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Goals of high dimensional problems

1 Find models with good prediction error.

2 Estimate the true ‘sparsity pattern’, the set of covariates with
nonzero regression coefficients.

This paper will deal with the second goal and builds on ideas in
Meinshausen and Yu (2008) and Meinshausen (2007).
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Regression Model

Let (X1,Y1), . . . , (Xn,Yn) be iid observations from the regression
model

Yi = XT
i β + ǫi

where ǫi ∼ N(0, σ2), Xi = (Xi1, . . . ,Xip)
T ∈ Rp and

p = pn > n.Let
D = {j : βj 6= 0}

be the set of the covariates with nonzero regression coefficients.
Assume that |D| = s. A variable selection procedure D̂n maps the
data into subsets of {1, . . . , p}.



Introduction Error Control Loss and Cross-Validation Multi-Stage Methods

Goal of the paper

The main goal of this paper is to derive a procedure D̂n such that

lim sup
n→∞

P(D̂n ⊂ D) ≥ 1− α,

that is, the asymptotic type I error is no more than α.
The procedure involves three stages

1 Fit a suite of candidate models, each model depending on a
tuning parameter λ

S = {Ŝn(λ) : λ ∈ Λ}.

2 Select one of those models Ŝn(λ) using cross-validation to
select λ̂.

3 Eliminate some variables by hypothesis tesing, to get D̂n.
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Methods in Stage I

1 LASSO
Ŝn(λ) = {j : β̃j(λ) 6= 0},

where β̃j(λ) is the lasso estimator, the value of β that
minimizes

n
∑

i=1

(Yi − XT
i β)

2 + λ

p
∑

j=1

|βj |.

2 Take Ŝn(λ) to be the set of variables chosen by forward
stepwise regression after λ steps.

3 Marginal regression taking

Ŝn = {j : |µ̂j | > λ}

where µ̂j is the marginal regression coefficient from regressing
Y on X.j .
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Notation

Define the loss of any estimator β̂ by

L(β̂) =
1

n
(β̂ − β)TXTX (β̂ − β) = (β̂ − β)T Σ̂n(β̂ − β)

where Σ̂n = n−1XTX . For convenience, when β̂ = β̂(λ)
depends on λ we write L(λ) instead of L(β̂(λ)).

Let XM be the design matrix with columns (X·j : j ∈ M) and

let β̂M = (XT
MXM)−1XT

MY denote the least squares estimator.
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Notation (Continue)

If C is any square matrix, let φ(C ) and Φ(C ) denote the
smallest and largest eigenvalues of C . Also if k is an integer
define

φn(k) = min
M:|M|=k

φ

(

1

n
XT
MXM

)

Φn(k) = max
M:|M|=k

Φ

(

1

n
XT
MXM

)

.

Define the type I error rate q(D̂n) = P(D̂n ∩ Dc 6= ∅) and the
asymptotic error rate lim supn→∞ q(D̂n). Also define the
power π(D̂n) = P(D ⊂ D̂n).
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Assumptions

The following assumptions will be used throughout the talk:

A1 Yi = XT
i β + ǫi where ǫ ∼ N(0, σ2), for i = 1, . . . , n.

A2 The dimension pn of X satisfies pn →∞ and pn ≤ c1e
nc2 for

some c1 > 0 and 0 ≤ c2 < 1.

A3 s = |{j : βj 6= 0}| = O(1) and ψ = min{|βj | : βj 6= 0} > 0.

A4 There exist positive constants C0,C1 and κ such that
P(lim supn→∞Φn(n) ≤ C0) = 1 and
P(lim infn→∞ φn(C1 log n) ≥ κ) = 1. Also, P(φn(n) > 0) = 1
for all n.

A5 The covariates are standardized: E(Xij) = 0 and E(X 2
ij ) = 1.

Also, there exists 0 < B <∞ such that P(|Xjk | ≤ B) = 1.
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Error Control

The error rate is difficult to control for three reasons

1 Correlation of covariates.
An example where π(D̂n) ≈ α if q(D̂n) ≤ α

2 High-dimensionality of the covariates.
restrictions on the number s of nonzero βj ’s.

3 Unfaithfullness (cancellations of correlations).
Let µ̂j denote the regression coefficient from regressing Y on
Xj . Fix j < s and note that

µj = E(µ̂j) = βj +
∑

k 6=j ,1≤k≤s

βkρkj

If
∑

k 6=j ,1≤k≤s βkρkj ≈ −βj , then µj ≈ 0 no matter how large
βj is.
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Loss

Now we record some properties of the loss function. The first part
of the following lemma is essentially Lemma 3 of Meinshausen and
Yu (2008).

Lemma 3.1

LetM+
m = {M ⊂ S : |M| ≤ m,D ⊂ M}. Then

P

(

sup
M∈M+

m

L(β̂M) ≤ 4m log p

nφn(m)

)

→ 1. (1)

LetM−
m = {M ⊂ S : |M| ≤ m,D * M}. Then

P

(

inf
M∈M−

m

L(β̂M) ≥ ψ2φn(m + s)

)

→ 1. (2)
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Cross-Validation

The data are split into groups D1,D2,D3 for each stage of size n.
Construct β̂(λ) from D1 and let

L̂(λ) =
1

n

∑

Xi∈D2

(Yi − XT
i β̂(λ))

2.

We would like L̂(λ) to order the models the same way as the true
loss L(λ). This requires that, asymptotically, L̂(λ)− L(λ) ≈ δn
where δn does not involve λ.



