Lecture 24: Variable selection in linear models

Consider linear model $X=Z \beta+\varepsilon, \beta \in \mathscr{R}^{p}$ and $\operatorname{Var}(\varepsilon)=\sigma^{2} I_{n}$.
Like the LSE, the ridge regression estimator does not give 0 estimate to a component of β even if that component is 0 .
Variable (or model) selection refers to eliminating covariates (columns of Z) corresponding to zero components of β.

Example 1. Linear regression models

- $\mathscr{A}=$ a subset of $\{1, \ldots, p\}$, indices of nonzero components of β
- The dimension of \mathscr{A} is $\operatorname{dim}(\mathscr{A})=q \leq p$
- $\beta_{\mathscr{A}}$: sub-vector of β with indices in \mathscr{A}
- $Z_{\mathscr{A}}$: the corresponding sub-matrix of Z
- The number of models could be as large as 2^{p}
- Approximation to a response surface
- The i th row of $Z_{\mathscr{A}}=\left(1, t_{i}, t_{i}^{2}, \ldots, t_{i}^{h}\right), t_{i} \in \mathscr{R}$
- $\mathscr{A}=\{1, \ldots, h\}$: a polynomial of order h
- $h=0,1, \ldots, p_{n}$
- $n=p r, p=p_{n}, r=r_{n}$
- There are p groups, each has r identically distributed observations
- Select one model from two models
- 1-mean model: all groups have the same mean μ_{1}
- p-mean model: p groups have different means μ_{1}, \ldots, μ_{p}
- $\mathscr{A}=\mathscr{A}_{1}$ or \mathscr{A}_{p}

$$
\begin{gathered}
Z=\left(\begin{array}{ccccc}
1_{r} & 0 & 0 & \cdots & 0 \\
1_{r} & 1_{r} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1_{r} & 0 & 0 & \cdots & 1_{r}
\end{array}\right) \quad \beta=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2}-\mu_{1} \\
\cdots \\
\mu_{p}-\mu_{1}
\end{array}\right) \\
Z_{\mathscr{A}_{p}=Z} \quad \begin{array}{l}
\beta_{\mathscr{A}_{p}}=\beta \\
Z_{\mathscr{A}_{1}}=1_{n}
\end{array} \quad \beta_{\mathscr{A}_{1}}=\mu_{1}
\end{gathered}
$$

- In traditional studies, p is fixed and n is large, or p / n is small
- In modern applications, both p and n are large, and in some cases $p>n, p / n \rightarrow \infty$

Methods for variable selection

- Generalized Information Criterion (GIC)

Put a penalty on the dimension of the parameter: We minimize

$$
\left\|X-Z_{\mathscr{A}} \beta_{\mathscr{A}}\right\|^{2}+\lambda \hat{\sigma}^{2} \operatorname{dim}\left(\beta_{\mathscr{A}}\right) \quad \text { over } \mathscr{A},
$$

to obtain a suitable \mathscr{A}, and then estimate $\beta_{\mathscr{A}}$.
$\widehat{\sigma}^{2}$ is a suitable estimator of the error variance σ^{2}

- The term $\left\|X-Z_{\mathscr{A}} \beta_{\mathscr{A}}\right\|^{2}$ measures goodness-of-fit of model \mathscr{A}, whereas the term $\lambda \widehat{\sigma}^{2} \operatorname{dim}\left(\beta_{\mathscr{A}}\right)$ controls the "size" of \mathscr{A}.
- If $\lambda_{n}=2$, this is the C_{p} method, and close to the AIC
- If $\lambda_{n}=\log n$, this is close to the BIC
- Regularization or penalized optimization simultaneously select variables and estimate θ by minimizing

$$
\|X-Z \beta\|^{2}+p_{\lambda}(\beta),
$$

where $p_{\lambda}(\cdot)$ is a penalty function indexed by the penalty parameter $\lambda \geq 0$, which may depend on n and data.
Zero components of β are estimated as zeros and automatically eliminated.

