On Model Selection Consistency Of Lasso

Peng Zhao, Bin Yu Department of Statistics University of California, Berkeley

Jie Zhang

UW-Madison

February 12, 2010

Jie Zhang (UW-Madison)

On Model Selection Consistency Of Lasso

February 12, 2010 1 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Review

- LASSO
- Consistency

Important Definitions

- Sign Consistency
- Irrepresentable Conditions

B Results

- Proposition 1
- In the setting of small p and q
- In the setting of large p and q
- Sufficient Conditions for S.I.R.

Proofs

Outline

Review

- LASSO
- Consistency

- Sign Consistency

- ۲
- ۲
- ۲

< 6 b

LASSO – Definition

Assume the following linear regression model:

$$Y_n = X_n \beta^n + \epsilon_n$$

 Y_n is an $n \times 1$ response; $X_n = (X_1^n, \dots, X_p^n) = ((x_1)^T, \dots, (x_n)^T)^T$ is the $n \times p$ design matrix; β^n is the $p \times 1$ vector of model coefficients.

Lasso estimator is:

$$\hat{\beta}^n(\lambda) = \arg\min_{\beta} [||Y_n - X_n\beta||_2^2 + \lambda ||\beta||_1]$$

with

$$\lambda \ge 0$$

4 E N 4 E N

LASSO – Notation

$$\beta^n = (\beta_1^n, \dots, \beta_q^n, \beta_{q+1}^n, \dots, \beta_p^n)^T$$

Assume: $\beta_j^n \neq 0$ for $j = 1, \dots, q$ and $\beta_j^n = 0$ for $j = q + 1, \dots, p$

$$\beta_{(1)}^{n} = (\beta_{1}^{n}, \dots, \beta_{q}^{n}), \ \beta_{(2)}^{n} = (\beta_{q+1}^{n}, \dots, \beta_{p}^{n})$$
$$X_{n}(1) = (X_{1}^{n}, \dots, X_{q}^{n}), \ X_{n}(2) = (X_{q+1}^{n}, \dots, X_{p}^{n})$$
$$C^{n} = \frac{1}{n} X_{n}' X_{n} = \begin{pmatrix} C_{11}^{n} & C_{12}^{n} \\ C_{21}^{n} & C_{22}^{n} \end{pmatrix}$$

T

where

 $C_{11}^{n} = \frac{1}{n}X_{n}(1)'X_{n}(1), C_{12}^{n} = \frac{1}{n}X_{n}(1)'X_{n}(2), C_{21}^{n} = \frac{1}{n}X_{n}(2)'X_{n}(1), C_{22}^{n} = \frac{1}{n}X_{n}(2)'X_{n}(2)$

イロト 不得 トイヨト イヨト 二日

Consistency – Definition

• Estimation consistency:

$$\hat{\beta}^{n} - \beta^{n} \rightarrow_{p} 0$$
, as $n \rightarrow \infty$

Model selection consistency:

$$P(\{i:\hat{\beta}_i^n\neq 0\} = \{i:\beta_i^n\neq 0\}) \to 1, \text{ as } n \to \infty$$

• Sign consistency:

$$P(\hat{\beta}^n =_s \beta^n) \to 1$$
, as $n \to \infty$

where

$$\hat{\beta}^n =_{s} \beta^n \Leftrightarrow sign(\hat{\beta}^n) = sign(\beta^n)$$

Consistency – History

- Knight and Fu(2000) have shown estimation consistency for Lasso for fixed p and fixed βⁿ;
- Meinshausen and Buhlmann(2006) have shown that Lasso is consistent in estimating the dependency between Gaussian variables even when p grows faster than n;
- Zhao and Yu(2006) have show model selection consistency for both fixed p and large p problems.

4 3 5 4 3 5 5

Outline

Review

- LASSO
- Consistency

Important Definitions

- Sign Consistency
- Irrepresentable Conditions

B Result

- Proposition 1
- In the setting of small p and q
- In the setting of large p and q
- Sufficient Conditions for S.I.R.