Introduction Error Control Loss and Cross-Validation Multi-Stage Methods

Theorem 3.2

Suppose that maxλ∈Λn
|Ŝn(λ)| ≤ kn. Then there exists a sequence

of random variables δn = OP(1) that do not depend on λ or X ,
such that with probability tending to 1,

sup
λ∈Λn

|L(λ)− L̂(λ)− δn| = OP

(

kn

n1−c2

)

+ OP

(

kn√
n

)
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Multi-Stage Procedure

The multi-stage methods use the following steps. As mentioned
earlier, the data is randomly split into three parts D1,D2,D3 of
equal size.

1 Use D1 to find Ŝn(λ) for each λ

2 Use D2 to find λ̂ by cross-validation and let Ŝn = Ŝn(λ̂)

3 Use D3 to find the least square estimate β̂ for the model Ŝn.
Let

D̂n = {j ∈ Ŝn : |Tj | > cn}
where Tj is the usual t-statistic, cn = zα/2m and m = |Ŝn|.
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Theorems

Let kn = A log n where A > 0 is a positive constant.

Theorem 4.1

Assume that (A1)-(A5) hold, let Λn = {λ : |Ŝn(λ)| ≤ kn}. Then
1 The true loss overfits: P(D ⊂ Ŝn(λ∗))→ 1 where
λ∗ = argmin

λ∈Λn

L̂(λ).

2 Cross-Validation also overfits: P(D ⊂ Ŝn(λ̂))→ 1 where
λ̂ = argmin

λ∈Λn

L̂(λ).

3 Type I error is controlled: lim supn→∞ P(Dc ∩ D̂n 6= ∅) ≤ α.
If let α = αn → 0 then D̂n is consistent for variable selection.
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Theorems (cont’d)

Theorem 4.2

Assume that (A1)-(A5) hold. Let αn → 0 and
√
nαn →∞. Then

the multi-stage lasso is consistent,

P(D̂n = D)→ 1 (3)

Theorem 4.3

Assume that (A1)-(A5) hold. Let α be fixed. Then (D̂n, Ŝn) forms
a confidence sandwich:

lim inf
n→∞

P(D̂n ⊂ D ⊂ Ŝn) ≥ 1− α

Remark: This confidence sandwich is expected to be conservative
in the sense that the coverage can be much larger than 1− α.
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Stepwise Regression

The version of stepwise regression considered is as follows. Let
kn = A log n for some A > 0.

1 Initialize: Res = Y , λ = 0, Ŷ = 0 and Ŝn(λ) = 0.

2 Let λ← λ+ 1. Compute µ̂j = n−1〈Xj ,Res〉 for j = 1, . . . , p.

3 Let J = argmax
j

|µ̂j |. Set Ŝn(λ) = {Ŝn(λ− 1), J}. Set

Ŷ = Xλβ̂(λ) where β̂λ = (XT
λ Xλ)

−1XT
λ Y and let

Res = Y − Ŷ .

4 If λ = kn stop. Otherwise, go to step 2.

Theorem 4.5

With Ŝn(λ) defined as above, the statements of Theorems 4.1, 4.2,
4.3 hold.
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Marginal Regression

A version appears in a recent paper by Fan and LV(2008). Let
Ŝn(λ) = {j : |µ̂j | ≥ λ} where µ̂j = n−1〈Y ,X.j〉. Let µj = E(µ̂j)
and let µ(j) denote the value of µ ordered by their absolute values:

|µ(1)| ≥ |µ(2)| ≥ · · ·

Theorem 4.6

Let kn →∞ with kn = o(
√
n). Let Λn = {λ : |Ŝn(λ)| ≤ kn}.

Assume that
min
j∈D
|µj | > |µ(kn)|.

Then, the statements of Theorems 4.1, 4.2, 4.3 hold.
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Comments on the assumption in Theorem 4.6:

The assumption on µj ’s limits the degree of unfaithfulness.

Fan and Lv make similar assumptions. They assume that
there is a C > 0 such that |µj | ≥ C |βj | for all j , which also
rules out unfaithfulness.

They also assume Z = Σ−1/2X has a spherically symmetric
distribution. Under this assumption, they deduce that the µj ’s
outside D cannot dominate the µj ’s within D, which is the
same assumption as in Theorem 4.3.

Any method that start from marginal regression must take
some sort of faithfulness assumptions to succeed.
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Let us now discuss a few modifications of the basic method. First,
consider splitting the data only into two groups D1 and D2. The
do these steps:

1 Find Ŝn(λ) for λ ∈ Λ, where |Ŝn(λ)| ≤ kn for each λ ∈ Λ
using D1.

2 Find λ̂ by cross-validation and let Ŝn = Ŝn(λ̂) using D2.
3 Find the least squares estimate β̂

Ŝn
using D2. Let

D̂n = {j ∈ Ŝn : |Tj | > cn} where Tj is the usual t-statistic.

Theorem 4.7

Choosing

cn =
log log n

√

2kn log(2pn)

α

controls asymptotic type I error.

The critical value cn is hopelessly large. This part is mainly to
show the value of extra data-splitting step.


	Introduction
	Goal of the Paper
	Notation and Assumptions

	Error Control
	

	Loss and Cross-Validation
	

	Multi-Stage Methods
	
	The Lasso
	Stepwise Regression
	Marginal Regression
	Modifications


