Shrinkage Tuning Parameter Selection with a Diverging Number of Parameters

H. Wang, B. Li, and C. Leng

Presenter: Xu He

April 9, 2010

Unpenalized estimators

- AIC
- Loss efficient
- Selection inconsistent
- BIC
- Consistent
- Computationally expensive for an exhautive search

Penalized estimators

- LASSO (least absolute shrinkage and selection operator)
- SCAD (smoothly clipped absolute deviation)
- Consistent if tuning parameters is appropriate, fixed or diverging predictor dimension

Tuning parameters

- GCV
- Loss efficient
- Selection inconsistent, at least for SCAD
- BIC
- Consistent for SCAD under fixed predictor dimension
- Consistent for adaptive LASSO under fixed predictor dimension
- Slightly modified BIC
- Serving as a unpenalized estimator itself, consistent
- Consistent for LASSO and SCAD, for fixed and diverging predictor dimension

Notations

- Y : response by n iid observations
- X: d-dimentional predictor; standardized
- $S=\left\{j_{1}, \ldots, j_{c}\right\}:$ a candidate model
- $|S|$: size of the model S
- S_{F} : Full model
- S_{T} : True model
- $d_{0}=\left|S_{T}\right|$
- $\hat{\sigma}_{S}^{2}=S S E_{S} / n$

Modified BIC criterion

$$
B I C_{S}=\log \left(\hat{\sigma}_{S}^{2}\right)+|S| \times \frac{\log (n)}{n} \times C_{n}
$$

- $C_{n}>0, C_{n} \rightarrow \infty$
- If $C_{n}=1$, this is the traditional BIC
- Traditional BIC is consistent for fixed predictor dimension
- It is hard to prove that traditional BIC is consistent for diverging predictor dimension
- In this paper proved that Modified BIC is consistent for diverging predictor dimension

BIC consistently not overfitting

- Suppose S is an arbitrary overfitted model, i.e., $S \supset S_{t},|S|>\left|S_{t}\right|$.

$$
\begin{gathered}
B I C_{S}-B I C_{S_{T}}=\log \left(\frac{\hat{\sigma}_{S}^{2}}{\hat{\sigma}_{S_{T}}^{2}}\right)+\left(|S|-\left|S_{t}\right|\right) \times \frac{\log (n)}{n} \times C_{n} \\
\log \left(\frac{\hat{\sigma}_{S}^{2}}{\hat{\sigma}_{S_{T}}^{2}}\right)=O_{p}\left(2 \log \frac{n-|S|}{n-d_{0}}\right)=O_{p}\left(n^{-1}\right) \\
\left(|S|-\left|S_{t}\right|\right) \times \frac{\log (n)}{n} \times C_{n}>C_{n} \frac{\log (n)}{n}
\end{gathered}
$$

$$
P\left(B I C_{S}>B I C_{S_{T}}\right) \rightarrow 1
$$

$$
P\left(\min _{S \supset S_{T}} B I C_{S}>B I C_{S_{T}}\right) \rightarrow 1
$$

Technical Conditions

$$
(C 1) \max _{1 \leq j \leq d} E X_{i j}^{4}<\infty
$$

- (C2) There exists a $\kappa>0$ such that $\tau_{\min }(\Sigma) \geq \kappa$ for every $d>0$
- Σ is the covariance matrix of X_{i}
- $\tau_{\text {min }}(A)$ is the minimal eigenvalues of an arbitrary positive definite matrix A

$$
\text { (C3) } \lim \sup d / n^{q}<1
$$

for some $q<1$
$(C 4) C_{n} d \log n / n \rightarrow 0$
and

$$
\left(C_{n} d \log n / n\right) \times \lim \inf _{n \rightarrow \infty}\left\{\min _{j \in S_{t}}\left|\beta_{0, j}\right|\right\}^{-2} \rightarrow 0
$$

BIC with unpenalized estimators

Theorem (1)

Assume conditions (C1)-(C4), $C_{n} \rightarrow \infty, \epsilon$ normally distributed, then

$$
P\left(\min _{S \nsupseteq S_{t}} B I C_{S}>B I C_{S_{F}}\right) \rightarrow 1
$$

$C_{n} \rightarrow \infty$ but the rate can be arbitrarily slow. For example, $C_{n}=\log \log d$

Theorem (2)