Proofs

< 🗇 🕨

Important Definitions

Definition 1

Lasso is Strongly Sign Consistent if $\exists \lambda_n = f(n)$, s.t.

$$\lim_{n\to\infty} P(\hat{\beta}^n(\lambda_n) =_{s} \beta^n) = 1$$

Lasso is General Sign Consistent if

$$\lim_{n\to\infty} P(\exists \lambda \ge 0, \hat{\beta}^n(\lambda) =_{s} \beta^n) = 1$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Important Definition

Definition 2

Strong Irrepresentable Condition: $\exists \eta > 0$, s.t.

$$|C_{21}^n(C_{11}^n)^{-1}sign(\beta_{(1)}^n)| \le 1 - \eta$$

Weak Irrepresentable Condition:

$$|C_{21}^n(C_{11}^n)^{-1}sign(eta_{(1)}^n)| < \mathbf{1}$$

Where **1** is a p-q by 1 vector of 1's, and the inequality holds element-wise.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Review

- LASSO
- Consistency

Important Definitions

- Sign Consistency
- Irrepresentable Conditions
- 3 F

Results

- Proposition 1
- In the setting of small p and q
- In the setting of large p and q
- Sufficient Conditions for S.I.R.

Proofs

< A

The big result

Proposition 1

Assume Strong Irrepresentable Condition holds with a constant $\eta > 0$, then

$$P(\hat{\beta}^n(\lambda_n) =_{s} \beta^n) \ge P(A_n \cap B_n)$$

for

$$\begin{aligned} A_n &= \{ |(C_{11}^n)^{-1} W^n(1)| < \sqrt{n} |\beta_{(1)}^n| - \frac{\lambda_n}{2n} |(C_{11}^n)^{-1} sign(\beta_{(1)}^n)| \} \\ B_n &= \{ |C_{21}^n(C_{11}^n)^{-1} W^n(1) - W^n(2)| \le \frac{\lambda_n}{2\sqrt{n}} \eta \} \end{aligned}$$

where

$$W^n(1) = \frac{1}{\sqrt{n}} X_n(1)' \epsilon_n$$
 and $W^n(2) = \frac{1}{\sqrt{n}} X_n(2)' \epsilon_n$

3

Small p and q – Assumptions

Classical setting: q,p and β^n are all fixed as $n \to \infty$.

Assume the following regularity conditions:

$$C^n \to C > 0, \text{ as } n \to \infty;$$
 (1)
 $\frac{1}{n} \max_{1 \le i \le n} ((x_i^n)^T x_i^n) \to 0, \text{ as } n \to \infty.$ (2)

-

イロト 不得 トイヨト イヨト

Small p and q – Theorems

Theorem 1

For fixed q,p and $\beta^n = \beta$, under regularity condition (1) and (2), Lasso is strongly sign consistent if Strong Irrepresentable Condition holds. That is, when Strong Irrepresentable Condition holds, for $\forall \lambda_n$ that satisfies $\lambda_n/n \to 0$ and $\lambda_n/n^{\frac{1+c}{2}} \to \infty$ with $0 \le c < 1$, we have

$$P(\hat{\beta}^n(\lambda_n) =_{s} \beta^n) = 1 - o(e^{-n^c})$$

Theorem 2

For fixed q,p and $\beta^n = \beta$, under regularity condition (1) and (2), Lasso is general sign consistent only if there exists N so that Weak Irrepresentable Condition holds for n > N.

Large p and q – Assumptions

The dimension of the designs C^n and parameters β^n grow as n grows, then, p_n and q_n are allowed to grow with n.

Assume the following conditions: $\exists 0 \le c_1 < c_2 \le 1$ and $M_1, M_2, M_3, M_4 > 0$,

$$\frac{1}{n}(X_i^n)'X_i^n \le M_1, \text{ for } \forall i,$$
(3)

$$\alpha' C_{11}^n \alpha \ge M_2, \text{ for } \forall ||\alpha||_2^2 = 1,$$
(4)

$$q_n = O(n^{c_1}), \tag{5}$$

$$n^{\frac{1-c_2}{2}} \min_{i=1,...,q} |\beta_i^n| \ge M_3.$$
 (6)

