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Basic Setup

Consider Y ∼ N(µ, In/φ), where Y = (y1, y2, . . . , yn)T ,
µ = (µ1, µ2, . . . , µn)T , In is the n × n identity matrix, and φ
is the precision parameter

Potential centered predictors X1, . . . ,Xp

Only consider the case n ≥ p + 2

Index the model space by γp×1:

γj =

{
0 if Xj is excluded
1 if Xj is included

Under model Mγ : µ = 1nα + Xγβγ
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Key Idea of Bayesian Variable Selection

Put priors on the unknowns θγ = (α, βγ , φ) ∈ Θγ

Update prior probabilities of models p(Mγ) to

p(Mγ |Y ) =
p(Mγ)p(Y |Mγ)∑
γ p(Mγ)p(Y |Mγ)

where p(Y |Mγ) =
∫

Θγ
p(Y |θγ ,Mγ)p(θγ |Mγ)dθγ , and

p(Mγ) could be 1/2p

Choose the model with greatest p(Mγ |Y )
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The Goal of the Paper

Y |α, βγ , φ,Mγ ∼ N(1nα + Xγβγ , In/φ)

p(α, φ|Mγ) = 1
φ

βγ |φ,Mγ ∼ N(0, g
φ(X T

γ Xγ)−1) (Zellner’s g prior)

Several previous work involves choices of calibration of g

g acts as a dimensionality penalty

The goal of the paper is to propose a new family of priors for
g, the hyper-g prior family, to guarantee:

robustness of mis-specification of g
a closed-form marginal likelihoods
computational efficiency
desirable consistency properties in model selection
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Null-Based Bayes Factors (1)

The bayes factor of comparing each of Mγ to a base model
Mb is

BF[Mγ :Mb] =
p(Y |Mγ)

p(Y |Mb)

To compare two models Mγ and Mγ′ ,

BF[Mγ :Mγ′ ] =
BF[Mγ :Mb]

BF[Mγ′ :Mb]

The posterior probability could be written as

p(Mγ |Y ) =
p(Mγ)BF[Mγ :Mb]∑
γ′ p(Mγ′)BF[Mγ′ :Mb]
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Null-Based Bayes Factors (2)

Mb =MN

H0 : βγ = 0 vs. H0 : βγ 6= 0

Recall p(α, φ|Mγ) = 1
φ and βγ |φ,Mγ ∼ N(0, g

φ(X T
γ Xγ)−1)

Closed form of marginal likelihood:

p(Y |Mγ , g) = Γ((n−1)/2)√
(π)(n−1)

√
n
‖Y −Ȳ ‖−(n−1)× (1+g)(n−1−pγ )/2

[1+g(1−R2
γ)]−(n−1)/2

The null model p(Y |MN) corresponds to R2
γ = 0 and pγ = 0

BF[Mγ :MN ] = (1 + g)(n−1−pγ)/2[1 + g(1− R2
γ )]−(n−1)/2
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Paradoxes of fixed g Priors – Bartlett’s Paradox

When g →∞ while n and pγ are fixed:

BF[Mγ :MN ] = (1 + g)(n−1−pγ)/2[1 + g(1− R2
γ )]−(n−1)/2

→ 0

This means, regardless of the information in the data, the Bayes
factor always favors the null model, which is due to the large
spread of the prior induced by the noninformative choice of g
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Paradoxes of fixed g Priors – Information Paradox

Suppose ‖β̂γ‖2 →∞ so that R2
γ → 1 while n and pγ are fixed

Expect BF[Mγ :MN ]→∞
However, as R2

γ → 1,

BF[Mγ :MN ] = (1 + g)(n−1−pγ)/2[1 + g(1− R2
γ )]−(n−1)/2

→ (1 + g)(n−pγ−1)/2

which is a constant!



