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Lecture 34: Ridge regression and LASSO
Ridge regression

Consider linear model X = Zβ + ε, β ∈Rp and Var(ε) = σ2In.
The LSE is obtained from the minimization problem

min
β∈Rp

‖X −Zβ‖2 (1)

A type of shrinkage estimator is obtained though (1) by adding a
penalty on ‖β‖2, i.e.,

min
β∈Rp

(‖X −Zβ‖2 + λ‖β‖2) (2)

where λ ≥ 0 is a constant controlling the penalization.
∂

∂β
(‖X −Zβ‖2 + λ‖β‖2) =−2Z τ (X −Zβ ) + 2λβ

which gives the solution to (2) as

β̂λ = (Z τZ + λ Ip)−1Z τX

This estimator is better than the LSE when Z τZ is nearly singular.
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This gives a class of estimators called ridge regression estimators;
in particular, λ = 0 gives the LSE.

Bias and covariance matrix

E(β̂λ ) = (Z τZ + λ Ip)−1Z τE(X ) = (Z τZ + λ Ip)−1Z τZβ

The bias of β̂λ is then

b(β ) = (Z τZ + λ Ip)−1Z τZβ −β =−λ (Z τZ + λ Ip)−1
β

The bias is not 0, but converges to 0 as λ → 0.

Var(β̂λ ) = (Z τZ + λ Ip)−1Z τVar(X )Z (Z τZ + λ Ip)−1

= σ
2(Z τZ + λ Ip)−1Z τZ (Z τZ + λ Ip)−1

= σ
2(Z τZ + λ Ip)−1−σ

2
λ (Z τZ + λ Ip)−2

It can be seen that the variance converges to 0 if λ → ∞ and to
σ2(Z τZ )−1 if λ → 0.
Combining the bias and variance, we get

E‖β̂λ −β‖2 = ‖b(β )‖2 + E‖β̂λ −E (̂βλ )‖2

= λ
2‖(Z τZ + λ Ip)−1

β‖2 + σ
2tr[Z τZ (Z τZ + λ Ip)−2]
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Theorem (Comparison between ridge regression and LSE)

Let β̂ = β̂0 be the LSE.

(i) If 0 < λ < 2σ2/‖β‖2, then E‖β̂λ −β‖2 < E‖β̂ −β‖2.
(ii) Assume that the smallest eigenvalue of Z τZ = O(n).

If λ > 2σ2/‖β‖2, then E‖β̂λ −β‖2 > E‖β̂ −β‖2 for sufficiently
large n; if λ = 2σ2/‖β‖2, then E‖β̂λ −β‖2 = E‖β̂ −β‖2 + O(n−3).

Proof.
Let

A = σ
2(Z τZ )−1−σ

2(Z τZ + λ Ip)−1Z τZ (Z τZ + λ Ip)−1

−λ
2(Z τZ + λ Ip)−1

ββ
τ (Z τZ + λ Ip)−1

Then
(Z τZ + λ Ip)A(Z τZ + λ Ip) = σ

2(Z τZ + λ Ip)(Z τZ )−1(Z τZ + λ Ip)

−σ
2Z τZ −λ

2
ββ

τ

= 2λσ
2Ip + λ

2
σ

2(Z τZ )−1−λ
2
ββ

τ

Hence

A = (Z τZ + λ Ip)−1[2λσ
2Ip−λ

2
ββ

τ + λ
2
σ

2(Z τZ )−1](Z τZ + λ Ip)−1
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Assume λ > 0 and β 6= 0.
Then

A > λ
2
σ

2(Z τZ + λ Ip)−1(Z τZ )−1(Z τZ + λ Ip)−1

if and only if

2σ
2
λ
−1Ip−ββ

τ > 0 equivalent to λ < 2σ
2/‖β‖2

This can be shown as follows. If 2σ2λ−1Ip−ββ τ > 0, then
0 < β τ (2σ2λ−1Ip−ββ τ )β = 2σ2λ−1‖β‖2−‖β‖4, which means
λ < 2σ2/‖β‖2. On the other hand, if λ < 2σ2/‖β‖2, then
(2σ2λ−1Ip−ββ τ )/‖β‖2 = (2σ2λ−1‖β‖−2−1)Ip + Ip−ββ τ/‖β‖2 > 0,
because Ip−ββ τ/‖β‖2 is a projection matrix whose eigenvalues are
either 0 or 1.
Since Var(β̂ ) = σ2(Z τZ )−1, using the formula for Var(β̂λ ) we obtain

