A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables

Qi Tang (Joint work with Kam-Wah Tsui and Sijian Wang)

> Department of Statistics University of Wisconsin-Madison

> > Feb. 8, 2010

1 / 46

Outline

Introduction of Bayesian Lasso

Bayesian Lasso with Pseudo Variables

Bayesian Group Lasso with Pseudo Variables

Conclusions and Future Work

Variable Selection

- ► Why?
 - Interpretation: principle of parsimony.
 - **Prediction**: bias and variance tradeoff.
- What if number of variables is greater than number of observations (p > n)?
- Shrinkage.
 - Frequentist: loss + penalty. Examples: Ridge regression(Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996).
 - Bayesian: Likelihood × Shrinkage prior. Griffin and Brown (2005), Park and Casella (2008).

Notation

 Consider a data set with one response variable, p predictors and n observations.

• Focus on linear models: $y = X\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2 I_n)$.

▶ y is the centered response; X_is, columns of X, are standardized to have mean 0 and unit L₂ norm.

Bayesian Interpretation of Lasso

Lasso (Tibshirani 1996):

$$\min_{\beta} \{ \| \boldsymbol{y} - \boldsymbol{X}\beta \|^2 + \lambda \sum_{i=1}^{p} |\beta_i| \}$$
(1)

- Bayesian interpretation:
 - Consider the Bayesian model $y \sim N(X\beta, I_n)$ and $\beta_i \sim \frac{\lambda}{2} e^{-\lambda |\beta_i|}$ (Laplacian prior).
 - The solution of (1) can be interpreted as the posterior mode of β.

Laplacian Priors

 The Laplacian prior is more sparsity promoting than the normal prior.

The Bayesian Lasso (Park and Casella, 2008)

- Model $y \mid (X, \beta, \sigma^2) \sim N(X\beta, \sigma^2 I_n).$
- Propose the conditional Laplacian prior

$$\beta_i \mid (\sigma^2, \lambda^2) \sim \frac{\lambda}{2\sigma} e^{-\lambda |\beta_i|/\sigma},$$

Rewrite the laplacian prior into a mixture of

$$\beta_i \mid (\sigma^2, \gamma_i^2) \sim N(0, \sigma^2 \gamma_i^2) \text{ and } \gamma_i^2 \mid \sigma^2 \sim Exp(\lambda^2/2).$$
 (2)

- Empirical Bayesian treatment of λ :
 - Estimate λ by the marginal maximum likelihood $\hat{\lambda}$.
 - Assign a hyperprior that places high density at $\hat{\lambda}$.
- Estimate β_i by its posterior median.
- Limitation: heavy computation load and sparsity NOT achieved.

Outline

Introduction of Bayesian Lasso

Bayesian Lasso with Pseudo Variables

Bayesian Group Lasso with Pseudo Variables

Conclusions and Future Work

Benefit of Our Method

 Avoid the computation burden of finding the marginal maximum likelihood estimate.

• Assign a prior to λ^2 that does not depend on the data.

Achieve sparsity.

Intuition for Achieving Sparsity

- ▶ Find an unimportant pseudo variable Z as the benchmark.
- Augment the model:

$$y = \beta_z Z + X\beta + \epsilon.$$

Criteria:

- Orthogonal with y (true value of β_z is 0).
- Orthogonal with X_is (keep the data structure).

Benchmark: Intercept!

$$Z_{int} = (\underbrace{1/\sqrt{n}, \ldots, 1/\sqrt{n}}_{n})^T.$$

• Orthogonal with y and all the X_i s.

Does NOT depend on the specific observations.

Variable Selection

- Regression model: $Y = \beta_{int} Z_{int} + X\beta + \epsilon$.
- Assign hierarchical priors and obtain posterior distributions of β_{int} and β_is.
- Measure the importance of X_i by $d_i = P(|\beta_i| > |\beta_{int}| | y, X).$
 - If X_i is orthogonal with y and other variables, then $d_i = 0.5$.
 - ► The X_i will be selected as an important variable, if d_i > c, where c > 0.5.

