{\tau} Z\right)^{-1}-\sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} Z^{\tau} Z\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \\
& -\lambda^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \beta \beta^{\tau}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(Z^{\tau} Z+\lambda I_{p}\right) A\left(Z^{\tau} Z+\lambda I_{p}\right)= & \sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)\left(Z^{\tau} Z\right)^{-1}\left(Z^{\tau} Z+\lambda I_{p}\right) \\
& -\sigma^{2} Z^{\tau} Z-\lambda^{2} \beta \beta^{\tau} \\
= & 2 \lambda \sigma^{2} I_{p}+\lambda^{2} \sigma^{2}\left(Z^{\tau} Z\right)^{-1}-\lambda^{2} \beta \beta^{\tau}
\end{aligned}
$$

Hence

$$
\underset{\text { UW-Madison (Statistics) }}{A=\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}\left[2 \lambda \sigma^{2} I_{p}-\lambda^{2} \beta \beta^{\tau}+\lambda^{2} \sigma^{2}\left(Z^{\tau} Z\right)^{-1}\right]\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \text { Stat 709 Lecture } 23}
$$

Assume $\lambda>0$ and $\beta \neq 0$.
Then

$$
A>\lambda^{2} \sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}\left(Z^{\tau} Z\right)^{-1}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}
$$

if and only if

$$
2 \sigma^{2} \lambda^{-1} I_{p}-\beta \beta^{\tau}>0 \quad \text { equivalent to } \quad \lambda<2 \sigma^{2} /\|\beta\|^{2}
$$

This can be shown as follows. If $2 \sigma^{2} \lambda^{-1} I_{p}-\beta \beta^{\tau}>0$, then $0<\beta^{\tau}\left(2 \sigma^{2} \lambda^{-1} I_{p}-\beta \beta^{\tau}\right) \beta=2 \sigma^{2} \lambda^{-1}\|\beta\|^{2}-\|\beta\|^{4}$, which means $\lambda<2 \sigma^{2} /\|\beta\|^{2}$. On the other hand, if $\lambda<2 \sigma^{2} /\|\beta\|^{2}$, then $\left(2 \sigma^{2} \lambda^{-1} I_{p}-\beta \beta^{\tau}\right) /\|\beta\|^{2}=\left(2 \sigma^{2} \lambda^{-1}\|\beta\|^{-2}-1\right) I_{p}+I_{p}-\beta \beta^{\tau} /\|\beta\|^{2}>0$, because $I_{p}-\beta \beta^{\tau} /\|\beta\|^{2}$ is a projection matrix whose eigenvalues are either 0 or 1 .
Since $\operatorname{Var}(\widehat{\beta})=\sigma^{2}\left(Z^{\tau} Z\right)^{-1}$, using the formula for $\operatorname{Var}\left(\widehat{\beta}_{\lambda}\right)$ we obtain

$$
E\|\widehat{\beta}-\beta\|^{2}-E\left\|\widehat{\beta}_{\lambda}-\beta\right\|^{2}=\operatorname{tr}(A)
$$

Thus, (i) follows, and (ii) and (iii) follow from

$$
\lambda^{2} \sigma^{2}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1}\left(Z^{\tau} Z\right)^{-1}\left(Z^{\tau} Z+\lambda I_{p}\right)^{-1} \leq \lambda^{2} \sigma^{2}\left(Z^{\tau} Z\right)^{-3}
$$

The ridge regression is better if the noise to signal ratio is large.

High dimension problems

The dimension of β in a linear model is $p(Z$ is $n \times p)$ In traditional applications: $p \ll n$; p is fixed when $n \rightarrow \infty$.
In modern applications, p is large; $p=p_{n}$ increases as n increases.

- $p=O\left(n^{k}\right)$: polynomial-type divergence rate
- $p=O\left(e^{n^{\nu}}\right)$: ultra-high dimension, where v is a constant <1.

Non-identifiability of β

- $r=r_{n}$: rank of Z.
- The dimension of $\mathscr{R}(Z)$ is $r \leq n$.
- If $p>n$, then β is not identifiable.

This means that there are β and $\tilde{\beta}, \beta \neq \tilde{\beta}$ but $Z \beta=Z \tilde{\beta}$ so that the data generated under the models with β and $\tilde{\beta}$ are the same.