Large p and q – Theorems

Theorem 3

Assume ϵ_i^n 's are i.i.d. random variables with $E(\epsilon_i^n)^{2k} < \infty$ for an integer k > 0. Under conditions (3)(4)(5)(6), Strong Irrepresentable Condition implies that Lasso has strong sign consistency for $p_n = o(n^{(c_2-c_1)k})$. In particular, for $\forall \lambda_n$ that satisfies $\frac{\lambda_n}{\sqrt{n}} = o(n^{\frac{c_2-c_1}{2}})$ and $\frac{1}{p_n}(\frac{\lambda_n}{\sqrt{n}})^{2k} \to \infty$, we have

$$\mathcal{P}(\hat{eta}^n(\lambda_n) =_{s} eta^n) \geq 1 - O(rac{p_n n^k}{\lambda^{2k}}) o 1 \ as \ n o \infty.$$

Large p and q – Theorems

Theorem 4

Assume ϵ_i^n 's are i.i.d. Gaussian random variables. Under conditions (3)(4)(5)(6), if there exists $0 \le c_3 < c_2 - c_1$ for which $p_n = O(e^{n^{c_3}})$, then Strong Irrepresentable Condition implies that Lasso has strong sign consistency.

In particular, for $\lambda_n \propto n^{\frac{1+c_4}{2}}$ with $c_3 < c_4 < c_2 - c_1$,

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \ge 1 - o(e^{-n^{c_3}}) \to 1 \text{ as } n \to \infty.$$

EN 4 EN

Sufficient Conditions for S.I.R

Corollary 1 (Constant Positive Correlation)

Suppose C^n has 1's on the diagonal, and there exists c > 0 such that $0 < C_{ij}^n = r_n \le \frac{1}{1+ca}$, then S.I.R. holds.

Corollary 2 (Bounded Correlation)

Suppose C^n has 1's on the diagonal and bounded correlation $|C_{ij}^n| \le \frac{c}{2q-1}$ for a constant 0 < c < 1, then S.I.R. holds

Corollary 3 (Power Decay Correlation)

Suppose for any i, j = 1, ..., p, $C_{ij}^n = (\rho_n)^{|i-j|}$, for $|\rho_n| \le c < 1$, then S.I.R. holds.

Outline

Review

- LASSO
- Consistency

Important Definitions

- Sign Consistency
- Irrepresentable Conditions

B Results

- Proposition 1
- In the setting of small p and q
- In the setting of large p and q
- Sufficient Conditions for S.I.R.

Proofs

< A

Proposition 1

$$P(\hat{\beta}^n(\lambda_n) =_{s} \beta^n) \ge P(A_n \cap B_n)$$

Proof.

Need to show: $A_n \cap B_n$ implies $sign(\beta_{(1)}^{\hat{n}}) = sign(\beta_{(1)}^n)$, and $\beta_{(2)}^{\hat{n}} = 0$; If define $\hat{u}^n = \hat{\beta}^n - \beta^n$, a sufficient condition for $\hat{\beta}^n(\lambda_n) =_s \beta^n$ is:

$$|\hat{u}^{n}(1)| < |\beta^{n}_{(1)}|, \text{ and } \hat{u}^{n}(2) = 0$$
 (*

Another thing to notice is, since

$$\hat{\beta}^n = \arg\min_{\beta} ||Y_n - X_n\beta||_2^2 + \lambda ||\beta||_1$$

then

$$\hat{u}^{n} = \arg\min_{u^{n}}[||Y_{n} - X_{n}(u^{n} + \beta^{n})||_{2}^{2} + \lambda_{n}||u^{n} + \beta^{n}||_{1}]$$

$$\equiv \arg\min_{u^{n}} V_{n}(u^{n})$$

Jie Zhang (UW-Madison)

Lemma 2 (Karush-Kuhn-Tucker condition) $\hat{\beta}^n = (\hat{\beta}_1^n, \dots, \hat{\beta}_p^n)$ are the Lasso estimates as defined above, if and only if

$$\frac{d||Y_n - X_n\beta||_2^2}{d\beta_j}|_{\beta_j = \hat{\beta}_j^n} = \lambda \operatorname{sign}(\hat{\beta}_j^n) \quad \text{for } j \text{ s.t. } \hat{\beta}_j^n \neq 0$$

$$|\frac{d||Y_n - X_n\beta||_2^2}{d\beta_j}|_{\beta_j = \hat{\beta}_j^n}| \leq \lambda \quad \text{for } j \text{ s.t. } \hat{\beta}_j^n = 0$$
(8)

Proof(cont.)

