Assumptions and Main Results

Proof of Theorem 00000 000000 0000000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

High-dimensional Generalized Linear Models and the LASSO Sara A. Van de Geer

Bin Dai

Department of Statistics, University of Wisconsin Madison

February 26, 2010

Assumptions and Main Results 00000 00000 000 Proof of Theorem 00000 000000 0000000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem 00000 00000 0000000 0000000

LASSO estimator in generalized linear models

Linear predictor

Let $Y \in \mathcal{Y} \subset \mathbf{R}$ be a real-valued (response) variable and X be a co-variable with values in some space \mathcal{X} . Let

$$\mathcal{F} = \left\{ f_{ heta}(\cdot) = \sum_{k=1}^m heta_k \psi_k(\cdot), \ heta \in \Theta
ight\}$$

be a (subset of a) linear space of functions on \mathcal{X} . Further let Θ be a convex subset of \mathbf{R}^m , possibly $\Theta = \mathbf{R}^m$. The functions $\{\psi_k\}_{k=1}^m$ form a given system of real-valued base functions on \mathcal{X} .

Proof of Theorem 00000 00000 0000000 0000000

Lasso estimator in generalized linear models

Let $\gamma_f : \mathcal{X} \times \mathcal{Y} \to \mathbf{R}$ be some loss function, and let $\{(X_i, Y_i)\}_{i=1}^n$ be i.i.d. copies of (X, Y). Consider the estimator with lasso penalty

$$\hat{ heta}_n = \operatorname{argmin}_{ heta \in \Theta} \left\{ rac{1}{n} \sum_{u=1}^n \gamma_{f_{ heta}}(X_i, Y_i) + \lambda_n \hat{I}(heta)
ight\},$$

where

$$\hat{I}(heta) := \sum_{k=1}^{m} \hat{\sigma}_k | heta_k|$$

denotes the weighted I_1 norm of the vector $\theta \in \mathbf{R}^m$, with random weights

$$\hat{\sigma}_k := \left(\frac{1}{n}\sum_{i=1}^n \psi_k^2(X_i)\right)^{1/2}$$

Proof of Theorem 00000 00000 0000000 0000000

Goal of this paper

The best linear predictor

Let *P* be the distribution of (X, Y). The target function \overline{f} is defined as

 $\bar{f} := \operatorname{argmin}_{f \in \mathbf{F}} P_{\gamma_f},$

where $F \supseteq \mathcal{F}$ (and assuming for simplicity that there is a unique minimum). It will be shown that if the target \overline{f} can be well approximated by a sparse function $f_{\theta_n^*}$, the estimator $\hat{\theta}_n$ will have prediction error roughly as if it knew this sparseness.

The excess risk of f is

$$\mathcal{E}(f) := P_{\gamma_f} - P_{\gamma_{\overline{f}}}$$

A probability inequality will be derived for the excess risk $\mathcal{E}(f_{\hat{\theta}_n})$.

Assumptions and Main Results

Proof of Theorem 00000 000000 0000000 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

Assumptions

- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem 00000 000000 0000000 0000000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

Assumptions

Assumption L

The loss function γ_f is of the form $\gamma_f(x, y) = \gamma(f(x), y) + b(f)$, where b(f) is a constant which is convex in f, and $\gamma(\cdot, y)$ is convex for all $y \in \mathcal{Y}$. Moreover, it satisfies the Lipschitz property

$$egin{aligned} &\gamma(f_{ heta}(x),y)-\gamma(f_{ar{ heta}}(x),y)| &\leq & |f_{ heta}(x)-f_{ar{ heta}}(x)| \ &orall(x,y)\in\mathcal{X} imes\mathcal{Y}, \ orall heta, ar{ heta}\in\Theta. \end{aligned}$$