Assume conditions (C1)-(C4), $C_{n} \rightarrow \infty, \epsilon$ normally distributed, then

$$
P\left(\min _{S \supset S_{t}} B I C_{S}>B I C_{S_{T}}\right) \rightarrow 1
$$

Modified BIC criterion is concsistent

Proof of Theorem 1

Define $\tilde{\beta}$ be the unpenalized full model estimator. By condition $\mathrm{C} 1, \mathrm{C} 2$ and C3, we know that

$$
\begin{gathered}
E\left\|\tilde{\beta}-\beta_{0}\right\|^{2}=\operatorname{trace}(\operatorname{cov}(\tilde{\beta}))=\sigma^{2} \operatorname{trace}\left(\left(X^{\top} X\right)^{-1}\right) \\
\leq d n^{-1} \sigma^{2} \tau_{\min }^{-1}\left(n^{-1} X^{T} X\right)=O_{p}(d / n)
\end{gathered}
$$

This implies that $\left\|\tilde{\beta}-\beta_{0}\right\|^{2}=O_{p}(d / n)$.
Next, for an arbitrary model S, define $\hat{\beta}^{(S)}=\arg \min _{\left\{\beta: \beta_{j}=0, \forall j \neq S\right\}}\|Y-X \beta\|^{2}$. We then have
$\min _{S \nsupseteq S_{T}}\left\|\hat{\beta}^{(S)}-\tilde{\beta}\right\|^{2} \geq \min _{S \nsupseteq S_{T}}\left\|\hat{\beta}^{(S)}-\beta_{0}\right\|^{2}-\left\|\tilde{\beta}-\beta_{0}\right\|^{2} \geq \min _{j \in S_{T}} \beta_{0, j}^{2}-O_{p}(d / n)$

Proof of Theorem 1

By C4, we know $\min _{j \in S_{T}} \beta_{0, j}^{2}-O_{p}(d / n)$ is positive with probability tending to one. Next,

$$
\min _{S \nsupseteq S_{T}}\left(B I C_{S}-B I C_{S_{F}}\right) \geq \min _{S \nsupseteq S_{T}} \log \left(\hat{\sigma}_{S}^{2} / \hat{\sigma}_{S_{F}}^{2}\right)-C_{n} d \log n / n
$$

Note that the right hand side of the above equation can be written as

$$
\begin{aligned}
& \qquad \begin{array}{l}
\min _{S \nsupseteq S_{T}} \log \left(1+\frac{\left(\hat{\beta}^{(S)}-\tilde{\beta}\right)^{T}\left(n^{-1} X^{T} X\right)\left(\hat{\beta}^{(S)}-\tilde{\beta}\right)}{\hat{\sigma}_{S_{F}}^{2}}\right)-C_{n} d \log n / n \\
\\
\geq \min _{S \nsupseteq S_{T}} \log \left(1+\frac{\hat{\tau}_{\min }\left\|\hat{\beta}^{(S)}-\tilde{\beta}\right\|^{2}}{\hat{\sigma}_{S_{F}}^{2}}\right)-C_{n} d \log n / n \\
\text { where } \hat{\tau}_{\text {min }}
\end{array}=\tau_{\text {min }}\left(n^{-1} X^{T} X\right) .
\end{aligned}
$$

Proof of Theorem 1

One can varify that $\log (1+x) \geq \min \{0.5 x, \log 2\}$ for any $x>0$. Consequently, it is further bounded by

$$
\geq \min _{S \nsupseteq S_{T}} \min \left(\log 2, \frac{\hat{\tau}_{\min }\left\|\hat{\beta}^{(S)}-\tilde{\beta}\right\|^{2}}{\hat{\sigma}_{S_{F}}^{2}}\right)-C_{n} d \log n / n
$$

By C4, we have $\log 2-C_{n} d \log n / n \geq 0$ with probability tending to one. Therefore, we only need to show that

$$
\min _{S \nsupseteq S_{T}}\left(\frac{\hat{\tau}_{\min }\left\|\hat{\beta}^{(S)}-\tilde{\beta}\right\|^{2}}{\hat{\sigma}_{S_{F}}^{2}}\right)-C_{n} d \log n / n
$$

is positive.

Proof of Theorem 1

As ϵ is Normally distributed, $\hat{\sigma}_{S_{F}}^{2} \rightarrow_{p} \sigma^{2}$. Also, $\hat{\tau}_{\text {min }} \rightarrow \tau_{\text {min }}=\tau_{\text {min }}(\Sigma)$ with probability tending to one.