Introduction Zellner’s g priors Mixture of g priors Consistency Discussion

Choices of g

Unit information prior: g = n (BF behaves like BIC)

Risk inflation criterion: g = p2 (minimax perspective)

Benchmark prior : g = max(n, p2) (BRIC)

Local empirical Bayes : the MLE of p(Y |Mγ , g) with the
nonnegative constraint. ĝEBL

γ = max(Fγ − 1, 0), where

Fγ =
R2
γ/pγ

(1−R2
γ)/(n−1−pγ)

.

Global empirical Bayes:

ĝEBL = argmaxg>0

∑
γ p(Mγ) (1+g)(n−1−pγ )/2

[1+g(1−R2
γ)](n−1)/2
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Choices of g and Information Paradox

For fixed n and p,

The Unit information prior, Risk inflation criterion and the
Benchmark prior do not solve the information paradox
The two EB approaches do have the desirable behavior

Theorem 1: In the setting of the information paradox with
fixed n, p < n and R2

γ → 1, for both global and local EB
estimate of g ,

BF[Mγ :MN ] = (1 + g)(n−1−pγ)/2[1 + g(1− R2
γ )]−(n−1)/2

→ ∞

Proof: by direct checking
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Desirable π(g)

g ∼ π(g)

The Bayes factor BF[Mγ :MN ] =∫∞
0 (1 + g)(n−1−pγ)/2[1 + g(1− R2

γ )]−(n−1)/2π(g)dg

The posterior mean µ under Mγ 6=MN :
E[µ|µγ ,Y ] = 1nα̂ + E

[ g
1+g |Mγ ,Y

]
Xγβ̂γ , where α̂ and β̂ are

least square estimates of α and β, and E
[ g

1+g is regarded as a
shrinkage factor

The optimal Bayes estimate of µ under the squared error loss:
E[µ|Y ] = 1nα̂ +

∑
γ:Mγ 6=MN

p(Mγ |bY )E
[ g

1+g |Mγ ,Y
]
Xγβ̂γ

g appears everywhere: BF, posterior mean and prediction

Want priors leading to tractable computation for these
quantities, and consistent model selection and risk properties
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Zellner-Siow Cauchy Priors

Jeffreys (1961) rejected normal priors essentially for reasons
related to BF paradoxes

Cauchy prior is the simplest prior to satisfy basic consistency
requirement for hypothesis testing

The Zellner-Siow priors can be represented as a mixture of g
priors with an Inv-Gamma(1/2, n/2):

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2e−n/(2g)

The corresponding integrals are are approximated by Laplace
approximation

As the model dimensionality increases, the accuracy of the
approximation decreases
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Hyper-g Priors (1)

π(g) = a−2
2 (1 + g)−a/2, g > 0

Only consider the case a > 2 when π(g) is a proper prior

This prior leads to the shrinkage factor g
1+g ∼ Beta(1, a

2 − 1)

Value of a ≥ 4 tends to put more mass on shrinkage values
near 0, which is undesirable, hence only consider 2 < a ≤ 4

When a = 4, g
1+g has a uniform distribution

When a = 3, most of the mass is near 1
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Hyper-g Priors (2)

Main advantage of hyper-g prior : leads to closed form of
posterior distribution of g in terms of Gaussian
hypergeometric function

The posterior distribution of g:

p(g |Y ,Mγ) =
pγ + a− 2

22F1((n − 1)/2, 1; (pγ + a)/2; R2
γ )

× (1 + g)(n−1−pγ−a)/2[1 + (1− R2
γ )g ]−(n−1)/2

2F1(a, b; c ; z) is convergent for real |z | < 1 with c > b > 0
and for z = ±1 only if c > a + b and b > 0

To evaluate Gaussian hypergeometric function, numerical
overflow is problematic for moderate to large n and large R2

γ .
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Hyper-g Priors (3)

Gaussian hypergeometric function appears in many quantities of
interest:

BF[Mγ :MN ] = a−2
pγ+a−2 2F1(n−1

2 , 1;
pγ+a

2 ; R2
γ )

