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A unified approach

@ Consider both problems of model selection and sparse
recovery in the unified framework of regularized least squares
with concave penalties:

p
min {2711 X — B3 + A, Z o (1851)}
BERP J:]-

@ Consider a family of penalty functions that give a smooth
homotopy between Ly and L; penalties for both problems.
This family includes Lasso [Tibshirani (1996)] and has similar
properties as SCAD [Fan (1997) and MCP [Zhang (2007)]:

pa(t) = (aa—:—lt)t - aj— tl{t#0}+(aj— t

)t
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Main achievements

o CONDITION 1: p(t) is increasing and concave in t € [0,00),
and has a continuous derivative p'(t) with p/(07) € (0, 00). If
p(t) is dependent on A, p/(t; \) is increasing in A € (0, 00)
and p/(0") is independent of \.

o Penalties satisfying Condition 1 and lim;_, . p'(t) = 0 enjoy
the unbiasedness and sparsity. However, the continuity does
not generally hold for all penalties in this class.

o pa(t) provided before satisfies Condition 1 and three properties
simultaneously, and share the same spirit as SCAD and MCP.

o Under some conditions we can obtain optimal p,(t) for the two
previous mention problems.
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Main achievements(cont)

@ For model selection, under some conditions, they can optain
weak oracle property, where the dimensionality can grow
exponentially with sample size.

@ For sparse recovery, they present a sufficient conditions that
ensures the recoverability of the sparsest solution.
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Sideline information

@ About authors: this Fan (Fan, Yingying) is not the famous
Fan (Fan, Jianging) in Princeton. They are both students of
Fan, Jianging. They follow a branch of research developed by
Fan, Jianging:

e Fan, J. and Li, R. (2001)
e Fan, J. and Li, R. (2006)
e Fan, J. and Peng, H. (2004) ....

@ This is another effort to provide penalty function, as SCAD
and MCP to overcome Lasso weakness.

@ This paper is a good survey of the methods so far.

@ About result: this is a more equipped but direct generalization
of Liu and Wu (2007)
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Model Selection and Sparse Recovery

@ Sparse Recovery:

p
min Zp(]ﬁj\) subject to y = X33, (1)

j=1

where p(.) is a penalty function and 8 = (1, ..., 8p)T. The
target penalty function is Lo: p(t) = I(t # 0)
@ Model selection:

P
ﬂr’gi}%\p{2_l||x—ﬁ“%—i—/\nzpkn(mjn} (2)

j=1

where A, € (0,00) is scale parameter and A, € [0,00) is a
regularization parameter indexed by sample size n.
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Concavity

@ Maximum Concavity:

/ t ! t
t1,t2€(0,00),t1 <t h—1t

o Local Concavity at b = (by, ..., b;) ™ € R9 with ||b]lo = ¢

/ /
k(p;b) = lim max sup ACIVACY)
e—0+ 1<j<q t1,t2€(|bj|—e,bj|+¢) 1 <ta th) — t;

(4)
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Penalty Family

e Condition 1 provides a general family.
@ p,(t) provided above satisfies Condition 1 and three

properties.
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Regularized least squares

THEOREM | (Regularized least squares). Assume that p; satisfies Condi-
tion 1 and ,B e R” \urh Q= X X‘Ul nonsingular, where x € (0, 00) and

Em = supp(ﬂ ). Then ,6’ is a strict .'uc al minimizer of (1Y with k, = & if

(18) ﬁ%i;‘ =Q*'Y§’R An}‘Q*'ﬁ(ﬁgﬁn),
(19) Iz oo < £"(04),
(20) Amin(Q) > Apdk(p; E:ﬁi )

where £ = (A, A)7]XT(\ — Xﬁ ). Am,”( -) denotes the smallest eigenvalue of a
given symmetric marrix
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Sparse Recovery

THEOREM 2 (Sparse recovery). Assume that p satisfies Condition | with
«(p) € [0,00), Q = ngiox‘mo is nonsingular with My = supp(Py), and X =
(X1,....xp). Then By is a local minimizer of (1) if there exists some € €
(0, minjean, |Bo, ;1) such that

(22) max max | (xj, u)| < p'(0+),
JeMGueU,

where U, = [XngQ*I pv):ve V. and V. = Hjemio{f |t — Po,jl <€}
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Optimal p,

THEOREM 3 (Optimal p, penalty for sparse recovery). Assume that Q =
Xg;[oxp.ﬁo is nonsingular with .93?0 = supp(By) and € € (0, min e, |Bo,j|). Then
the optimal penalty pa,(e) safisfies:

(a) agpi(€) € (0, 0] and is the largest a € (0, 0] such that

(26) max max I(Xj, u)| <1 Jra*].
jeima usU,

where Ue = {Xon, Q™' p(v):v € Veyand V. = [Tjem, it :1t = Bo,jl <€}
(b) agpi(€) =00 if and only if

27 max [(x;, up)| < 1,

=)
Jemyg

where uy = Xm;DQ_] sgn(fom,)-
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Conditions

CONDITION 2. X salisfies

(34) (X3, Xam) ™ lloo < Clns

(35) X Xty (X Xemg) ™ llow < Con,

where My = supp(By). Cip € (0, 20), Cay, € [0, CP‘:;S;;O))] for some C, ¢ € (0, 1),
by = minjeon, |Bo, ;|- and || - oo denotes the matrix oo-norm.

Here and below, p is associated with regularization parameter A, defined in (38)
unless specified otherwise.

CONDITION 3. &~ N(0, o1,) for some & > 0.
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Conditions(cont)

CONDITION 4. There exists some y € (0, %] such that

p'(cobg) -
(36) [D o B g, ]C — =5,
In P’(O”“) n In )
where Din = max e, X2, Dap = maxjems [Xjll2 and X= (x1. ..., xp). Let

ity € (0, 00) satisfy lim, o1ty =00, A, < Ay, and
(37) iy = [k0(Con D1y + Dﬁn)]7llmin(xs_";iﬂx‘.mg)(l - C)f)/((]+)07|:
where
Coy Dy + Dap)itno — N1 = co)by — up Dy
(38) &n=A;I (’ ntn _;’7) n andd s In co)by fhall In
P'(0+) = Coyp’'(cobo) Ay p'(cobo: )

C,co e (0, 1) are given in Condition 2, and kg = max{x(p; b) :||b — ,80‘9]{0”00 <
(1 —co)bo}

3
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Weak Oracle Property

THEOREM 4 (Weak oracle property). Assume that p; in (4) satisfies Condi-
: e 2
tion 1, Conditions 2-4 hold and p = olupe'?y. Then there exists a regularized
least squares estimator B"" with regularization parameter i, = b, defined in (38)

such that with probability at least 1 — % pu;'e_”i/ = ﬁk" satisfies:
(a) (Sparsity) ﬁﬁ;la =0;
(b) (Lo 1058) 1Bs, = Bo.anglloe < h =0V uy),

where My = supp(ﬁ()) and h =Dy, + 2 (‘810) D2, 1C (1 — C)~lo. As a con-

sequence, | |ﬂ — Boll2 = Op(/sn~Yuy,), where s = || Bllo.
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Simulation Result for large p
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FIG. 4. Boxplots of PE and #S over 100 simulations for all methods in Simulation 3, where p =600
and the rows of X are i.i.d. copies from N (0, £o). The x-axis represents different methods. Top panel
is for PE and bottom panel is for #S.
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