Therefore, it is further bounded by

$$
\begin{gathered}
\geq \frac{\tau_{\min }}{\sigma^{2}}\left(\min _{j \in S_{T}} \beta_{0, j}^{2}-O_{p}(d / n)\right)\left(1+o_{p}(1)\right)-C_{n} d \log n / n \\
=C_{n} d \log n / n \times \frac{\tau_{\min }}{\sigma^{2}}\left(C_{n} d \log n / n \times \min _{j \in S_{T}}\right)\left(1+o_{p}(1)\right)-C_{n} d \log n / n
\end{gathered}
$$

which is guaranteed to be positive asymptotically under C4.
Therefore, with probability tending to one,

$$
\min _{S \nsupseteq S_{T}} \log \left(1+\frac{\hat{\tau}_{\min }\left\|\hat{\beta}^{(S)}-\tilde{\beta}\right\|^{2}}{\hat{\sigma}_{S_{F}}^{2}}\right)-C_{n} d \log n / n
$$

is positive. Therefore asymptotically

$$
\min _{S \nsupseteq s_{T}}\left(B I C_{S}-B I C_{S_{F}}\right)>0 .
$$

BIC with penalized estimators

- Shrinkage estimators:

$$
Q_{\lambda}(\beta)=n^{-1}\|Y-X \beta\|^{2}+\sum_{j=1}^{d} p_{\lambda, j}\left(\left|\beta_{j}\right|\right)
$$

- $\dot{p}_{\lambda, j}()$ is first order derivatiove of $p_{\lambda, j}()$
- resulting estimator by $\hat{\beta}_{\lambda}$

BIC with penalized estimators

$$
B I C_{\lambda}=\log \left(\hat{\sigma}_{\lambda}^{2}\right)+\left|S_{\lambda}\right| \frac{\log n}{n} C_{n}
$$

- $\hat{\sigma}_{\lambda}^{2}=S S E_{\lambda} / n$
- S_{λ} is the model identified by $\hat{\beta}_{\lambda}$
- $S S E_{S_{\lambda}}$ is the residual sum squares with the unpenalized estimator based on S_{λ}
- Use the optimal tuning parameter $\hat{\lambda}=\arg \min _{\lambda} B / C_{\lambda}$, which gives the model $S_{\hat{\lambda}}$

BIC with penalized estimators

- Assume $\hat{\beta}_{\lambda}=\left(\hat{\beta}_{\lambda, a}, \hat{\beta}_{\lambda, b}\right)$ where $\hat{\beta}_{\lambda, a}$ for nonzero coefficients and $\hat{\beta}_{\lambda, b}$ for zero coefficients
- There exist a tuning parameter $\lambda_{n} \rightarrow 0$ such that with probability tending to one $\hat{\beta}_{\lambda, b}=0$ and $\hat{\beta}_{\lambda, a}$ efficient
- Asymptotically we must have $\hat{\beta}_{\lambda_{n}, a}$ being the minimizer of

$$
Q_{\lambda}^{*}\left(\beta_{S_{T}}\right)=n^{-1}\left\|Y-X_{S_{T}} \beta_{S_{T}}\right\|^{2}+\sum_{j=1}^{d_{0}} p_{\lambda_{n}, j}\left(\left|\beta_{j}\right|\right)
$$

BIC with penalized estimators

- With probability tending to one, we must have

$$
\begin{aligned}
\hat{\beta}_{\lambda_{n}, a} & =\left\{n^{-1} X_{S_{T}}^{T} X_{S_{T}}\right\}^{-1}\left\{n^{-1} X_{S_{T}}^{T} Y+1 / 2 \operatorname{sgn}\left(\hat{\beta}_{\lambda_{n}, a}\right) \dot{p}_{\lambda}\left(\left|\hat{\beta}_{\lambda_{n}, a}\right|\right)\right\} \\
& =\hat{\beta}_{S_{T}}+1 / 2\left\{n^{-1} X_{S_{T}}^{T} X_{S_{T}}\right\}^{-1} \operatorname{sgn}\left(\hat{\beta}_{\lambda_{n}, a}\right) \dot{p}_{\lambda}\left(\left|\hat{\beta}_{\lambda_{n}, a}\right|\right)
\end{aligned}
$$