To take advantage of the KKT condition, it's natural to think that whether applying (7) and (8) can generate the desired result in (\star) .

3

Proof(cont.)

So, assume:

$$\hat{v}^n(2) = 0$$

and $\hat{v}^n(1)$ is the solution of:

$$C_{11}^{n}(\sqrt{n}\hat{v}^{n}(1)) - W^{n}(1) = -\frac{\lambda_{n}}{2\sqrt{n}}sign(\beta_{(1)}^{n})$$
(28)

- a If \hat{v}^n satisfies KKT condition (7) and (8), then \hat{v}^n is one Lasso estimator which minimize $V_n(u^n)$. Then, by uniqueness of Lasso estimator, $\hat{u}^n = \hat{v}^n$.
- b If $\hat{v}^n(1)$ satisfying (28) can imply $|\hat{v}^n(1)| < |\beta_{(1)}^n|$, then we finish the proof.

-

イロト 不得 トイヨト イヨト

Proof(cont.) - everything we know. *A_n* implies:

$$|(C_{11}^n)^{-1} W^n(1)| < \sqrt{n} |\beta_{(1)}^n| - \frac{\lambda_n}{2n} |(C_{11}^n)^{-1} sign(\beta_{(1)}^n)|$$
(31)
B_n and $|C_{21}^n(C_{11}^n)^{-1} sign(\beta_{(1)}^n)| \le 1 - \eta$ (S.I.R.) implies:

$$|C_{21}^{n}(C_{11}^{n})^{-1}W^{n}(1) - W^{n}(2)| \leq \frac{\lambda_{n}}{2\sqrt{n}}(1 - |C_{21}^{n}(C_{11}^{n})^{-1}sign(\beta_{(1)}^{n})|)$$
(32)

as well as $\hat{v}^{n}(2) = 0$ and (28).

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Proof(cont.)

Then, (28) and (31) implies:

$$|\hat{v}^n(1)| < |\beta^n_{(1)}|$$
 (29)

And, (28) and (32) implies:

$$-\frac{\lambda_n}{2\sqrt{n}}\mathbf{1} \le C_{21}^n(\sqrt{n}\hat{v}^n(1)) - W^n(2) \le \frac{\lambda_n}{2\sqrt{n}}\mathbf{1}$$
(30)

2

イロト イヨト イヨト イヨト

Proof(cont.)

With $\hat{\nu}^n(2) = 0$ and (29), (28) and (30) are exactly the KKT condition. Because:

$$-\frac{1}{2\sqrt{n}}\frac{d||Y_n - X_n(u^n + \beta^n)||_2^2}{d(u_j^n + \beta_j^n)}|_{u_j^n = \hat{v}_j^n} = -\frac{\lambda_n}{2\sqrt{n}}sign(\hat{v}_j^n + \beta_j^n)$$
$$= -\frac{\lambda_n}{2\sqrt{n}}sign(\beta_j^n)$$

for \hat{v}_j^n in $\hat{v}^n(1)$

$$\frac{1}{2\sqrt{n}} |\frac{d||Y_n - X_n(u^n + \beta^n)||_2^2}{d(u_j^n + \beta_j^n)}|_{v_j^n = \hat{v}_j^n}| \leq \frac{\lambda_n}{2\sqrt{n}}$$

for \hat{v}_i^n in $\hat{v}^n(2) = 0$

Theorem 3

$$P(\hat{\beta}^n(\lambda_n) =_{s} \beta^n) \ge 1 - O(\frac{p_n n^k}{\lambda^{2k}}) \to 1 \text{ as } n \to \infty.$$
$$p_n = o(n^{(c_2 - c_1)k}), \text{ and } q_n = O(n^{c_1})$$

Proof.