- Examples of penalty functions
- Ridge regression: $p_{\lambda}(\beta)=\lambda\|\beta\|^{2}$;
- LASSO (least absolute shrinkage and selection operator): $p_{\lambda}(\beta)=\lambda\|\beta\|_{1}=\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|, \beta_{j}$ is the j th component of β;
- Adaptive LASSO: $p_{\lambda}(\beta)=\lambda \sum_{j=1}^{p} \tau_{j}\left|\beta_{j}\right|$, where τ_{j} 's are non-negative leverage factors chosen adaptively such that large penalties are used for unimportant β_{j} 's and small penalties for important ones;
- Elastic net: $p_{\lambda}(\beta)=\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|^{2}$;
- Minimax concave penalty: $p_{\lambda}(\beta)=\sum_{j=1}^{p}\left(a \lambda-\beta_{j}\right)_{+} / a$ for some $a>0$;
- SCAD (smoothly clipped absolute deviation):

$$
p_{\lambda}(\beta)=\sum_{j=1}^{p} \lambda\left\{I\left(\beta_{j} \leq \lambda\right)+\frac{\left(a \lambda-\beta_{j}\right)}{(a-1) \lambda} I\left(\beta_{j} \geq \lambda\right)\right\} \text { for some } a>2 \text {; }
$$

- There are also many modified versions of the previously listed methods.
- Resampling methods

Cross validation, bootstrap

- Thresholding

Compare $\widehat{\beta}_{j}$ with a threshold (may depend on n and data) and eliminate estimates that are smaller than the threshold.

Assessment of variable/model selection procedures

$\mathscr{A}=$ the set containing exactly indices of nonzero components of β
$\widehat{\mathscr{A}}$: a set of variables/model selected based on a selection procedure
The selection procedure is selection consistent if

$$
\lim _{n \rightarrow \infty} P(\widehat{\mathscr{A}}=\mathscr{A})=1
$$

Sometimes the following weaker version of consistency is desired. Under model $\mathscr{A}, \mu=E(X \mid Z)$ is estimated by $\widehat{\mu}_{\mathscr{A}}=Z_{\mathscr{A}} \widehat{\beta}_{\mathscr{A}}$ We want to minimize the squared error loss

$$
L_{n}(\mathscr{A})=n^{-1}\left\|\mu-\widehat{\mu}_{\mathscr{A}}\right\|^{2} \quad \text { over } \mathscr{A}
$$

which is equivalent to minimizing the average prediction error

$$
n^{-1} E\left[\left\|X^{*}-\widehat{\mu}_{\mathscr{A}}\right\|^{2} \mid X, Z\right] \quad \text { over } \mathscr{A}
$$

X^{*} : a future independent copy of X
The selection procedure is loss consistent if

$$
L_{n}(\widehat{\mathscr{A}}) / L_{n}(\mathscr{A}) \rightarrow_{p} 1
$$

Consistency of the GIC

Let \mathscr{M} denote a set of indices (model).
If $\mathscr{A} \subset \mathscr{M}$, then \mathscr{M} is a correct model; otherwise, \mathscr{M} is a wrong model. The loss under model \mathscr{M} is equal to

$$
\begin{gathered}
L_{n}(\mathscr{M})=\Delta_{n}(\mathscr{M})+\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon / n \\
H_{\mathscr{M}}=Z_{\mathscr{M}}\left(Z_{\mathscr{M}}^{\tau} Z_{\mathscr{M}}\right)^{-1} Z_{\mathscr{M}}^{\tau}, \Delta_{n}(\mathscr{M})=\left\|\mu-H_{\mathscr{M}} \mu\right\|^{2} / n(0 \text { if } \mathscr{M} \text { is correct })
\end{gathered}
$$

$$
\text { Let } \Gamma_{n, \lambda}(\mathscr{M})=n^{-1}\left[\left\|X-Z_{\mathscr{M}} \beta_{\mathscr{M}}\right\|^{2}+\lambda \widehat{\sigma}^{2} \operatorname{dim}\left(\beta_{\mathscr{M}}\right)\right] \text { (to be minimized) }
$$

$$
\begin{aligned}
\left\|X-Z_{\mathscr{M}} \beta_{\mathscr{M}}\right\|^{2} & =\left\|X-H_{\mathscr{M}} X\right\|^{2}=\left\|\mu-H_{\mathscr{M}} \mu+\varepsilon-H_{\mathscr{M}} \varepsilon\right\|^{2} \\
& =n \Delta_{n}(\mathscr{M})+\|\varepsilon\|^{2}-\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon+2 \varepsilon^{\tau}\left(I-H_{\mathscr{M}}\right) \mu
\end{aligned}
$$

