High dimensional graphs and variable selection with the Lasso
Nicolai Meinshausen and Peter Buhlmann The annals of Statistics (2006)

presented by Jee Young Moon

Feb. 19. 2010

Inverse covariance matrix

0 in $\Sigma^{-1}=$ conditional independence ($X_{a} \perp X_{b} \mid$ all the remaining variables)
$=$ no edge between these two variables (nodes)
Traditionally,

- Dempster (1972): introduced covariance selection. Discovering the conditional independence.
- Forward search: edges are added iteratively.
- MLE fit (Speed and Kiiveri 1986) for $O\left(p^{2}\right)$ different models. But, the existence of MLE is not guaranteed in general if the number of observation is smaller than the number of nodes (Buhl 1993)
- Neighborhood selection with the Lasso (here) : optimization of a convex function, applied consecutively to each node in the graph.

Neighborhood

Neighborhood $n e_{a}$ of a node $a \in \Gamma$
$=$ smallest subset of $\Gamma \backslash\{a\}$ so that $X_{a} \perp$ all the remaining $\mid X_{n e_{a}}$ $=\{b \in \Gamma \backslash\{a\}:(a, b) \in E\}$.

Notations

$p(n)=|\Gamma(n)|=$ the number of nodes (the number of variables)
n : the number of observartions
Optimal prediction of X_{a} given all remaining variables

$$
\theta^{a}=\arg \min _{\theta: \theta_{a}=0} E\left(X_{a}-\sum_{k \in \Gamma(n)} \theta_{k} X_{k}\right)^{2}
$$

Optimal prediction $\theta^{a, \mathcal{A}}$ where $\mathcal{A} \subseteq \Gamma(n) \backslash\{a\}$

$$
\theta^{a, \mathcal{A}}=\arg \min _{\theta: \theta_{k}=0, \forall k \notin \mathcal{A}} E\left(X_{a}-\sum_{k \in \Gamma(n)} \theta_{k} X_{k}\right)^{2}
$$

\mathcal{A} : active set.
Relation to conditional independence is
$\theta_{b}^{a}=-\Sigma_{a b}^{-1} / \Sigma_{a a}^{-1}$.
$\mathbf{n e}_{\mathbf{a}}=\left\{\mathbf{b} \in \boldsymbol{\Gamma}(\mathbf{n}): \theta_{\mathbf{b}}^{\mathbf{a}} \neq \mathbf{0}\right\}$.

Neighborhood selection with Lasso

Lasso estimate $\hat{\theta}^{a, \lambda}$ of θ^{a}

$$
\hat{\theta}^{a, \lambda}=\arg \min _{\theta: \theta_{a}=0}\left(n^{-1}\left\|X_{a}-X \theta\right\|^{2}+\lambda\|\theta\|_{1}\right)
$$

Neighborhood estimate

$$
\hat{n e}_{a}^{\lambda}=\left\{b \in \Gamma(n) \mid \hat{\theta}_{b}^{a, \lambda} \neq 0\right\}
$$

(unavailable) prediction-oracle value

$$
\lambda_{\text {oracle }}=\arg \min _{\lambda} E\left(X_{a}-\sum_{k \in \Gamma(n)} \hat{\theta}_{k}^{a, \lambda} X_{k}\right)^{2}
$$

Proposition 1.

Let the number of variables grow to infinity, $p(n) \rightarrow \infty$ for $n \rightarrow \infty$ with $p(n)=o\left(n^{\gamma}\right)$ for some $\gamma>0$. Assume that the covariance matrices $\Sigma(n)$ are identical to the identity matrix except for some pair $(a, b) \in \Gamma(n) \times \Gamma(n)$ for which $\Sigma_{a b}(n)=\Sigma_{b a}(n)=s$ for some $0<s<1$ and all $n \in \mathbb{N}$. The probability of selecting the wrong neighborhood for node a converges to 1 under the prediction-oracle penalty

$$
P\left(\hat{n e} \hat{e}_{a}^{\lambda_{\text {oracle }}} \neq n e_{a}\right) \rightarrow 1 \text { for } n \rightarrow \infty .
$$