E[g |Mγ ,Y] = 2
pγ+a−4

2F1((n−1)/2,2;(pγ+a)/2;R2
γ)

2F1((n−1)/2,1;(pγ+a)/2;R2
γ)

E[ g
1+g |Mγ ,Y] = 2

pγ+a
2F1((n−1)/2,2;(pγ+a)/2+1;R2

γ)

2F1((n−1)/2,1;(pγ+a)/2;R2
γ)
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Overview

The following three aspects of consistency are considered:

1) the ”information paradox” where R2
γ → 1

2) the asymptotic consistency of model posterior probabilities as
n→∞

3) the asymptotic consistency for prediction

The above are studied under the assumption of the true model
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Consistency–Information Paradox (1)

Theorem 2: To resolve the information paradox for all n and
p < n, it suffices to have∫ ∞

0
(1 + g)(n−1−pγ)/2π(g)dg =∞ ∀pγ ≤ p

In the case of minimal sample size (n = p + 2), it suffices to have∫∞
0 (1 + g)1/2π(g)dg =∞.

Proof: The Bayes factor BF[Mγ :MN ] is monotonic increasing
function of R2

γ . By monotone convergence theorem, it goes to∫
(1 + g)(n−1−pγ)/2π(g)dg as R2

γ → 1. Hence the non-integrability

of (1 + g)(n−1−pγ)/2π(g) is sufficient and necessary condition for
resolving the ”information paradox”.
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Consistency–Information Paradox (2)

Zellner-Siow prior satisfies the condition

When a ≤ n− pγ + 1, the hyper-g prior satisfies the condition

Fixed g prior corresponds to the degenerate prior that is a
point mass at a selected value of g, so no fixed choice of g
solves the paradox
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Consistency–Model Selection Consistency (1)

Want: plimnp(Mγ |Y ) = 1 whenMγ is the true model,
where the probability measure is the sampling distribution
under the assumption of true model

Equivalently, plimnBF[Mγ′ :Mγ ] = 0 for all Mγ′ 6=Mγ

Assumption: for Mγ′ that doesn’t contain Mγ ,

limn→∞
βT
γ X T

γ (I − Pγ′)Xγβγ
n

= bγ′ ∈ (0,∞) (a)

where Pγ′ is the projection matrix onto the span of Xγ′

Fernandez et al. (2001) have shown the consistency for BRIC
and BIC under the assumption
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Consistency–Model Selection Consistency (2)

Theorem 3: Assume assumption (a) holds. When the true model is
not the null model (Mγ 6=MN), posterior probabilities under
empirical Bayes, Zellner-Siow priors, and hyper-g priors are
consistent for model selection; when Mγ =MN , consistency still
holds true for the Zellner-Siow prior, but does not hold for the
hyper-g or local and global empirical Bayes.

Z-S prior on g depends on n, while EB or hyper-g priors don’t

For EB and hyper-g priors, under MN , the null model is still
the model with highest posterior probability, although it is
bounded away from 1.

Could consider EB and hyper-g priors as consistent in a
weaker sense (under a 0-1 loss)

The hyper-g/n prior is proposed to solve the inconsistency
problem under MN : π(g) = a−2

2n (1 + g
n )−a/2
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Consistency–Model Selection Consistency (3 (proof))

The following preliminary results from Fernandez et al. (2001) are
cited without proof. Under the assumed true model Mγ :

1) If Mγ is nested within or equal to a model Mγ′ , then

plimn→∞
RSSγ′

n
=

1

φ
(R1)

2) For any model Mγ′ that does not contain Mγ , under the
assumption (a),

plimn→∞
RSSγ′

n
=

1

φ+ bγ′
(R2)

where RSSγ = (1− R2
γ )‖Y − Ȳ ‖2 is the residual sum of squares
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Consistency–Model Selection Consistency (4 (proof))

Firstly consider the consistency result for local EB estimate when
Mγ 6=MN . Note R2