When \mathscr{M} is a wrong model,

$$
\begin{aligned}
\Gamma_{n, \lambda}(\mathscr{M}) & =\frac{\|\varepsilon\|^{2}}{n}+\Delta_{n}(\mathscr{M})-\frac{\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n}+\frac{\lambda \hat{\sigma}^{2} \operatorname{dim}(\mathscr{M})}{n}+O_{P}\left(\frac{\Delta_{n}(\mathscr{M})}{n}\right) \\
& =\frac{\|\varepsilon\|^{2}}{n}+L_{n}(\mathscr{M})+O_{P}\left(\frac{\lambda \operatorname{dim}(\mathscr{M})}{n}\right)+O_{P}\left(\frac{L_{n}(\mathscr{M})}{n}\right) \\
& =\frac{\|\varepsilon\|^{2}}{n}+L_{n}(\mathscr{M})+o_{P}\left(L_{n}(\mathscr{M})\right)
\end{aligned}
$$

provided that

$$
\liminf _{n \rightarrow \infty} \min _{\mathscr{M} \text { is wrong }} \Delta_{n}(\mathscr{M})>0 \quad \text { and } \quad \frac{\lambda p}{n} \rightarrow 0
$$

(The first condition impies that wrong is always worse than correct) Among all wrong \mathscr{M}, minimizing $\Gamma_{n, \lambda}(\mathscr{M})$ is asymptotically the same as minimizing $L_{n}(\mathscr{M})$
Hence, the GIC is loss consistent when all models are wrong
The GIC selects the best wrong model, i.e., the best approximation to a correct model in terms of $\Delta_{n}(\mathscr{M})$, the leading term in the loss $L_{n}(\mathscr{M})$

For correct models, however, $\Delta_{n}(\alpha)=0$ and $L_{n}(\mathscr{M})=\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon / n$
Correct models are nested, and \mathscr{A} has the smallest dimension and

$$
\begin{gathered}
\varepsilon^{\tau} H_{\mathscr{A}} \varepsilon=\min _{\mathscr{M} \text { is correct }} \varepsilon^{\tau} H_{\mathscr{M}} \varepsilon \\
\Gamma_{n, \lambda}(\mathscr{M})=\frac{\|\varepsilon\|^{2}}{n}-\frac{\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n}+\frac{\lambda \widehat{\sigma}^{2} \operatorname{dim}(\mathscr{M})}{n} \\
=\frac{\|\varepsilon\|^{2}}{n}+L_{n}(\mathscr{M})+\frac{\lambda \widehat{\sigma}^{2} \operatorname{dim}(\mathscr{M})}{n}-\frac{2 \varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n}
\end{gathered}
$$

If $\lambda \rightarrow \infty$, the dominating term in $\Gamma_{n, \lambda}(\mathscr{M})$ is $\lambda \widehat{\sigma}^{2} \operatorname{dim}(\mathscr{M}) / n$.
Among correct models, the GIC selects a model by minimizing $\operatorname{dim}(\mathscr{M})$, i.e., it selects \mathscr{A}.
Combining the results, we showed that the GIC is selection consistent.
On the other hand, if $\lambda=2$ (the C_{p} method, AIC), the term

$$
\frac{2 \widehat{\sigma}^{2} \operatorname{dim}(\mathscr{M})}{n}-\frac{2 \varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n}
$$

is of the same order as $L_{n}(\mathscr{M})=\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon / n$ unless $\operatorname{dim}(\mathscr{M}) \rightarrow \infty$ for all but one correct model.
Under some conditions, the GIC with $\lambda=2$ is loss consistent if and only if there does not exist two correct models with fixed dimensions.

Conclusion

(1) The GIC with a bounded $\lambda\left(C_{p}, \operatorname{AIC}\right)$ is loss consistent when there is at most one fixed-dimension correct model; otherwise it is inconsistent.
(2) The GIC with $\lambda \rightarrow \infty$ and $\lambda p / n \rightarrow 0$ (BIC) are selection consistent or loss consistent.