- It is not possible to estimate all components of β consistently; we are not able to estimate something out of the data range.
- We can estimate consistently some useful functions of β.
- We can estimate the projection of β onto $\mathscr{R}(Z)$.
- Estimation of the projection is sufficient for many problems

Projection

- Singular value decomposition: $Z=P D Q^{\tau}$
$P: n \times r$ matrix with $P^{\tau} P=I_{r}$ (identity matrix)
$Q: p \times r$ matrix with $Q^{\tau} Q=I_{r}$
$D: r \times r$ diagonal matrix of full rank
- Projection of β onto $\mathscr{R}(Z)$:
$\theta=Z^{\tau}\left(Z Z^{\tau}\right)^{-} Z \beta=Q Q^{\tau} \beta \in \mathscr{R}(Z)$
- $Z \theta=P D Q^{\tau}\left(Q Q^{\tau} \beta\right)=P D Q^{\tau} \beta=Z \beta$
- The model

$$
Y=Z \beta+\varepsilon \quad \text { is the same as } \quad Y=Z \theta+\varepsilon
$$

Ridge regression estimator of θ

$$
\widehat{\theta}=\left(Z^{\tau} Z+h_{n} I_{p}\right)^{-1} Z^{\tau} X \quad h_{n}>0
$$

We only need to invert an $n \times n$ matrix, because

$$
\left(Z^{\tau} Z+h_{n} I_{p}\right)^{-1} Z^{\tau}=Z^{\tau}\left(Z Z^{\tau}+h_{n} I_{n}\right)^{-1}
$$

$\widehat{\theta}$ is always in $\mathscr{R}(Z)$

Derivation of the bias of ridge regression estimator

Let $\Gamma=\left(Q Q_{\perp}\right), Q^{\tau} Q_{\perp}=0, \Gamma \Gamma^{\tau}=\Gamma^{\tau} \Gamma=I_{\rho}$.
Then

$$
\begin{aligned}
\operatorname{bias}(\hat{\theta}) & =E(\widehat{\theta})-\theta \\
& =\left(Z^{\tau} Z+h_{n} I_{p}\right)^{-1} Z^{\tau} Z \theta-\theta \\
& =-\left(h_{n}^{-1} Z^{\tau} Z+I_{p}\right)^{-1} \theta \\
& =-\Gamma\left(h_{n}^{-1} \Gamma^{\tau} Z^{\tau} Z \Gamma+I_{p}\right)^{-1} \Gamma^{\tau} Q Q^{\tau} \theta \\
& =-\left(\begin{array}{ll}
Q & Q_{\perp}
\end{array}\right)\left(\begin{array}{cc}
\left(h_{n}^{-1} D^{2}+I_{r}\right)^{-1} & 0 \\
0 & I_{p-r}
\end{array}\right)\binom{Q^{\tau}}{Q_{\perp}^{\tau}} Q Q^{\tau} \theta \\
& =-\left(\begin{array}{ll}
Q\left(h_{n}^{-1} D^{2}+I_{r}\right)^{-1} & Q_{\perp}
\end{array}\right)\binom{Q^{\tau} \theta}{0} \\
& =-Q\left(h_{n}^{-1} D^{2}+I_{r}\right)^{-1} Q^{\tau} \theta \\
& =-Q\left(\begin{array}{ccc}
\left(1+d_{1 n} / h_{n}\right)^{-1} & \\
& \ddots & \\
& & \left(1+d_{r n} / h_{n}\right)^{-1}
\end{array}\right) Q^{\tau} \theta
\end{aligned}
$$

where $d_{j n}>0$ is the j th diagonal element of D^{2} (eigenvalue of $Z^{\tau} Z$).

Thus,

$$
\begin{aligned}
\|\operatorname{bias}(\widehat{\theta})\|^{2} & =\theta^{\tau} Q\left(h_{n}^{-1} D^{2}+I_{r}\right)^{-2} Q^{\tau} \theta \\
& \leq \max _{1 \leq j \leq r}\left(1+d_{j n} / h_{n}\right)^{-2} \theta^{\tau} Q Q^{\tau} \theta \\
& \leq h_{n}^{2} d_{1 n}^{-2}\|\theta\|^{2}
\end{aligned}
$$

For the variance,

$$
\begin{aligned}
\operatorname{Var}(\widehat{\theta}) & =\sigma^{2}\left(Z^{\tau} Z+h_{n} I_{p}\right)^{-1} Z^{\tau} Z\left(Z^{\tau} Z+h_{n} I_{p}\right)^{-1} \\
& \leq \sigma^{2} h_{n}^{-1} I_{p}
\end{aligned}
$$

Theorem (Consistency of $\widehat{\theta}$)