γ → c ∈ (0, 1) when Mγ ∩Mγ′ 6= ∅, we have:

ĝEBL
γ′ =

[ R2
γ′/pγ′

(1− R2
γ′)/(n − 1− pγ′)

]
(1 + op(1))

BFEBL[Mγ′ :MN ] ∼P
1

(1− R2
γ′)

(n−1−pγ′ )/2

(n − 1− pγ′)
(n−1−pγ′ )/2

(n − 1)(n−1)/2

BFEBL[Mγ′ :Mγ ] ∼p
1

n(Pγ′−pγ)/2

( RSSγ/n

RSSγ′/n

)n/2
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Consistency–Model Selection Consistency (5 (proof))

a) Mγ ∩Mγ′ 6= ∅ and Mγ 6⊆ Mγ′ . Apply (R1) and (a),

plimn→∞
( RSSγ/n

RSSγ′/n

)
= limn→∞

( 1/φ

1/(φ+ bγ′)

)n/2 →p 0

hence BFEBL[Mγ′ :Mγ ]→p 0

b) Mγ ⊆Mγ′ . Since

(RSSγ/RSSγ′)
n/2 →d exp(χ2

pγ′−pγ/2) (Fernandez 2001)

together with the fact that 1/n(pγ′−pγ)/2 → 0, we have
BFEBL[Mγ′ :Mγ ]→p 0.
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Consistency–Model Selection Consistency (6 (proof))

c) Mγ ∩Mγ′ = ∅. In this case nR2
γ′ →d χ

2
pγ′
/(1 + φb′γ). Since

BFEBL[Mγ′ :MN ] =
(1 + g)(n−1−pγ′ )/2

[1 + (1− R2
γ′)g ](n−1)/2

≤ (1− R2
γ′)
−(n−1)/2

we have BFEBL[Mγ′ :Mγ ] = Op(1). On the other hand,
since

BFEBL[Mγ :MN ] ∼P (n − 1)−pγ/2(1− R2
γ )−n/2

where the second term goes to ∞ exponentially fast,
BFEBL[Mγ′ :Mγ ]→p 0
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Consistency–Model Selection Consistency (7 (proof))

Similarly we can get the consistency for global EB, Z-S prior,
hyper-g prior and hyper-g/n priors, when Mγ 6=MN

When Mγ =MN , only the Z-S prior is still consistent. The
proof is similar with the case Mγ 6=MN . The only difference
is that R2

γ′ → 0 if Mγ′ 6=MN
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Consistency–Prediction Consistency (1)

The optimal point estimator under the squared error loss is

Ŷ ?
n = α̂ +

∑
γ

x?γ
>β̂γp(Mγ |Y )

∫ ∞
0

g

1 + g
π(g |Mγ ,Y )dg

Ŷ ?
n is consistent under prediction if

plimnŶ ?
n = EY ? = α + x?γ

>βγ
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Consistency–Prediction Consistency (2)

Theorem 4. Ŷ ?
n is consistent under empirical Bayes, the hyper-g,

hyper-g/n and Zellner-Siow priors are consistent in prediction.

When Mγ =MN , ‖β̂γ‖ → 0 by the consistency of LSE.
Hence the prediction consistency of Ŷ ?

n follows

When Mγ 6=MN , π(Mγ |Y )→ 1 by Theorem 3. Using the
consistency of LSE, it suffices to show

plimn

∫ ∞
0

g

1 + g
π(g |Mγ ,Y )dg = 1

The result follows by applying Laplace approximation
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Discussion

Advantage of mixture g priors

Solved some paradox issues
Perform as well as other default choices

Limitation

Numerical problem for large n and large R2
γ

Zellner-Siow priors require pγ < n − 2, and hyper-g prior
requires pγ < n − 3− a

Future work

Consider using other priors on P(Mγ)
Look into the case when Xγ is not of full rank
Large p small n problem
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