Assumption A

It holds that

$$K_m := \max_{1 \le k \le m} \frac{||\psi_k||_{\infty}}{\sigma_k} < \infty$$

Proof of Theorem 00000 000000 0000000 000000

Assumptions

Assumption B

There exists an $\eta > 0$ and strictly convex increasing G, such that for all $\theta \in \Theta$ with $||f_{\theta} - \overline{f}||_{\infty} \leq \eta$, one has

 $\mathcal{E}(f_{ heta}) \geq G(||f_{ heta} - \overline{f}||).$

Assumption C

There exists a function $D(\cdot)$ on the subsets of the index set $\{1, \ldots, m\}$, such that for all $\mathcal{K} \subset \{1, \ldots, m\}$, and for all $\theta \in \Theta$ and $\tilde{\theta} \in \Theta$, we have

$$\sum_{k \in \mathcal{K}} \sigma_k | heta_k - ilde{ heta}_k| \le \sqrt{D(\mathcal{K})} ||f_ heta - f_{ ilde{ heta}}||.$$

 $D_ heta := D(\{k : | heta_k| \ne 0\}).$

・ロト・西ト・西ト・西下・ ひゃつ

Proof of Theorem 00000 000000 0000000 0000000

Further quantities

The convex conjugate of the function G given in Assumption B is denoted H.

Smoothing parameter

Let

$$\bar{a}_n = 4a_n, \quad a_n := \left(\sqrt{\frac{2\log(2m)}{n}} + \frac{\log(2m)}{n}K_m\right)$$

Further let for t > 0,

$$\begin{split} \lambda_{n,0} &:= \lambda_{n,0}(t) \quad := \quad a_n \left(1 + t \sqrt{2(1 + 2a_n K_m)} + \frac{2t^2 a_n K_m}{3} \right) \\ \bar{\lambda}_{n,0} &:= \bar{\lambda}_{n,0}(t) \quad := \quad \bar{a}_n \left(1 + t \sqrt{2(1 + 2\bar{a}_n K_m)} + \frac{2t^2 \bar{a}_n K_m}{3} \right) \end{split}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

Proof of Theorem 00000 000000 0000000 0000000

Penalty Function

Let

$$I(\theta) := \sum_{k=1}^m \sigma_k |\theta_k|.$$

and $\hat{l}(\theta) = \sum_{k=1}^{m} \hat{\sigma}_k |\theta_k|$ its empirical l_1 norm. Moreover, for any θ and $\tilde{\theta}$ in Θ , let

$$I_1(heta| ilde{ heta}) := \sum_{k: ilde{ heta}_k
eq 0} \sigma_k | heta_k|, \ \ I_2(heta| ilde{ heta}) := I(heta) - I_1(heta| ilde{ heta}).$$

Likewise for the empirical versions:

$$\hat{l}_1(heta| ilde{ heta}) := \sum_{k: ilde{ heta}_k
eq 0} \hat{\sigma}_k | heta_k|, \;\; \hat{l}_2(heta| ilde{ heta}) := \hat{l}(heta) - \hat{l}_1(heta| ilde{ heta}).$$

Assumptions and Main Results

Proof of Theorem 00000 000000 0000000 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem 00000 00000 0000000 0000000

Nonrandom Normalization Weights in the Penalty

Quantities

Conditions

- It holds that $||f_{\theta_n^*} \overline{f}||_{\infty} \leq \eta$, where η is given in Assumption B.
- It holds that $||f_{\theta(\epsilon_n^*)} \bar{f}||_{\infty} \le \eta$, where η is given in Assumption B.

Proof of Theorem 00000 00000 0000000 0000000

Nonrandom Normalization Weights in the Penalty

THEOREM 2.1

Suppose Assumptions L, A, B and C, and Conditions I and II hold. Let λ_n , θ_n^* , ϵ_n^* and ζ_n^* be given. Assume σ_k is known for all k and let $\hat{\theta}_n$ be the lasso estimator. Then we have with probability at least

$$1-7\exp[-n\bar{a}_n^2t^2],$$

that

$$\mathcal{E}(f_{\hat{\theta}_n}) \leq 2\epsilon_n^*,$$

and moreover

$$2I(\hat{\theta}_n - \theta_n^*) \le 7\zeta_n^*.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆□ >

Assumptions and Main Results ○○○○ ○○○●○ ○○○ Proof of Theorem 00000 00000 0000000 0000000

Random Normalization Weights in the Penalty

Quantities

Conditions

Conditions I and II in nonrandom normalization case.
 √ ^{log(2m)}/_n K_m ≤ 0.13.