Assume that
(C1) $d_{1 n}^{-1}=O\left(n^{-\eta}\right), \quad \eta \leq 1$ and η does not depend on n.
(C2) $\|\theta\|=O\left(n^{\tau}\right), \quad \tau<\eta$ and τ does not depend on n.
Then
(i) As $n \rightarrow \infty, E\left(\ell^{\tau} \widehat{\theta}-\ell^{\tau} \theta\right)^{2}=O\left(h_{n}^{-1}\right)+O\left(h_{n}^{2} n^{-2(\eta-\tau)}\right)$ uniformly over p-dimensional deterministic vector ℓ with $\|\ell\|=1$.
(ii) $n^{-1} E\|Z \widehat{\theta}-Z \theta\|^{2}=O\left(r_{n} n^{-1}\right)+O\left(h_{n}^{2} n^{-(1+\eta-2 \tau)}\right)$.

Remarks

- (C2) means that θ is sparse; without any condition, the order of $\|\theta\|^{2}$ could be p.
- $\|\theta\| \leq\|\beta\|$ so that (C2) holds if β is sparse.
- For any fixed $\ell^{\prime} \theta, \ell^{\prime} \widehat{\theta}$ is consistent if $h_{n} \rightarrow \infty$ and $h_{n} n^{-(\eta-\tau)} \rightarrow 0$.
- $\widehat{\theta}$ is not sparse even if θ is sparse.
- Typically $r_{n} / n \nrightarrow 0$ so $\hat{\theta}$ is not L_{2}-consistent.
- The reason (ii) is interesting is that

$$
n^{-1} E\|Z \widehat{\theta}-Z \theta\|^{2}=n^{-1} E\left\|X_{*}-Z \widehat{\theta}\right\|^{2}-\sigma^{2}
$$

where X_{*} is an independent copy of X and $n^{-1} E\left\|X_{*}-Z \widehat{\theta}\right\|^{2}$ is the average prediction mean squared error.

Problem of the ridge regression estimator

When $p<n, \theta=\beta$ has many zero components, the ridge regression estimator does not have any zero components, although it has many small components.

LASSO estimator

Consider linear model $X=Z \beta+\varepsilon, \beta \in \mathscr{R}^{p}$ and $\operatorname{Var}(\varepsilon)=\sigma^{2} I_{n}$.
The ridge regression estimator of β is obtained from

$$
\min _{\beta \in \mathscr{R ^ { P }}}\left(\|X-Z \beta\|^{2}+\lambda\|\beta\|^{2}\right)
$$

If we change the L_{2} penalty $\|\beta\|^{2}$ to the L_{1} penalty $\|\beta\|_{1}=\sum_{j=1}^{p}\left|\beta_{j}\right|$, where β_{j} is the j th component of β, then the LASSO estimator is from

$$
\min _{\beta \in \mathscr{\mathbb { R } ^ { \rho }}}\left(\|X-Z \beta\|^{2}+\lambda\|\beta\|_{1}\right)
$$

Difference between LASSO and ridge regression:

- LASSO estimator does not have an explicit form.
- When a component of β is 0 , its LASSO estimator may be 0 , but its ridge regression estimator is never 0 .
- The minimization for LASSO is still for a convex objective function, but the objective function is not always differentiable.
- Although LASSO is still defined when $p>n$, it is usually used in the case where $p<n$.
- If $p<n, Z$ can be deterministic or random.

Notation

$\mathscr{A}=$ the set of indices of non-zero coefficients of β
$\beta=\left(\beta_{\mathscr{A}}, \beta_{\mathscr{A} c}\right), \operatorname{dim}\left(\beta_{\mathscr{A}}\right)=q, \operatorname{dim}\left(\beta_{\mathscr{A} c}\right)=p-q ; X=\left(X_{\mathscr{A}}, X_{\mathscr{A} c}\right)$
$C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)=\frac{1}{n}\left(\begin{array}{cc}X_{\mathscr{A}}^{\tau} X_{\mathscr{A}} & X_{\mathscr{A}}^{\tau} X_{\mathscr{A} c} \\ X_{\mathscr{A} c}^{\tau} X_{\mathscr{A}} & X_{\mathscr{A} c}^{\tau} X_{\mathscr{A} c}^{c}\end{array}\right)=\frac{1}{n} X^{\tau} X$

Consistency

The LASSO estimator $\widehat{\beta}$ of β is strongly sign consistent if there exists $\lambda=\lambda_{n}$ not depending on Y or X such that

$$
\lim _{n \rightarrow \infty} P(\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta))=1
$$

which implies variable selection consistent (since $\operatorname{sign}(a)=0$ if $a=0)$,

$$
\lim _{n \rightarrow \infty} P(\widehat{\mathscr{A}}=\mathscr{A})=1
$$

where $\widehat{\mathscr{A}}$ is the index set of nonzero components of $\widehat{\beta}$.