E‖β̂ −β‖2−E‖β̂λ −β‖2 = tr(A)

Thus, (i) follows, and (ii) and (iii) follow from

λ
2
σ

2(Z τZ + λ Ip)−1(Z τZ )−1(Z τZ + λ Ip)−1 ≤ λ
2
σ

2(Z τZ )−3

The ridge regression is better if the noise to signal ratio is large.
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High dimension problems
The dimension of β in a linear model is p (Z is n×p)
In traditional applications: p << n; p is fixed when n→ ∞.
In modern applications, p is large; p = pn increases as n increases.

p = O(nk ): polynomial-type divergence rate
p = O(enν

): ultra-high dimension, where ν is a constant < 1.

Non-identifiability of β

r = rn: rank of Z .
The dimension of R(Z ) is r ≤ n.
If p > n, then β is not identifiable.
This means that there are β and β̃ , β 6= β̃ but Zβ = Z β̃ so that the
data generated under the models with β and β̃ are the same.
It is not possible to estimate all components of β consistently; we
are not able to estimate something out of the data range.
We can estimate consistently some useful functions of β .
We can estimate the projection of β onto R(Z ).
Estimation of the projection is sufficient for many problems
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Projection
Singular value decomposition: Z = PDQτ

P: n× r matrix with PτP = Ir (identity matrix)
Q: p× r matrix with QτQ = Ir
D: r × r diagonal matrix of full rank
Projection of β onto R(Z ):
θ = Z τ (ZZ τ )−Zβ = QQτβ ∈R(Z )

Zθ = PDQτ (QQτβ ) = PDQτβ = Zβ

The model
Y = Zβ + ε is the same as Y = Zθ + ε

Ridge regression estimator of θ

θ̂ = (Z τZ + hnIp)−1Z τX hn > 0
We only need to invert an n×n matrix, because

(Z τZ + hnIp)−1Z τ = Z τ (ZZ τ + hnIn)−1

θ̂ is always in R(Z )
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Derivation of the bias of ridge regression estimator
Let Γ = ( Q Q⊥ ), QτQ⊥ = 0, ΓΓτ = Γτ Γ = Ip.
Then

bias(θ̂) = E(θ̂)−θ

= (Z τZ + hnIp)−1Z τZθ −θ

= −(h−1
n Z τZ + Ip)−1

θ

= −Γ(h−1
n ΓτZ τZ Γ + Ip)−1ΓτQQτ

θ

= −
(

Q Q⊥
)( (h−1

n D2 + Ir )−1 0
0 Ip−r

)(
Qτ

Qτ

⊥

)
QQτ

θ

= −
(

Q(h−1
n D2 + Ir )−1 Q⊥

)( Qτθ

0

)
= −Q(h−1

n D2 + Ir )−1Qτ
θ

= −Q

 (1 + d1n/hn)−1

. . .
(1 + drn/hn)−1

Qτ
θ

where djn > 0 is the j th diagonal element of D2 (eigenvalue of Z τZ ).
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Thus,
‖bias(θ̂)‖2 = θ

τQ(h−1
n D2 + Ir )−2Qτ

θ

≤ max
1≤j≤r

(1 + djn/hn)−2
θ

τQQτ
θ

≤ h2
nd−2

1n ‖θ‖
2

For the variance,

Var(θ̂) = σ
2(Z τZ + hnIp)−1Z τZ (Z τZ + hnIp)−1

≤ σ
2h−1

n Ip

Theorem (Consistency of θ̂ )
Assume that

(C1) d−1
1n = O(n−η ), η ≤ 1 and η does not depend on n.