Example 2. 1-mean vs p-mean

\mathscr{A}_{1} vs \mathscr{A}_{p} (always correct)
p_{n} groups, each with r_{n} observations
$\Delta_{n}\left(\mathscr{A}_{1}\right)=\sum_{j=1}^{p}\left(\mu_{j}-\bar{\mu}\right)^{2} / p, \bar{\mu}=\sum_{j=1}^{p} \mu_{j} / p$
$n=p_{n} r_{n} \rightarrow \infty$ means that either $p_{n} \rightarrow \infty$ or $r_{n} \rightarrow \infty$

1. $p_{n}=p$ is fixed and $r_{n} \rightarrow \infty$

- The dimensions of correct models are fixed
- The GIC with $\lambda \rightarrow \infty$ and $\lambda / n \rightarrow 0$ is selection consistent
- The GIC with $\lambda=2$ is inconsistent

2. $p_{n} \rightarrow \infty$ and $r_{n}=r$ is fixed

- Only one correct model has a fixed dimension
- The GIC with $\lambda_{n}=2$ is loss consistent
- The GIC with $\lambda \rightarrow \infty$ is inconsistent, because $\lambda p_{n} / n=\lambda / r \rightarrow \infty$

3. $p_{n} \rightarrow \infty$ and $r_{n} \rightarrow \infty$

- Only one correct model has a fixed dimension
- The GIC is selection consistent, provided that $\lambda / r_{n} \rightarrow 0$

More on the case where $p_{n} \rightarrow \infty$ and $r_{n}=r$ is fixed

$\widehat{\sigma}^{2}=S\left(\mathscr{A}_{p}\right) / n, S(\mathscr{A})=\left\|X-Z_{\mathscr{A}} \beta_{\mathscr{A}}\right\|^{2}$.
It can be shown that

$$
\begin{gathered}
L_{n}\left(\mathscr{A}_{1}\right)=\Delta_{n}\left(\mathscr{A}_{1}\right)+\bar{e}^{2} \rightarrow_{p} \Delta=\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{j=1}^{p}\left(\mu_{j}-\frac{1}{p} \sum_{i=1}^{p} \mu_{i}\right)^{2} \\
L_{n}\left(\mathscr{A}_{p}\right)=\frac{1}{p} \sum_{i=1}^{p} \bar{e}_{i}^{2} \rightarrow_{p} \frac{\sigma^{2}}{r}
\end{gathered}
$$

where $e_{i j}$'s are iid, $E\left(e_{i j}\right)=0, E\left(e_{i j}^{2}\right)=\sigma^{2}, \bar{e}_{i}=r^{-1} \sum_{j=1}^{r} e_{i j}$, and $\bar{e}=p^{-1} \sum_{i=1}^{p} \bar{e}_{i}$.
Then

$$
\frac{L_{n}\left(\mathscr{A}_{1}\right)}{L_{n}\left(\mathscr{A}_{p}\right)} \rightarrow p \frac{r \Delta}{\sigma^{2}}
$$

The one-mean model is better if and only if $r \Delta<\sigma^{2}$.
The wrong model may be better!
The GIC with $\lambda_{n} \rightarrow \infty$ minimizes

$$
\frac{S\left(\mathscr{A}_{1}\right)}{n}+\frac{\lambda_{n}}{n} \frac{S\left(\mathscr{A}_{p}\right)}{n-p} \quad \text { and } \quad \frac{S\left(\mathscr{A}_{p}\right)}{n}+\frac{\lambda_{n}}{r} \frac{S\left(\mathscr{A}_{p}\right)}{n-p}
$$