Some Thoughts on Tuning c

1. Choose the *c* such that the false discovery rate is controlled.

2. Find the $\lim_{n\to\infty} d_i$ for the X_i that is unimportant but weakly correlated with the important variables. Use it as a guideline to choose c.

Illustration

Consider the following simulation setting (Tibshirani, 1996):

•
$$y = X\beta + \epsilon, \ \beta = (3, 1.5, 0, 0, 2, 0, 0, 0)^{T}$$
.
• $X = (X_1, \dots, X_p), \ X_i \sim N(0, 1), \ cor(X_i, X_j) = 0.5^{|i-j|}$.
• $\sigma^2 = 9$.
• $n = 20$.

Posterior Distribution of β_{int}

Z_{int} is a good benchmark for unimportant variables.

15 / 46

Changes on Posterior Distributions of β_i s

For each β_i, the estimated posterior densities are almost unaffected by adding Z_{int}.

Estimated d_i

- \hat{d}_i : proportion of (β_i, β_{int}) satisfying $|\beta_i| > |\beta_{int}|$.
- β̂_{i,PC}: posterior median of β_i by Park and Casella's Bayesian Lasso method.
- All unimportant variables have $\hat{d}_i \leq 0.61$.
- Posterior medians do NOT yield sparsity.

β_i	3	1.5	0	0	2	0	0	0
\hat{d}_i	0.96	0.64	0.56	0.54	0.78	0.61	0.57	0.52
$\hat{eta}_{i,PC}$	11.84	2.92	1.64	1.50	5.67	2.32	1.92	1.61

Variable Selection Result

- Empirically, c = 0.9 yields good sparsity.
- When c = 0.6, the result is almost the same as Lasso.

Table: Frequencies that each variable is selected.

β_i	3	1.5	0	0	2	0	0	0
<i>c</i> = 0.9	94	43	1	1	43	0	1	0
<i>c</i> = 0.7	100	87	19	26	93	9	14	14
<i>c</i> = 0.6	100	98	47	51	99	52	40	44
Lasso	100	96	47	51	99	48	43	46

Posteriors of β_i s after Adding Z_{int}

Lemma Consider regression model

$$y = X\beta + \epsilon$$
 with $\epsilon \sim N(0, \sigma^2 I_n)$

and priors

$$\beta_i \mid (\sigma^2, \lambda^2) \sim \lambda/(2\sigma) e^{-\lambda |\beta_i|/\sigma}$$

for i = 1, ..., p. Let π_1 and π_2 be the joint posteriors of $\beta_i s$ conditional on σ^2 and λ^2 before and after adding Z_{int} , respectively. Then we have,

$$\pi_1 = \pi_2.$$

Outline

Introduction of Bayesian Lasso

Bayesian Lasso with Pseudo Variables

• Bayesian Group Lasso with Pseudo Variables

Conclusions and Future Work

Motivation of Group Selection Method

- Assayed genes or proteins are naturally grouped by biological roles or biological pathways.
- It is desired to first select important pathways (group selection), and then select important genes (within group selection).
- Correlated important variables in the same group should all be selected.
 - Lasso tends to pick only a few of them.

Extra Notation

▶ g: Number of groups

k: index of groups; j: index of variables inside groups.
 For example, X_{k,j} is the jth variable in group k.

▶ p_k: number of variables in group k. Assume there is no overlap, that is, p = ∑^g_{k=1} p_k.

Current Lasso Type Methods for Group Selection

Frequentist approach

- Designed for group selection only: Yuan & Lin (2006)
- Designed for both group selection and within group selection: Ma & Huang (2007); Huang at el. (2009); Wang at el. (2009).

Bayesian approach. Raman et al.(2009).

Hierarchical Priors with Group Structure

• Model: $y = \beta_{int} Z_{int} + \sum_{k=1}^{g} \sum_{j=1}^{p_k} \beta_{k,j} X_{k,j} + \epsilon$ with $\epsilon \sim N(0, \sigma^2 I_n)$.

