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A unified approach

Consider both problems of model selection and sparse
recovery in the unified framework of regularized least squares
with concave penalties:

min
β∈Rp
{2−1‖X − β‖22 + Λn

p∑
j=1

ρλn(|βj |)}

Consider a family of penalty functions that give a smooth
homotopy between L0 and L1 penalties for both problems.
This family includes Lasso [Tibshirani (1996)] and has similar
properties as SCAD [Fan (1997) and MCP [Zhang (2007)]:

ρa(t) =
(a + 1)t

a + t
=

t

a + t
I{t 6= 0}+ (

a

a + t
)t
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Main achievements

CONDITION 1: ρ(t) is increasing and concave in t ∈ [0,∞),
and has a continuous derivative ρ′(t) with ρ′(0+) ∈ (0,∞). If
ρ(t) is dependent on λ, ρ′(t;λ) is increasing in λ ∈ (0,∞)
and ρ′(0+) is independent of λ.

Penalties satisfying Condition 1 and limt→∞ ρ′(t) = 0 enjoy
the unbiasedness and sparsity. However, the continuity does
not generally hold for all penalties in this class.
ρa(t) provided before satisfies Condition 1 and three properties
simultaneously, and share the same spirit as SCAD and MCP.
Under some conditions we can obtain optimal ρa(t) for the two
previous mention problems.
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Main achievements(cont)

For model selection, under some conditions, they can optain
weak oracle property, where the dimensionality can grow
exponentially with sample size.

For sparse recovery, they present a sufficient conditions that
ensures the recoverability of the sparsest solution.
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Sideline information

About authors: this Fan (Fan, Yingying) is not the famous
Fan (Fan, Jianqing) in Princeton. They are both students of
Fan, Jianqing. They follow a branch of research developed by
Fan, Jianqing:

Fan, J. and Li, R. (2001)
Fan, J. and Li, R. (2006)
Fan, J. and Peng, H. (2004) ....

This is another effort to provide penalty function, as SCAD
and MCP to overcome Lasso weakness.

This paper is a good survey of the methods so far.

About result: this is a more equipped but direct generalization
of Liu and Wu (2007)
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Model Selection and Sparse Recovery

Sparse Recovery:

min

p∑
j=1

ρ(|βj |) subject to y = Xβ, (1)

where ρ(.) is a penalty function and β = (β1, ..., βp)T . The
target penalty function is L0: ρ(t) = I (t 6= 0)

Model selection:

min
β∈Rp
{2−1‖X − β‖22 + Λn

p∑
j=1

ρλn(|βj |)} (2)

where Λn ∈ (0,∞) is scale parameter and λn ∈ [0,∞) is a
regularization parameter indexed by sample size n.
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Concavity

Maximum Concavity:

κ(ρ) = sup
t1,t2∈(0,∞),t1<t2

−ρ
′(t2)− ρ′(t1)

t2 − t1
(3)

Local Concavity at b = (b1, ..., bq)T ∈ Rq with ‖b‖0 = q:

κ(ρ;b) = lim
ε→0+

max
1≤j≤q

sup
t1,t2∈(|bj|−ε,bj|+ε),t1<t2

−ρ
′(t2)− ρ′(t1)

t2 − t1
(4)
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Penalty Family

Condition 1 provides a general family.
ρa(t) provided above satisfies Condition 1 and three
properties.

presented by Quoc Tran A UNIFIED APPROACH TO MODEL SELECTION AND SPARSE RECOVERY USING REGULARIZED LEAST SQUARES by Jinchi Lv and Yingying Fan The annals of Statistics (2009)



Goals
Backgrounds

Results

Penalty Family
Regularized least squares
Sparse Recovery
Model Selection

Regularized least squares
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Sparse Recovery
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Optimal ρa
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Conditions
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Conditions(cont)
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Weak Oracle Property
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Simulation Result for large p
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