Because

$$
\begin{gathered}
\frac{S\left(\mathscr{A}_{1}\right)}{n}=\Delta_{n}\left(\mathscr{A}_{1}\right)+\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{r}\left(e_{i j}-\bar{e}^{2}\right) \rightarrow_{p} \Delta+\sigma^{2} \\
\frac{S\left(\mathscr{A}_{p}\right)}{n}=\frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{r}\left(e_{i j}-\bar{e}_{i}^{2}\right) \rightarrow_{p} \frac{(r-1) \sigma^{2}}{r}
\end{gathered}
$$

and $\lambda_{n} / r \rightarrow \infty, P\left\{\right.$ GIC with $\lambda \rightarrow \infty$ selects $\left.\mathscr{A}_{1}\right\} \rightarrow 1$
On the other hand, the C_{p} (GIC with $\lambda_{n}=2$) is loss consistent, because the C_{p} minimizes

$$
\begin{gathered}
\frac{S\left(\mathscr{A}_{1}\right)}{n}+\frac{2}{n} \frac{S\left(\mathscr{A}_{p}\right)}{n-p} \text { and } \frac{S\left(\mathscr{A}_{p}\right)}{n}+\frac{2}{r} \frac{S\left(\mathscr{A}_{p}\right)}{n-p} \\
\frac{S\left(\mathscr{A}_{1}\right)}{n}+\frac{2}{n} \frac{S\left(\mathscr{A}_{p}\right)}{n-p} \rightarrow_{p} \Delta+\sigma^{2} \\
\frac{S\left(\mathscr{A}_{p}\right)}{n}+\frac{2}{r} \frac{S\left(\mathscr{A}_{p}\right)}{n-p} \rightarrow_{p} \sigma^{2}+\frac{\sigma^{2}}{r}
\end{gathered}
$$

Asymptotically, the C_{p} selects \mathscr{A}_{1} iff $\Delta<\sigma^{2} / r$, which is the same as the one-mean model is better.

Variable selection by thresholding

Can we do variable selection using p-values?
Or, can we simply select variables by using the values $\widehat{\beta}_{j}, j=1, \ldots, p$? Here $\widehat{\beta}_{j}$ is the j th component of $\widehat{\beta}$, the least squares estimator of β. For simplicity, assume that $X \mid Z \sim N\left(Z \beta, \sigma^{2} I\right)$.
Then

$$
\widehat{\beta}_{j}-\beta_{j}=\sum_{i=1}^{n} \iota_{i j} \varepsilon_{i} \mid Z \sim N\left(0, \sigma^{2} \sum_{i=1}^{n} l_{i j}^{2}\right)
$$

where ε_{i} and $l_{i j}$ are the i th components of $\varepsilon=X-Z \beta$ and $\left(Z^{\tau} Z\right)^{-1} z_{i}$
z_{j} is the j th row of Z
Because

$$
1-\Phi(t) \leq \frac{\sqrt{2 \pi}}{t} e^{-t^{2} / 2}, \quad t>0
$$

where Φ is the standard normal cdf,

$$
P\left(\left|\widehat{\beta}_{j}-\beta_{j}\right|>t \sqrt{\operatorname{var}(\widehat{\beta} \mid Z)} \mid Z\right) \leq \frac{2 \sqrt{2 \pi}}{t} e^{-t^{2} / 2}, \quad t>0
$$

Let J_{j} be the p-vector whose j th component is 1 and other components are 0:

$$
l_{i j}^{2}=\left[J_{j}^{\tau}\left(Z^{\tau} Z\right)^{-1} z_{i}\right]^{2} \leq J_{j}^{\tau}\left(Z^{\tau} Z\right)^{-1} J_{j} z_{i}^{\tau}\left(Z^{\tau} Z\right)^{-1} z_{i}
$$

$$
\sum_{i=1}^{n} I_{i j}^{2} \leq c_{j} \sum_{i=1}^{n} z_{i}^{\tau}\left(Z^{\tau} Z\right)^{-1} z_{i}=p c_{j} \leq p / \eta_{n}
$$

where c_{j} is the j th diagonal element of $\left(Z^{\tau} Z\right)^{-1}$ and η_{n} is the smallest eigenvalue of $Z^{\tau} Z$.
Thus, for any j,

$$
P\left(\left|\widehat{\beta}_{j}-\beta_{j}\right|>t \sigma \sqrt{p / \eta_{n}} \mid Z\right) \leq \frac{2 \sqrt{2 \pi}}{t} e^{-t^{2} / 2}, \quad t>0
$$