By proposition 1,

$$1 - P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \le 1 - P(A_n \cap B_n) \le P(A_n^c) + P(B_n^c)$$
$$\le \sum_{i=1}^q P(|z_i^n| \ge \sqrt{n}(|\beta_i^n| - \frac{\lambda_n}{2n}b_i^n)) + \sum_{i=1}^{p-q} P(|\zeta_i^n| \ge \frac{\lambda_i^n}{2\sqrt{n}}\eta_i)$$

where

$$z^{n} = (z_{1}^{n}, \dots, z_{q}^{n})' = (C_{11}^{n})^{-1} W^{n}(1)$$

$$\zeta^{n} = (\zeta_{1}^{n}, \dots, \zeta_{p-q}^{n})' = C_{21}^{n} (C_{11}^{n})^{-1} W^{n}(1) - W^{n}(2)$$

$$b = (b_{1}^{n}, \dots, b_{q}^{n}) = (C_{11}^{n})^{-1} sign(\beta_{(1)}^{n}).$$

Jie Zhang (UW-Madison)

On Model Selection Consistency Of Lasso

Theorem 3(cont.)

Proof(cont.)

In order to apply Markov's Inequality, need to have $E(z_i^n)^{2k} < \infty$ and $E(\zeta_i^n)^{2k} < \infty$. By condition $E(\epsilon_i^n)^{2k} < \infty$ and condition (3) (4), and

$$E(\alpha'\epsilon^n) \le (2k-1)!!||\alpha||_2^2 E(\epsilon_i^n)^{2k}$$

 $E(z_i^n)^{2k} < \infty$ and $E(\zeta_i^n)^{2k} < \infty$ are guaranteed.

Then, by Markov's Inequality, for $\frac{\lambda_n}{\sqrt{n}} = o(n^{\frac{c_2-c_1}{2}})$

$$\sum_{i=1}^{q} P(|z_{i}^{n}| \geq \sqrt{n}(|\beta_{i}^{n}| - \frac{\lambda_{n}}{2n}b_{i}^{n})) \leq \sum_{i=1}^{q} \frac{E|z_{i}^{n}|^{2k}}{(\sqrt{n}\beta_{i}^{n})^{2k}} = qO(n^{-kc_{2}}) = o(\frac{pn^{k}}{\lambda_{n}^{2k}})$$

$$\sum_{i=1}^{p-q} P(|\zeta_i^n| \ge \frac{\lambda_i^n}{2\sqrt{n}}\eta_i) \le \sum_{i=1}^{p-q} \frac{E|\zeta_i^n|^{2k}}{(\frac{\lambda_n}{\sqrt{n}}2\eta_i)^{2k}} = (p-q)O(\frac{n^k}{\lambda_n^{2k}}) = O(\frac{pn^k}{\lambda_n^{2k}})$$

February 12, 2010

27/30

Jie Zhang (UW-Madison)

On Model Selection Consistency Of Lasso

Theorem 3(cont.)

Proof(cont.) So, $1 - P(\hat{\beta}^{n}(\lambda_{n}) =_{s} \beta^{n}) \leq P(A_{n}^{c}) + P(B_{n}^{c}) \leq O(\frac{pn^{k}}{\lambda_{n}^{2k}}) \to 0 \text{ as } n \to \infty$ for $\frac{1}{p_{n}}(\frac{\lambda_{n}}{\sqrt{n}})^{2k} \to \infty$.

Theorem 4

The inequility:

$$1 - P(\hat{\beta}^n(\lambda_n) =_s \beta^n)$$

$$\leq \sum_{i=1}^q P(|z_i^n| \geq \sqrt{n}(|\beta_i^n| - \frac{\lambda_n}{2n}b_i^n)) + \sum_{i=1}^{p-q} P(|\zeta_i^n| \geq \frac{\lambda_i^n}{2\sqrt{n}}\eta_i)$$

still holds.

- From the normal assumption of *ε_iⁿ*, *z_i*'s and *ζ_i*'s are also normal. Rewrite the probabilities above as 1 − Φ(*f*(*n*)) and 1 − Φ(*g*(*n*)).
- Use the inequality:

$$1 - \Phi(t) < t^{-1} e^{-\frac{1}{2}t^2}$$

then, the summation of is bounded by $o(e^{-n_3^c})$.

Thank You!

æ