$\theta^{a}=\left(0,-K_{a b} / K_{a a}, 0,0, \ldots\right)=(0, s, 0,0, \ldots)$. To be $\hat{n e} e_{a}^{\lambda}=n e_{a}$, $\hat{\theta}^{a, \lambda}=(0, \tau, 0,0, \ldots)$ is the oracle Lasso solution for some $\tau \neq 0$. Then, it is the same as

$$
\text { 1.P(} \left.\exists \lambda, \tau \geq s: \hat{\theta}^{a, \lambda}=(0, \tau, 0,0, \ldots)\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

and 2. $(0, \tau, 0,0, \ldots)$ cannot be the oracle Lasso solution as long as $\tau<s$. 1. If $\hat{\theta}=(0, \tau, 0, \ldots)$ is a Lasso solution, from Lemma 1 and positiviity of τ,

$$
<X_{1}-\tau X_{2}, X_{2}>\geq\left|<X_{1}-\tau X_{2}, X_{k}>\right| \forall k \in \Gamma(n), k>2
$$

Substituting $X_{1}=s X_{s}+W_{1}$ yields
$<W_{1}, X_{2}>-(\tau-s)<X_{2}, X_{2}>\geq\left|<W_{1}, X_{k}>-(\tau-s)<X_{2}, X_{k}>\right|$.
Let $U_{k}=<W_{1}, X_{k}>. U_{k}, k=2, \ldots, p(n)$ are exchangeable. Let

$$
D=<X_{2}, X_{2}>-\max _{k \in \Gamma(n), k>2}\left|<X_{2}, X_{k}>\right| .
$$

It is sufficient to show

$$
P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}+(\tau-s) D\right) \rightarrow 0 \text { for } n \rightarrow \infty .
$$

Since $\tau-s>0$,
$P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}+(\tau-s) D\right) \leq P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}\right)$ when $D>=0$.
$P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}+(\tau-s) D\right) \leq 1$ when $D<0$.
$P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}+(\tau-s) D\right) \leq P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}\right)+P(D<0)$.

By Berstein inequality and $p(n)=o\left(n^{\gamma}\right)$,

$$
P(D<0) \rightarrow 0 \text { for } n \rightarrow \infty
$$

Since $U_{2}, \ldots, U_{p(n)}$ are exchangeable, $P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}\right)=$ $P\left(U_{3}>\max _{k \in \Gamma(n), k=2,>3} U_{k}\right)=\cdots=P\left(U_{p}>\max _{2<=k<p-1} U_{k}\right)$ and sum of those should be 1. Therefore, $P\left(U_{2}>\max _{k \in \Gamma(n), k>2} U_{k}\right)=(p(n)-1)^{-1} \rightarrow 0$ for $n \rightarrow \infty$.
2. $(0, \tau, 0, \ldots)$ with $\tau<s$ cannot be the oracle Lasso solution.

Suppose $\left(0, \tau_{\text {max }}, 0,0, \ldots\right)$ is the Lasso solution $\hat{\theta}^{a, \lambda}$ for some $\lambda=\tilde{\lambda}>0$ with $\tau_{\text {max }}<s$. Since $\tau_{\text {max }}$ is the maximal value such that $(0, \tau, 0, \ldots)$ is a Lasso solution, there exists some $k \in \Gamma(n)>2$ such that

$$
\left|n^{-1}<X_{1}-\tau_{\max } X_{2}, X 2>\left|=\left|n^{-1}<X_{1}-\tau_{\max } X_{2}, X_{k}>\right|=\tilde{\lambda}\right.\right.
$$

For sufficiently small $\delta \lambda \geq 0$, a Lasso solution for the penalty $\tilde{\lambda}-\delta \lambda$ is given by

$$
\left(0, \tau_{\max }+\delta \theta_{2}, \delta \theta_{3}, 0, \ldots\right)
$$

From LARS, $\delta \theta_{2}=\delta \theta_{3}$. If we compare the squared error for these solution

$$
L_{\delta \theta}-L_{0}=-2\left(s-\tau_{\max }\right) \delta \theta+2 \delta \theta^{2}<0 \text { for any } 0<\delta \theta<1 / 2\left(s-\tau_{\max }\right)
$$