and (letting $\left.t=a_{n} /\left(\sigma \sqrt{p / \eta_{n}}\right)\right)$

$$
P\left(\left|\widehat{\beta}_{j}-\beta_{j}\right|>a_{n} \mid Z\right) \leq C e^{-a_{n}^{2} \eta_{n} /\left(2 \sigma^{2} p\right)}
$$

for some constant $C>0$,

$$
P\left(\max _{j=1, \ldots, p}\left|\widehat{\beta}_{j}-\beta_{j}\right|>a_{n} \mid Z\right) \leq p C e^{-a_{n}^{2} \eta_{n} /\left(2 \sigma^{2} p\right)}
$$

Suppose that $p / n \rightarrow 0$ and $p /\left(\eta_{n} \log n\right) \rightarrow 0$ (typically, $\left.\eta_{n}=O(n)\right)$.
Then, we can choose a_{n} such that $a_{n} \rightarrow 0$ and $a_{n}^{2}\left(\eta_{n} \log n / p\right) \rightarrow \infty$ such that

$$
P\left(\max _{j=1, \ldots, p}\left|\widehat{\beta}_{j}-\beta_{j}\right|>c a_{n} \mid Z\right)=O\left(n^{-s}\right)
$$

for any $c>0$ and some $s \geq 1$; e.g.,

$$
a_{n}=M\left(\frac{p}{\eta_{n} \log n}\right)^{\alpha}
$$

for some constants $M>0$ and $\alpha \in\left(0, \frac{1}{2}\right)$.
What can we conclude from this?
Let

$$
\mathscr{A}=\left\{j: \beta_{j} \neq 0\right\} \quad \text { and } \quad \widehat{\mathscr{A}}=\left\{j:\left|\widehat{\beta}_{j}\right|>a_{n}\right\}
$$

That is, $\widehat{\mathscr{A}}$ contains the indices of variables we select by thresholding $\left|\widehat{\beta}_{j}\right|$ at a_{n}.
Selection consistency:

$$
P(\widehat{\mathscr{A}} \neq \mathscr{A} \mid Z) \leq P\left(\left|\widehat{\beta}_{j}\right|>a_{n}, j \notin \mathscr{A} \mid Z\right)+P\left(\left|\widehat{\beta}_{j}\right| \leq a_{n}, j \in \mathscr{A} \mid Z\right)
$$

The first term on the right hand side is bounded by

$$
P\left(\max _{j=1, \ldots, p}\left|\widehat{\beta}_{j}-\beta_{j}\right|>a_{n} \mid Z\right)=O\left(n^{-s}\right)
$$

On the other hand, if we assume that

$$
\min _{j \in \mathscr{A}}\left|\beta_{j}\right| \geq c_{0} a_{n}
$$

for some $c_{0}>1$, then

$$
\begin{aligned}
P\left(\left|\widehat{\beta}_{j}\right| \leq a_{n}, j \in \mathscr{A} \mid Z\right) & \leq P\left(\left|\beta_{j}\right|-\left|\widehat{\beta}_{j}-\beta_{j}\right| \leq a_{n}, j \in \mathscr{A} \mid Z\right) \\
& \leq P\left(c_{0} a_{n}-\left|\widehat{\beta}_{j}-\beta_{j}\right| \leq a_{n}, j \in \mathscr{A} \mid Z\right) \\
& \leq P\left(\max _{j=1, \ldots, p}\left|\widehat{\beta}_{j}-\beta_{j}\right| \geq\left(c_{0}-1\right) a_{n} \mid Z\right) \\
& =O\left(n^{-s}\right)
\end{aligned}
$$

Hence, we have consistency; in fact, the convergence rate is $O\left(n^{-s}\right)$. We can also obtain similar results by thresholding $\left|\widehat{\beta}_{j}\right| / \sqrt{\sum_{i=1}^{n} 1_{i j}^{2}}$. This approach may not work if $p / n \nrightarrow 0$. If $p>n$, then $Z^{\tau} Z$ is not of full rank. There exist several other approaches for the case where $p>n$; e.g., we replace $\left(Z^{\tau} Z\right)^{-1}$ by some matrix, or use ridge regression instead of LSE.