Proof of Theorem 00000 00000 0000000 0000000

Nonrandom Normalization Weights in the Penalty

THEOREM 2.2

Suppose Assumptions L, A, B and C, and Conditions I, II and III hold. Let λ_n , θ_n^* , ϵ_n^* and ζ_n^* be given, and the weights $\hat{\sigma}_k$ should be estimated. Take $\bar{\lambda}_{n,0} > 4\sqrt{\frac{\log(2m)}{n}} \times (1.6)$ Then with probability at least $1 - \alpha$, we have that

$$\mathcal{E}(f_{\hat{\theta}_n}) \leq 2\epsilon_n^*,$$

and moreover

$$2I(\hat{\theta}_n - \theta_n^*) \le 7\zeta_n^*.$$

Here $\alpha = \exp[-na_n^2 s^2] + 7 \exp[-n\bar{a}_n^2 t^2]$, with s > 0 being defined by $\frac{5}{9} = K_m \lambda_{n,0}(s)$, and t > 0 being defined by $\bar{\lambda}_{n,0} = \bar{\lambda}_{n,0}(t)$.

Assumptions and Main Results

Proof of Theorem 00000 000000 0000000 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Loss functions

Example of loss functions satisfying Assumptions L, B

Logistic Regression

$$\gamma_f(x,y) = [-f(x)y + \log(1 + \exp(f(x)))]/2$$

- Density estimation
- Hinge loss for support vector machine

$$\gamma_f(x,y)=(1-yf(x))_+.$$

However, the usual quadratic loss is not Lipschitz on the whole real line.

Proof of Theorem 00000 000000 0000000 0000000

Theorem 3.1

Suppose Assumptions A and C hold. Let λ_n , θ_n^* , ϵ_n^* and ζ_n^* be given, with $H(v) = v^2/2$, v > 0, but now with $\overline{\lambda}_{n,0}$ replaced by

$$ilde{\lambda}_{n,0} := \sqrt{rac{14}{9}} \sqrt{rac{2\log(2m)}{n} + 2t^2 ar{a}_n^2} + ar{\lambda}_{n,0}.$$

Assume moreover that $||f_{\theta_n^*} - \bar{f}||_{\infty} \leq \eta \leq 1/2$, that $6\zeta_n^* K_m + 2\eta \leq 1$, and that $\sqrt{\frac{\log(2m)}{n}} K_m \leq 0.33$. Let σ_k be known for all k and let $\hat{\theta}_n$ be the lasso estimator. Then with probability at least $1 - \alpha$, that

$$\begin{array}{rcl} \mathcal{E}(f_{\hat{\theta}_n}) &\leq & 2\epsilon_n^* \\ 2I(\hat{\theta}_n - \theta_n^*) &\leq & 7\zeta_n^* \end{array}$$

Here $\alpha = \exp[-na_n^2 s^2] + 7 \exp[-n\overline{a}_n^2 t^2]$, with s > 0 a soluntion of $\frac{9}{5} = K_m \lambda_{n,0}(s)$.