- $\hat{\beta}_{S_{T}}=\left\{n^{-1} X_{S_{T}}^{T} X_{S_{T}}\right\}^{-1}\left\{n^{-1} X_{S_{T}}^{T} Y\right\}$
- $\dot{p}_{\lambda}\left(\left|\hat{\beta}_{\lambda_{n}, a}\right|\right)=\left\{\dot{p}_{\lambda}\left(\left|\hat{\beta}_{\lambda_{n}, j}\right|\right) \mid j=1, \ldots, d_{0}\right\}$
- $\operatorname{sgn}\left(\hat{\beta}_{\lambda_{n}, a}\right)$ is a diagonal matrix with the j th diagonal component given by $\operatorname{sgn}\left(\hat{\beta}_{\lambda_{n}, j}\right)$.

BIC with penalized estimators

- We need to show that $B I C_{\lambda_{n}}$ and $B I C_{S_{\lambda_{n}}}$ are sufficiently similar
- It suffices to show that

$$
S S E_{\lambda_{n}}=S S E_{S_{\lambda_{n}}}+o_{p}\left(\log _{n}\right)
$$

- It suffices to show that

$$
\left\|\dot{p}_{\lambda}\left(\hat{\beta}_{\lambda_{n}, a}\right)\right\|^{2}=o_{p}(\log n / n)
$$

which is reasonable

Theorem (3)

Assume conditions (C1)-(C4), $C_{n} \rightarrow \infty, \epsilon$ normally distributed, $\left\|\dot{p}_{\lambda}\left(\hat{\beta}_{\lambda_{n}, a}\right)\right\|^{2}=o_{p}(\log n / n)$ then

$$
P\left(S_{\hat{\lambda}}=S_{T}\right) \rightarrow 1
$$

Proof of Theorem 3

Define $\Omega_{-}=\left\{\lambda>0: S_{\lambda} \nsupseteq S_{T}\right\}, \Omega_{0}=\left\{\lambda>0: S_{\lambda}=S_{T}\right\}$, and $\Omega_{+}=\left\{\lambda>0: S_{\lambda} \supset S_{T}\right\}$.

Case 1 , with underfitted model, i.e., $\lambda \in \Omega_{-}$.
Firstly, we have $B I C_{\lambda_{n}}=B I C_{S_{\lambda_{n}}}+o_{p}(\log n / n)$. Then with proability tending to 1 , we have

$$
\begin{gathered}
\inf _{\lambda \in \Omega_{-}} B I C_{\lambda}-B I C_{\lambda_{n}} \geq \inf _{\lambda \in \Omega_{-}} B I C_{S_{\lambda}}-B I C_{S_{\lambda_{n}}}+o_{p}(\log n / n) \\
\geq \min _{S \nsupseteq S_{T}} B I C_{S_{\lambda}}-B I C_{S_{\lambda_{n}}}+o_{p}(\log n / n)
\end{gathered}
$$

By Theorem 1 and Theorem 2,

$$
\left.P\left(\inf _{\lambda \in \Omega_{-}} B I C_{\lambda}-B I C_{\lambda_{n}}\right)>0\right) \rightarrow 1
$$

Proof of Theorem 3

Case 2 , with voerfitted model, i.e., $\lambda \in \Omega_{+}$.
Similarly,

$$
\inf _{\lambda \in \Omega_{+}} B I C_{\lambda}-B I C_{\lambda_{n}} \geq \min _{S \supset S_{T}} B I C_{S_{\lambda}}-B I C_{S_{\lambda_{n}}}+o_{p}(\log n / n)
$$

We can find a positive number η such that $\min _{S_{S} S_{T}} B I C_{S_{\lambda}}-B I C_{S_{\lambda_{n}}}>\eta \log n / n$ with probability tending to 1 . Similarly,

$$
\left.P\left(\inf _{\lambda \in \Omega_{+}} B I C_{\lambda}-B I C_{\lambda_{n}}\right)>0\right) \rightarrow 1
$$

Numerical studies

- Example 1: $d=\left[4 n^{1 / 4}\right]-5, d_{0}=5$
- Example 2: $d=\left[7 n^{1 / 4}\right], d_{0}=[d / 3]$
- Median of the relative model error (MRME)
- Average model size (MS)
- Percentage of the correctly identified true models (CM)