(C2) ‖θ‖= O(nτ ), τ < η and τ does not depend on n.
Then

(i) As n→ ∞, E(`τ θ̂ − `τθ)2 = O(h−1
n ) + O(h2

nn−2(η−τ))
uniformly over p-dimensional deterministic vector ` with ‖`‖= 1.

(ii) n−1E‖Z θ̂ −Zθ‖2 = O(rnn−1) + O(h2
nn−(1+η−2τ)).
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Remarks
(C2) means that θ is sparse; without any condition, the order of
‖θ‖2 could be p.
‖θ‖ ≤ ‖β‖ so that (C2) holds if β is sparse.
For any fixed `′θ , `′θ̂ is consistent if hn→ ∞ and hnn−(η−τ)→ 0.
θ̂ is not sparse even if θ is sparse.
Typically rn/n 6→ 0 so θ̂ is not L2-consistent.
The reason (ii) is interesting is that

n−1E‖Z θ̂ −Zθ‖2 = n−1E‖X∗−Z θ̂‖2−σ
2,

where X∗ is an independent copy of X and n−1E‖X∗−Z θ̂‖2 is the
average prediction mean squared error.

Problem of the ridge regression estimator
When p < n, θ = β has many zero components, the ridge regression
estimator does not have any zero components, although it has many
small components.
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LASSO estimator
Consider linear model X = Zβ + ε, β ∈Rp and Var(ε) = σ2In.
The ridge regression estimator of β is obtained from

min
β∈Rp

(‖X −Zβ‖2 + λ‖β‖2)

If we change the L2 penalty ‖β‖2 to the L1 penalty ‖β‖1 = ∑
p
j=1 |βj |,

where βj is the j th component of β , then the LASSO estimator is from

min
β∈Rp

(‖X −Zβ‖2 + λ‖β‖1)

Difference between LASSO and ridge regression:
LASSO estimator does not have an explicit form.
When a component of β is 0, its LASSO estimator may be 0, but
its ridge regression estimator is never 0.
The minimization for LASSO is still for a convex objective function,
but the objective function is not always differentiable.
Although LASSO is still defined when p > n, it is usually used in
the case where p < n.
If p < n, Z can be deterministic or random.
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Notation
A = the set of indices of non-zero coefficients of β

β = (βA ,βA c ), dim(βA ) = q, dim(βA c ) = p−q; X = (XA ,XA c )

C =

(
C11 C12
C21 C22

)
= 1

n

(
X τ

A XA X τ

A XA c

X τ

A c XA X τ

A c XA c

)
= 1

n X τX

Consistency

The LASSO estimator β̂ of β is strongly sign consistent if there exists
λ = λn not depending on Y or X such that

lim
n→∞

P
(

sign(β̂ ) = sign(β )
)

= 1

which implies variable selection consistent (since sign(a) = 0 if a = 0),

lim
n→∞

P
(
Â = A

)
= 1

where Â is the index set of nonzero components of β̂ .
Strong Irrepresentable Condition (SIC)
There exists a vector η whose components are positive such that
|C21C−1

11 sign(βA )| ≤ 1−η component-wise, where |a|= (|a1|, |a2|, ...)
for a = (a1,a2, ...) and 1 is the vector of ones.
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Critical Lemma
Under the SIC,

P
(

sign(β̂ ) = sign(β )
)
≥ P(An∩Bn),

where

An =

{
|C−1

11 WA |<
√

n|βA |−
λn

2
√

n
|C−1

11 sign(βA )|
}

Bn =

{
|C21C−1

11 WA −WA c | ≤ λn

2
√

n
η

}
WA =

1√
n

X τ

A ε WA c =
1√
n

X τ

A c ε

Karush-Kuhn-Tuker (KKT) condition

β̂ = (β̂1, ..., β̂p) is the LASSO estimator if and only if

∂‖Y −Xβ‖2

∂βj

∣∣∣∣
βj=β̂j

=

 λ sign(β̂j) β̂j 6= 0

bounded by λ in absolute value β̂j = 0
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Proof of the Lamma