 $\triangleright \ \beta_{k,j} \sim N(0, \gamma_k^2 \sigma^2 / p_k).$

- Variables in the same group are shrunk simultaneously.
- γ_k^2 measures the total variations of p_k variables: $\beta_{k,1}, \ldots, \beta_{k,p_k}$.

$$\triangleright \ \gamma_k^2 \sim Exp\left(\frac{\lambda^2}{2p_k}\right).$$

► Treat β_{k,j} equally across groups. E(β_{k,j}) and V(β_{k,j}) do not depend on k or j.

 Definition of important group: groups have at least one important variable.

Selection of important groups: the kth group is selected, if max_j{P(|β_{k,j}| > |β_{int}|)} > c.

Within Group Selection: More Benchmarks

- Limitation of variable selection by β_{int}: unimportant variables in the important groups are less likely to be removed.
- ▶ Solution: find a benchmark $Z_{k,ben}$ for group with $p_k > 1$.
- The regression model becomes

$$y = \beta_{int} Z_{int} + \sum_{k=1}^{m} \left(\beta_{k,ben} Z_{k,ben} + \sum_{j=1}^{p_k} \beta_{k,j} X_{k,j} \right) + \sum_{k=m+1}^{g} \beta_{k,1} X_{k,1} + \epsilon,$$

where m is the number of groups with size greater than 1.

- ► How to make Z_{k,ben} orthogonal with other variables and benchmarks?
- Data augmentation!

An Example: Construction of Two More Benchmarks

- Data: 7 observations, two groups, $\{X_{1,1}, X_{1,2}\}$ and $\{X_{2,1}, X_{2,2}\}$.
- Z_{int} is orthogonal to y and $X_{k,j}$ s.

Data Augmentation

•
$$a_1 = 1/\sqrt{56}; b_1 = 7$$

• $a_2 = 1/\sqrt{72}; b_2 = 8$

 Z_{1,ben}, Z_{2,ben} and Z_{int} are pairwise orthogonal and also orthogonal with response and predictors.

28 / 46

Geometry Interpretation of Data Augmentation

► Adding one zero observation brings the original data to n+1 dimensional space.

29 / 46

Steps of Constructing Benchmarks

1. Add *m* zero observations to the original data, where *m* is the number of groups with $p_k > 1$.

2. Let
$$Z_{k,ben} = \{\underbrace{a_k, \dots, a_k}_{n+k-1}, -a_k b_k, \underbrace{0, \dots, 0}_{m-k}\}$$
, where
 $a_k = [(n+k-1)(n+k)]^{-1/2}$ and $b_k = n+k-1$.

3. Let
$$Z_{int} = \{\underbrace{(m+n)^{-1/2}, \ldots, (m+n)^{-1/2}}_{m+n}\}.$$

Group Selection and Within Group Selection

Regression model:

$$y = \beta_{int} Z_{int} + \sum_{k=1}^{m} \left(\beta_{k,ben} Z_{k,ben} + \sum_{j=1}^{p_k} \beta_{k,j} X_{k,j} \right) + \sum_{k=m+1}^{g} \beta_{k,1} X_{k,1} + \epsilon.$$

- Assign hierarchical priors with group structure and obtain posterior distributions of the coefficients.
- ► Group selection: the kth group is selected, if max_j{P(|β_{k,j}| > |β_{int}|)} > c.
- ▶ Within group selection: suppose group k is selected, then $X_{k,j}$ is selected if $P(|\beta_{k,j}| > |\beta_{k,ben}|) > c$.

Illustration

• Consider that
$$p = 20$$
, $g = 6$, and

- ▶ $y = X\beta + \epsilon$; $X_{k,j} \sim N(0,1)$, $cov(X_{k,i}, X_{k,j}) = 0.5^{|i-j|}$ for k = 1, 2; $cov(X_{k,j}, X_{k,l}) = 0$ for k = 3, 4 and $j \neq l$.
- Signal to noise ratio is 3.
- ▶ *n* = 100
- ▶ Let c = 0.9.

Posteriors of Variables in An Important Group

Important variables deviate further from the benchmark.

Variables within Important Group

33 / 46

Posteriors of Variables in An Unimportant Group

 All the unimportant variables are very close to the benchmark.

Variables within Unimportant Group

34 / 46

Group Selection Result

Table: The frequency each group is selected in 100 simulations.