Lemma 1

Lasso estimate $\hat{\theta}^{\mathrm{a}, \mathcal{A}, \lambda}$ of $\theta^{\mathrm{a}, \mathcal{A}}$ is given by

$$
\hat{\theta}^{a, \mathcal{A}, \lambda}=\arg \min _{\theta: \theta_{k}=0 \forall k \notin \mathcal{A}}\left(n^{-1}\left\|X_{a}-X \theta\right\|^{2}+\lambda\|\theta\|_{1}\right)(10)
$$

Lemma 1

Given $\theta \in \mathbb{R}^{p(n)}$, let $G(\theta)$ be a $p(n)$-dimensional vector with elements

$$
G_{b}(\theta)=-2 n^{-1}<X_{a}-X \theta, X_{b}>
$$

A vector $\hat{\theta}$ with $\hat{\theta}_{k}=0, \forall k \in \Gamma(n) \backslash \mathcal{A}$ is a solution to the above \Longleftrightarrow for all $b \in \mathcal{A}$,
$G_{b}(\hat{\theta})=-\operatorname{sign}\left(\hat{\theta_{b}}\right) \lambda$ in case $\hat{\theta}_{b} \neq 0$
and $\left|G_{b}(\hat{\theta})\right| \leq \lambda$ in case $\hat{\theta}_{b}=0$. Moreover, if the solution is not unique and $\left|G_{b}(\hat{\theta})\right|<\lambda$ for some solution θ, then $\hat{\theta}_{b}=0$ for all solution of the above.

Proof.

$D(\theta)=$ subdifferential of $\left(n^{-1}\left\|X_{a}-X \theta\right\|^{2}+\lambda\|\theta\|_{1}\right)$ with respect to $\theta=$ $\{G(\theta)+\lambda e, e \in S\}$ where $S \subset \mathbb{R}^{p(n)}$ is given by $S=\left\{e \in \mathbb{R}^{p(n)} \mid e_{b}=\operatorname{sign}\left(\theta_{b}\right)\right.$ if $\theta_{b} \neq 0$ and $\left.e_{b} \in[-1,1]\right\} . \hat{\theta}$ is a solution to the above iff $\exists d \in D(\theta)$ so that $d_{b}=0 \forall b \in \mathcal{A}$.

Assumptions

$X \sim N(0, \Sigma)$
High-dimensionality Assumption 1. There exists $\gamma>0$ so that $p(n)=O\left(n^{\gamma}\right)$ for $n \rightarrow \infty$.
Non-singularity Assumption 2. (a) For all $a \in \Gamma(n)$ and $n \in \mathcal{N}$, $\operatorname{Var}\left(X_{a}\right)=1$. (b) There exists $v^{2}>0$ so that for all $n \in \mathcal{N}$ and $a \in \Gamma(n), \operatorname{Var}\left(X_{a} \mid X_{\Gamma(n) \backslash\{a\}}\right) \geq v^{2}$. [This excludes singular or nearly singular covariance matrices.]
Sparsity Assumption 3. There exists some $0 \leq \kappa<1$ so that $\max _{a \in \Gamma(n)}\left|n e_{a}\right|=O\left(n^{\kappa}\right)$ for $n \rightarrow \infty$. [restriction on the size of the neighborhood].
Assumption 4. There exists some $\vartheta<\infty$ so that for all neighboring nodes $a, b \in \Gamma(n)$ and all $n \in \mathbb{N},\left\|\theta^{a, n e_{b} \backslash\{a\}}\right\|_{1} \leq \vartheta$. [This is fulfilled if assumption 2 holds and the size of the overlap of neighborhoods is bounded by an arbitrarily large number from above.]

Magnitude of partial correlations Assumption 5. There exists a constant $\delta>0$ and some $\xi>\kappa$ so that for every $(a, b) \in E$, $\left|\pi_{a, b}\right| \geq \delta n^{-(1-\xi) / 2}$.
Neighborhood stability $S_{a}(b):=\sum_{k \in n e_{a}} \operatorname{sign}\left(\theta_{k}^{a, n e_{a}}\right) \theta_{k}^{b, n e_{a}}$. Assumption 6. There exists some $\delta<1$ so that for all $a, b \in \Gamma(n)$ with $b \notin n e_{a},\left|S_{a}(b)\right|<\delta$.