Let û = β̂ −β and Vn(u) = ∑
n
i=1[(εi −Xiu)2− εi ]

2 + λn‖u + β‖1
Then û = argminVn(u)

It can be verified that the KKT condition is equivalent to

C11(
√

nûA )−WA =
λn

2
√

n
sign(βA ), (3)

− λn

2
√

n
1≤ C21(

√
nûA )−WA c ≤ λn

2
√

n
1, (4)

|ûA |< |βA | (5)

We now show that on An∩Bn, a solution û satisfying (3) and ûA c = 0
must satisfy (4) and (5), and hence β̂ = û + β is a LASSO estimator.
In fact, LASSO estimator is unique.
First, (3) and An holds imply (5).
Second, (3) and Bn holds and the SIC imply (4).
Finally, a sufficient condition for sign(β̂ ) = sign(β ) is |ûA |< |βA | and
ûA c = 0.
This proves that if An∩Bn holds, sign(β̂ ) = sign(β ).
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Theorem (strong sign consistency of LASSO)

(i) Assume that εi ’s are iid with E(ε2k
i ) < ∞ for an integer k > 0, and

there are positive constants c1 < c2 ≤ 1, M1, M2, M3, such that
C1: n−1‖Zj‖2 ≤M1 for any j = 1, ...,p, Zj is the j th column of Z ;
C2: The smallest eignvalue of C11 ≥M2;
C3: q = O(nc1);
C4: n(1−c2)/2 minj∈A |βj | ≥M3;
C5: p = o(n(c2−c1)k ).
Under SIC, if λ is chosen with λ = o(n1+c2−c1)/2) and pnk/λ 2k = o(1),
then

P
(

sign(β̂ ) = sign(β )
)
≥ 1−O(pnk/λ

2k )

(ii) Assume that εi ’s are iid normal and C1-C4 hold, and
C5a: p = O(enc3 ) with a constant c3, 0≤ c3 < c2−c1.
Under SIC, if λ is chosen with λ ∝ n(1+c4)/2, c4 is a constant,
c3 < c4 < c2−c1, then

P
(

sign(β̂ ) = sign(β )
)
≥ 1−O(enc3 )
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Proof.
zj = the j th component of C−1

11 WA , j = 1, ...,q
ζj = the j th component of C21C−1

11 WA −WA c , j = 1, ...,p−q
bj = the j th component of C−1

11 sign(βA ), j = 1, ...,q
The condition E(ε2k

i ) < ∞ implies that E(z2k
j ) < ∞ and E(ζ 2k

j ) < ∞

By the lemma,

P
(

sign(β̂ ) 6= sign(β )
)
≤ 1−P(An∩Bn)

≤ ∑
j∈A

P
(
|zj | ≥

√
n|βj |−λbj/2

√
n
)

+ ∑
j∈A c

P
(
|ζj | ≥ ληj/2

√
n
)

≤ ∑
j∈A

E |zj |2k

nk β 2k
j

+ ∑
j∈A c

E |ζj |2k

(2ληj)2k/nk

= qO(n−kc2) + (p−q)O(nk/λ
2k )

= o(pnk/λ
2k ) + O(pnk/λ

2k ) = O(pnk/λ
2k )

This proves (i).
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For (ii), the normality of εj implies that zj and ζj are normal.
Instead of using Markov inequality, using 1−Φ(t)≤ t−1e−t2/2 leads to
the result (ii).

Advantage and disadvantage of using LASSO
Variable selection and parameter estimation at the same time
It is very good in estimation and prediction, but it is often too
conservative in variable selection.
Need SIC.
Population version of SIC.
|Σ21Σ−1

11 sign(βA )| ≤ 1−η , Σkj are submatrices of Σ = Var(zj), if
zj ’s are iid, zj is the j th row of Z .

Improvements
Adaptive LASSO
Group LASSO
Elastic net (other penalties)
LASSO plus thresholding (ridge regression plus threshodling)
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