Group	1	2	3	4	5	6
Size	6	4	5	3	1	1
Important	Υ	Υ	Υ	Ν	Ν	Υ
Selected	100	94	100	1	1	99

Within Group Selection Result

- Average false discovery rate is 0.053 (0.011); average false negative rate is 0.013 (0.003).
- Average number of selected variables is 6.13 (0.08). (True number is 6)

Table: Number of times each variable is selected in 100 simulations.

Variable	<i>X</i> _{1,1}	<i>X</i> _{1,2}	<i>X</i> _{1,3}	<i>X</i> _{1,4}	<i>X</i> _{1,5}	X _{1,6}
True Coef.	1.5	-0.8	0	0	0	1.2
Selected	100	90	4	5	5	100

A Big p Small n Example

- Let p = 200 and n = 100. There are 40 groups and each group consisted of 5 variables.
- $\beta_{1,j}$ s in group 1 : (1.2, 0.8, 0, 0, 1.6)
- ▶ $\beta_{2,j}$ s in group 2 : (1, -0.9, -1.1, -1.3, 0.8)
- $\beta_{3,j}$ s in group 3: (0.8, 0, 0, 0, 0)
- $\beta_{k,j}$ s in group 4 to 8 are all zero.
- The above 8 groups form a block and is replicated 5 times to yield the coefficients of 240 variables in total.
- There are 45 important variables and 255 unimportant variables.

Covariance Structure

The X_{k,j}s in the each block are generated from multivariate normal with mean 0 and covariance structure:

$$cov(X_{k,i}, X_{m,j}) = 1/3(0.5)^{|k-m|}$$

Variables in different blocks are uncorrelated.

Signal to noise ratio is 10.

Group Selection Result

- ▶ When c = 0.7, unimportant groups are effectively removed.
- ▶ When c = 0.7, false discovery rate is 5.1% (0.8%) and the group false negative rate is 24.0% (0.4%).
- ▶ When c = 0.6, false discovery rate is 23.9% (0.9%) and the group false negative rate is 16.1% (0.5%).

Table: Frequencies that first 8 groups are selected based on 100 simulations.

Group	1	2	3	4	5	6	7	8
Important	Υ	Υ	Υ	Ν	Ν	Ν	Ν	Ν
Selected(c = 0.7)	91	39	5	2	2	4	0	1
Selected(c = 0.6)	99	78	38	10	17	19	9	15

Within Group Selection Result

- Unimportant variables in group 1 (important group) are effectively removed when c = 0.7.
- When c = 0.6, average false discovery rate over all groups is 33% (0.8%) and average false negative rate is 12% (0.2%).
- When c = 0.7, average false discovery rate over all groups is 11% (0.8%) and average false negative rate is 17% (0.2%).

Table: Frequencies that 5 variables in the first group are selected based on 100 simulations.

(k, j)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
True $\beta_{k,j}$	1.2	0.8	0.0	0.0	1.6
Selected(c = 0.7)	68	41	14	12	77
Selected(c = 0.6)	91	73	42	40	98

40 / 46

Outline

Introduction of Bayesian Lasso

Bayesian Lasso with Pseudo Variables

Bayesian Group Lasso with Pseudo Variables

Conclusions and Future Work

Conclusions

Intercept is a good benchmark for unimportant variables.

▶ Bayesian Lasso with pseudo variables achieve the sparsity.

 Bayesian Group Lasso with pseudo variables achieve both good group selection and within group selection results.

Future Work

• Optimize the threshold.

 More numerical comparisons with other variable selection methods.

▶ Real data analysis.

Other Work

 Shao, J. & Tang, Q., Random Group Variance Estimators for Survey Data with Random Hot Deck Imputation. (Submitted)

► **Tang, Q.** & Qian, P.Z.G., Enhancing the Sample Average Approximation method with U designs. (In revision)

Acknowledgement (Alphabetic)

Jun Shao, University of Wisconsin-Madison

- Kam-Wah Tsui, University of Wisconsin-Madison
- ▶ Peter Qian, University of Wisconsin-Madison
- Sijian Wang, University of Wisconsin-Madison

Thank you!