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Outline

I Lasso (Tibshirani, 1996)

I The Bayesian Lasso (Park and Casella, 2008 )
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Variable Selection

I Why?

I Interpretation: principle of parsimony.

I Prediction: bias and variance tradeoff.

I What if number of variables is greater than number of
observations (p > n)?

I Shrinkage!

I loss function + penalty function. Ridge regression, Lasso
(Tibshirani, 1996) and other methods.
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Lasso (Tibshirani, 1996)

I Consider linear regression model

y = Xβ + ε, ε ∼ N(0, σ2In),

where y is the centered response (
∑n

i=1 yi = 0);
X1, . . . ,Xp, columns of X , are centered to have 0 mean
and standardized to have unit L2 norm.

I The Lasso method solves the following optimization
problem

min
β
{‖y − Xβ‖2} subject to

p∑
i=1

|βi | ≤ t (1)

where t needs to be tuned by cross validation.
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Why Lasso can Set Some βi to be 0?

I The loss function ‖y − Xβ‖2 equals to the quadratic
function

(β − β̂)TXTX (β − β̂) + constant, (2)

where β̂ is the least square estimate.

I Consider the case p = 2.

I The constraint |β1|+ |β2| ≤ t is a diamond region in the
R2 space.
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Why Lasso can Set Some βi to be 0?
I Curves are the contours of (2).
I The rotated square is the constraint region.
I Lasso solution is the place where the contour first touches

the square.
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Bayesian Interpretation of Lasso

I Lasso problem can be written into:

min
β
{‖y − Xβ‖2 + λ

p∑
i=1

|βi |} (3)

I Consider the Bayesian model y ∼ N(Xβ, In) and
βi ∼ λ

2
e−λ|βi | (Laplacian prior).

I The solution of (3) can be interpreted as the posterior
mode of β in the above Bayesian model.

7 / 14



Laplacian Priors
I The Laplacian prior assigns more weight to regions near

zero than the normal prior.
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The Prostate Cancer Example
I s = t/|β̂|L1 .
I The broken line is at s = 0.44.
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The Bayesian Lasso (Park and Casella, 2008)

I Model y | X , β, σ2 ∼ N(Xβ, σ2).

I Set the conditional Laplacian prior to βi

βi | σ2 ∼ λ

2σ
e−λ|βi |/σ,

where conditioning on σ2 is important to guarantee a
unique posterior mode.
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Unconditional Prior May Lead to Bimodal

Posteriors

I Consider βi ∼ λ
2
e−λ|βi | with p = 1, n = 10, XTX = 1,

XTy = 5, yTy = 26 and λ = 3.

I The posterior distributions of (lnσ2, β) are bimodal.
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Rewrite the Laplacian Prior

I It can written into a mixture of the following hierarchical
priors (integrating out γ2

i )

βi | (σ2, γ2
i ) ∼ N(0, σ2γ2

i ) γ2
i | σ2 ∼ Exp(λ2/2). (4)

I The reason is

a

2
e−a|z| =

∫ ∞
0

1√
2πs

e−z2/(2s) a
2

2
e−a2s/2ds, a > 0
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Empirical Treatment of λ

I Estimate λ by the marginal maximum likelihood. Use the
MCEM algorithm and update the value of λ by

λ(k) =

√
2p∑p

j=1 Eλ(k−1)[γ2
i |y ]

.

I Assign a hyperprior to λ2 that places high density at the
marginal maximum likelihood estimate.
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The Full Conditional Distributions
Assign π(σ2) = 1/σ2, then we have

I β ∼ N(A−1XTy , σ2A−1), A = XTX + D−1
γ and

Dγ = diag(γ2
1 , . . . , γ

2
p).

I σ2 ∼ InvGammma(a, b) with shape parameter
a = (n + p)/2 and scale parameter
b = (y − Xβ)T (y − Xβ)/2 + βTD−1

γ β/2.

I 1/γ2
i ∼ InvGuassian(a, b) with a =

√
λ2σ2/β2

j and

b = λ2.

I The inverse Guassian distribution with parameter a and b
is of the following form:

f (x) =
b

2π
x−3/2exp

{
−b(x − a)2

2(a)2x

}
, x > 0.
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