Theorem 1: controlling type-I error

Theorem 1

Let assumptions 1-6 be fulfilled. Let the penalty parameter satisfy $\lambda_{n} \sim d n^{-(1-\epsilon) / 2}$ with some $\kappa<\epsilon<\xi$ and $d>0$. There exists some $c>0$ so that, for all $a \in \Gamma(n)$,

$$
P\left(\hat{n e_{a}^{\lambda}} \subseteq n e_{a}\right)=1-O\left(\exp \left(-c n^{\epsilon}\right)\right) \text { for } n \rightarrow \infty .
$$

It means that the probability of falsely including any of the non-neighboring variables is vanishing exponentially fast. Proposition 3 says that assumption 6 cannot be relaxed.

Proposition 3

If there exists some $a, b \in \Gamma(n)$ with $b \notin n e_{a}$ and $\left|S_{a}(b)\right|>1$, then

$$
P\left(\hat{n e} e_{a}^{\lambda} \subseteq n e_{a}\right) \rightarrow 0 \text { for } n \rightarrow \infty .
$$

Proof of Thm 1

$$
P\left(\hat{n e}{ }_{a}^{\lambda} \subseteq n e_{a}\right)=1-P\left(\exists b \in \Gamma(n) \backslash c l_{a}: \hat{\theta}_{b}^{a, \lambda} \neq 0\right) .
$$

Consider the Lasso estimate $\hat{\theta}^{a, n e}{ }_{a}, \lambda$ which is constrained to have non-zero components only in $n e_{a}$. Let \mathcal{E} be the event

$$
\max _{k \in \Gamma(n) \backslash c l_{a}}\left|G_{k}\left(\hat{\theta}^{a, n e_{a}, \lambda}\right)\right|<\lambda .
$$

On this event, by Lemma $1, \hat{\theta}^{a, n e} e_{a}, \lambda$ is a solution of (3) with $\mathcal{A}=\Gamma(n) \backslash\{a\}$ as well as a solution of (10).

$$
P\left(\exists b \in \Gamma(n) \backslash c l_{a}: \hat{\theta}_{b}^{a, \lambda} \neq 0\right) \leq 1-P(\mathcal{E})=P\left(\max _{k \in \Gamma(n) \backslash c l_{a}}\left|G_{k}\left(\hat{\theta}^{a, n e_{a}, \lambda}\right) \geq \lambda\right|\right) .
$$

It is sufficient to show there exists a constant $c>0$ so that for all $b \in \Gamma(n) \backslash c l_{a}$,

$$
P\left(\left|G_{b}\left(\hat{\theta}^{a, n e} e_{a}, \lambda\right)\right| \geq \lambda\right)=O\left(\exp \left(-c n^{\epsilon}\right)\right) .
$$

cont. prof of Thm 1.
One can write for any $b \in \Gamma(n) \backslash c l_{a}$,

$$
X_{b}=\sum_{m \in n e_{a}} \theta_{m}^{b, n e_{a}} X_{m}+V_{b}
$$

where $V_{b} \sim N\left(0, \sigma_{b}^{2}\right)$ for some $\sigma_{b}^{2} \leq 1$ and V_{b} is independent of $\left\{X_{m} \mid m \in c l_{a}\right\}$. Plugging this in gradient calculation,

$$
\begin{aligned}
G_{b}\left(\hat{\theta}^{a, n e_{a}, \lambda}\right)= & -2 n^{-1} \sum_{m \in n e_{a}} \theta_{m}^{b, n e_{a}}<X_{a}-X \hat{\theta}^{a, n e_{a}, \lambda}, X_{m}> \\
& -2 n^{-1}<X_{a}-X \hat{\theta}^{a, n e_{a}, \lambda}, V_{b}>
\end{aligned}
$$

By lemma 2, there exists some $c>0$ so that with probability $1-O\left(\exp \left(-c n^{\epsilon}\right)\right)$,

$$
\operatorname{sign}\left(\hat{\theta}^{a, n e_{a}, \lambda}\right)=\operatorname{sign}\left(\theta_{k}^{a, n e_{a}}\right), \forall k \in n e_{a} .
$$

cont. prof of Thm 1.
With Lemma1, assumption 6 , we get with probability $1-O\left(\exp \left(-c n^{\epsilon}\right)\right)$ and some $\delta<1$,

$$
\left|G_{b}\left(\hat{\theta}^{\mathrm{a}, n e_{a}, \lambda}\right)\right| \leq \delta \lambda+\left|2 n^{-1}<X_{a}-X \hat{\theta}^{a^{a} n e_{a}, \lambda}, V_{b}>\right|
$$