Strong Irrepresentable Condition (SIC)

There exists a vector η whose components are positive such that $\left|C_{21} C_{11}^{-1} \operatorname{sign}\left(\beta_{\mathscr{A}}\right)\right| \leq 1-\eta$ component-wise, where $|a|=\left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots\right)$ for $a=\left(a_{1}, a_{2}, \ldots\right)$ and 1 is the vector of ones.

Critical Lemma

Under the SIC,

$$
P(\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta)) \geq P\left(A_{n} \cap B_{n}\right),
$$

where

$$
\begin{aligned}
A_{n} & =\left\{\left|C_{11}^{-1} W_{\mathscr{A}}\right|<\sqrt{n}\left|\beta_{\mathscr{A}}\right|-\frac{\lambda_{n}}{2 \sqrt{n}}\left|C_{11}^{-1} \operatorname{sign}\left(\beta_{\mathscr{A}}\right)\right|\right\} \\
B_{n} & =\left\{\left|C_{21} C_{11}^{-1} W_{\mathscr{A}}-W_{\mathscr{A C C}}\right| \leq \frac{\lambda_{n}}{2 \sqrt{n}} \eta\right\} \\
W_{\mathscr{A}} & =\frac{1}{\sqrt{n}} X_{\mathscr{A}}^{\tau} \varepsilon \quad W_{\mathscr{A} C}=\frac{1}{\sqrt{n}} X_{\mathscr{A} C}^{\tau} \varepsilon
\end{aligned}
$$

Karush-Kuhn-Tuker (KKT) condition

$\widehat{\beta}=\left(\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ is the LASSO estimator if and only if

$$
\left.\frac{\partial\|Y-X \beta\|^{2}}{\partial \beta_{j}}\right|_{\beta_{j}=\widehat{\beta}_{j}}= \begin{cases}\lambda \operatorname{sign}\left(\widehat{\beta}_{j}\right) & \widehat{\beta}_{j} \neq 0 \\ \text { bounded by } \lambda \text { in absolute value } & \widehat{\beta}_{j}=0\end{cases}
$$

Proof of the Lamma

Let $\widehat{u}=\widehat{\beta}-\beta$ and $V_{n}(u)=\sum_{i=1}^{n}\left[\left(\varepsilon_{i}-X_{i} u\right)^{2}-\varepsilon_{i}\right]^{2}+\lambda_{n}\|u+\beta\|_{1}$
Then $\widehat{u}=\operatorname{argmin} V_{n}(u)$
It can be verified that the KKT condition is equivalent to

$$
\begin{gather*}
C_{11}\left(\sqrt{n} \widehat{u}_{\mathscr{A}}\right)-W_{\mathscr{A}}=\frac{\lambda_{n}}{2 \sqrt{n}} \operatorname{sign}\left(\beta_{\mathscr{A}}\right), \tag{3}\\
-\frac{\lambda_{n}}{2 \sqrt{n}} 1 \leq C_{21}\left(\sqrt{n} \widehat{u}_{\mathscr{A}}\right)-W_{\mathscr{A} C} \leq \frac{\lambda_{n}}{2 \sqrt{n}} 1, \tag{4}\\
\left|\widehat{u}_{\mathscr{A}}\right|<\left|\beta_{\mathscr{A}}\right| \tag{5}
\end{gather*}
$$

We now show that on $A_{n} \cap B_{n}$, a solution \widehat{u} satisfying (3) and $\widehat{u}_{\mathscr{A} c}=0$ must satisfy (4) and (5), and hence $\widehat{\beta}=\widehat{u}+\beta$ is a LASSO estimator. In fact, LASSO estimator is unique.
First, (3) and A_{n} holds imply (5).
Second, (3) and B_{n} holds and the SIC imply (4).
Finally, a sufficient condition for $\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta)$ is $\left|\widehat{u}_{\mathscr{A}}\right|<\left|\beta_{\mathscr{A}}\right|$ and $\widehat{u}_{\mathscr{A} c}=0$.
This proves that if $A_{n} \cap B_{n}$ holds, $\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta)$.

Theorem (strong sign consistency of LASSO)

(i) Assume that ε_{i} 's are iid with $E\left(\varepsilon_{i}^{2 k}\right)<\infty$ for an integer $k>0$, and there are positive constants $c_{1}<c_{2} \leq 1, M_{1}, M_{2}, M_{3}$, such that
C1: $n^{-1}\left\|Z_{j}\right\|^{2} \leq M_{1}$ for any $j=1, \ldots, p, Z_{j}$ is the jth column of Z;
C2: The smallest eignvalue of $C_{11} \geq M_{2}$;
C3: $q=O\left(n^{c_{1}}\right)$;
C4: $n^{\left(1-c_{2}\right) / 2} \min _{j \in \mathscr{A}}\left|\beta_{j}\right| \geq M_{3}$;
C5: $p=o\left(n^{\left(c_{2}-c_{1}\right) k}\right)$.
Under SIC, if λ is chosen with $\lambda=O\left(n^{\left.1+c_{2}-c_{1}\right) / 2}\right)$ and $p n^{k} / \lambda^{2 k}=O(1)$, then

$$
P(\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta)) \geq 1-O\left(p n^{k} / \lambda^{2 k}\right)
$$

(ii) Assume that ε_{i} 's are iid normal and $\mathrm{C} 1-\mathrm{C} 4$ hold, and

C5a: $p=O\left(e^{n^{c_{3}}}\right)$ with a constant $c_{3}, 0 \leq c_{3}<c_{2}-c_{1}$. Under SIC, if λ is chosen with $\lambda \propto n^{\left(1+c_{4}\right) / 2}, c_{4}$ is a constant, $c_{3}<c_{4}<c_{2}-c_{1}$, then

$$
P(\operatorname{sign}(\widehat{\beta})=\operatorname{sign}(\beta)) \geq 1-O\left(e^{n^{c_{3}}}\right)
$$

Proof.

$z_{j}=$ the j th component of $C_{11}^{-1} W_{s \in}, j=1, \ldots, q$
$\zeta_{j}=$ the j th component of $C_{21} C_{11}^{-1} W_{\mathscr{A}}-W_{\mathscr{A} c}, j=1, \ldots, p-q$ $b_{j}=$ the j th component of $C_{11}^{-1} \operatorname{sign}\left(\beta_{\mathscr{A}}\right), j=1, \ldots, q$
The condition $E\left(\varepsilon_{i}^{2 k}\right)<\infty$ implies that $E\left(z_{j}^{2 k}\right)<\infty$ and $E\left(\zeta_{j}^{2 k}\right)<\infty$ By the lemma,

$$
\begin{aligned}
P(\operatorname{sign}(\widehat{\beta}) \neq \operatorname{sign}(\beta)) \leq & 1-P\left(A_{n} \cap B_{n}\right) \\
\leq & \sum_{j \in \mathscr{A}} P\left(\left|z_{j}\right| \geq \sqrt{n}\left|\beta_{j}\right|-\lambda b_{j} / 2 \sqrt{n}\right) \\
& +\sum_{j \in \mathscr{A} C} P\left(\left|\zeta_{j}\right| \geq \lambda \eta_{j} / 2 \sqrt{n}\right) \\
\leq & \sum_{j \in \mathscr{A}} \frac{E\left|z_{j}\right|^{2 k}}{n^{k} \beta_{j}^{2 k}}+\sum_{j \in \mathscr{A} C} \frac{E\left|\zeta_{j}\right|^{2 k}}{\left(2 \lambda \eta_{j}\right)^{2 k} / n^{k}} \\
= & q O\left(n^{-k c_{2}}\right)+(p-q) O\left(n^{k} / \lambda^{2 k}\right) \\
= & o\left(p n^{k} / \lambda^{2 k}\right)+O\left(p n^{k} / \lambda^{2 k}\right)=O\left(p n^{k} / \lambda^{2 k}\right)
\end{aligned}
$$

This proves (i).

For (ii), the normality of ε_{j} implies that z_{j} and ζ_{j} are normal. Instead of using Markov inequality, using $1-\Phi(t) \leq t^{-1} e^{-t^{2} / 2}$ leads to the result (ii).

Advantage and disadvantage of using LASSO

- Variable selection and parameter estimation at the same time
- It is very good in estimation and prediction, but it is often too conservative in variable selection.
- Need SIC.
- Population version of SIC.
$\left|\Sigma_{21} \Sigma_{11}^{-1} \operatorname{sign}\left(\beta_{\mathscr{A}}\right)\right| \leq 1-\eta, \Sigma_{k j}$ are submatrices of $\Sigma=\operatorname{Var}\left(z_{j}\right)$, if z_{j} 's are iid, z_{j} is the j th row of Z.

Improvements

- Adaptive LASSO
- Group LASSO
- Elastic net (other penalties)
- LASSO plus thresholding (ridge regression plus threshodling)