Then, it remains to be shown that

$$
P\left(\left|2 n^{-1}<X_{a}, V_{b}>\right| \geq(1-\delta) \lambda\right)=O\left(\exp \left(-c n^{\epsilon}\right)\right)
$$

Theorem 2

Let the assumptions of Theorem 1 be fulfilled. For $\lambda=\lambda_{n}$ as a in Theorem 1, it holds for some $c>0$ that

$$
P\left(n e_{a} \subseteq \hat{n e} e_{a}^{\lambda}\right)=1-O\left(\exp \left(-c n^{\epsilon}\right)\right) \text { for } n \rightarrow \infty
$$

Proposition 4 says that assumption 5 cannot be relaxed.

Proposition 4

Let the assumptions of Theorem 1 be fulfilled with $\vartheta<1$ in Assumption 4. For $a \in \Gamma(n)$, let there be some $b \in \gamma(n) \backslash\{a\}$ with $\pi_{a b} \neq 0$ and $\left|\pi_{a b}\right|=O\left(n^{-(1-\xi) / 2}\right)$ for $n \rightarrow \infty$ for some $\xi<\epsilon$. Then

$$
P\left(b \in \hat{n e} e_{a}^{\lambda}\right) \rightarrow 0 \text { for } n \rightarrow \infty .
$$

Proof of Thm2

$$
P\left(n e_{a} \subseteq \hat{n} e_{a}^{\lambda}\right)=1-P\left(\exists b \in n e_{a}: \hat{\theta}_{b}^{a, \lambda}=0\right)
$$

Let \mathcal{E} be the event

$$
\max _{k \in \Gamma(n) \backslash c l_{a}}\left|G_{k}\left(\hat{\theta}^{a, n e_{a}, \lambda}\right)\right|<\lambda .
$$

As in Thm 1, $\hat{\theta}^{a, n e} a, \lambda$ is a solution of (3). Then,

$$
P\left(\exists b \in n e_{a}: \theta^{\hat{a}, \lambda} b=0\right) \leq P\left(\exists b \in n e_{a}: \hat{\theta}_{b}^{a, n e_{a}, \lambda}=0\right)+P\left(\mathcal{E}^{c}\right)
$$

$P\left(\mathcal{E}^{C}\right)=O\left(\exp \left(-c n^{\epsilon}\right)\right)$ by theorem 1 and $P\left(\hat{\theta}^{\mathrm{a}, n e_{a}, \lambda}=0\right)=O\left(\exp \left(-c n^{\epsilon}\right)\right)$ by lemma 2 .

Edge set

Ideally, edge set can be given by

$$
E=\left\{(a, b): a \in n e_{b} \wedge b \in n e_{a}\right\}
$$

An estimate of the edge set is

$$
\hat{E}^{\lambda, \wedge}=\left\{(a, b): a \in \hat{n e} e_{b}^{\lambda} \wedge b \in \hat{n e} e_{a}^{\lambda}\right\} .
$$

Or

$$
\hat{E}^{\lambda, \vee}=\left\{(a, b): a \in \hat{n e} e_{b}^{\lambda} \vee b \in \hat{n e} e_{a}^{\lambda}\right\} .
$$

Corollary 1

Under the conditions of Theorem 2, for some $c>0$,

$$
P\left(\hat{E}^{\lambda}=E\right)=1-P\left(\exp \left(-c n^{\epsilon}\right)\right) \text { for } n \rightarrow \infty .
$$

How to choose the penalty?
For any level $0<\alpha<1$, the penalty

$$
\lambda(\alpha)=\frac{2 \hat{\sigma}_{a}}{\sqrt{n}} \tilde{\Phi}^{-1}\left(\frac{\alpha}{2 p(n)^{2}}\right)
$$

Theorem 3

Assumptions 1-6 be fulfilled. Using the penalty $\lambda(\alpha)$, it holds for all $n \in \mathbb{N}$ that

$$
P\left(\exists a \in \Gamma(n): \hat{C}_{a}^{\lambda} \nsubseteq C_{a}\right) \leq \alpha .
$$

This constrains the probability of (falsely) connecting two distinct connectivity components of the true graph.