Assumptions and Main Results 00000 00000 000 ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

O Proof of Theorem

Preliminaries

- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem ○●○○○ ○○○○○ ○○○○○○ ○○○○○○○○

Concentration theorem

Let Z_1, \ldots, Z_n be independent random variables with values in space \mathcal{Z} and let Γ be a class of real-valued functions on \mathcal{Z} , satisfying for some positive constants η_n and τ_n

$$\begin{aligned} ||\gamma_n||_{\infty} &\leq \eta_n \ \forall \gamma \in \Gamma \\ \frac{1}{n} \sum_{i=1}^n var(\gamma(Z_i)) &\leq \tau_n^2 \ \forall \gamma \in \Gamma. \end{aligned}$$

Define

$$\mathbf{Z} := \sup_{\gamma \in \Gamma} |\frac{1}{n} \sum_{i=1}^{n} (\gamma(Z_i) - E\gamma(Z_i))|.$$

Then for z > 0,

$$\mathbf{P}\left(\mathbf{Z} \ge E\mathbf{Z} + z\sqrt{2(\tau_n^2 + 2\eta_n E\mathbf{Z})} + \frac{2z^2\eta_n}{3}\right) \le \exp[-nz^2].$$

Assumptions and Main Results 00000 00000 000 Proof of Theorem 00000 00000 000000 000000

Symmetrization theorem

Rademacher sequence

i.i.d. random variables $\epsilon_1, \ldots, \epsilon_n$, taking values ± 1 each with probability 1/2.

Let Z_1, \ldots, Z_n be independent random variables with values in \mathcal{Z} , and let $\epsilon_1, \ldots, \epsilon_n$ be a Rademacher sequence independent of Z_1, \ldots, Z_n . Let Γ be a class of real-valued functions on \mathcal{Z} . Then

$$E\left(\sup_{\gamma\in\Gamma}|\sum_{i=1}^{n}\{\gamma(Z_{i})-E\gamma(Z_{i})\}|\right)\leq 2E\left(\sup_{\gamma\in\Gamma}|\sum_{i=1}^{n}\epsilon_{i}\gamma(Z_{i})|\right).$$

Proof of Theorem 00000 00000 000000 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Contraction theorem

Let z_1, \ldots, z_n be nonrandom elements of some space \mathcal{Z} and let \mathcal{F} be a class of real-valued functions on \mathcal{Z} . Consider Lipschitz function $\gamma_i : \mathbf{R} \to \mathbf{R}$, that is,

$$|\gamma_i(s) - \gamma_i(\widetilde{s})| \leq |s - \widetilde{s}| \hspace{1em} orall \hspace{1em} s, \widetilde{s} \in {\sf R}$$

Let $\epsilon_1, \ldots, \epsilon_n$ be a Rademacher sequence. Then for any function $f^* : \mathcal{Z} \to \mathbf{R}$, we have

$$E\left(\sup_{f\in\mathcal{F}}\left|\sum_{i=1}^{n}\epsilon_{i}\{\gamma_{i}(f(z_{i}))-\gamma_{i}(f^{*}(z_{i}))\}\right|\right)$$
$$\leq 2E\left(\sup_{f\in\mathcal{F}}\left|\sum_{i=1}^{n}\epsilon_{i}(f(z_{i})-f^{*}(z_{i}))\right|\right).$$

Proof of Theorem

Lemma A.1

Let Z_1, \ldots, Z_n be independent \mathcal{Z} -valued random variables, and $\gamma_1, \ldots, \gamma_n$, be real-valued functions on \mathcal{Z} , satisfying for $k = 1, \ldots, m$,

$$E\gamma_k(Z_i)=0, \forall i \mid |\gamma_k||_{\infty} \leq \eta_n, \ \frac{1}{n}\sum_{i=1}^n E\gamma_k^2(Z_i) \leq \tau_n^2.$$

Then

$$E\left(\max_{1\leq k\leq m}\left|\frac{1}{n}\sum_{i=1}^{n}\gamma_k(Z_i)\right|\right)\leq \sqrt{\frac{2\tau_n^2\log(2m)}{n}}+\frac{\eta_n\log(2m)}{n}.$$

Assumptions and Main Results 00000 00000 000 Proof of Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem ○○○○ ○●○○○ ○○○○○○○ ○○○○○○○

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma A.2

Let $\epsilon_1, \ldots, \epsilon_n$ be Rademacher sequence, independent of the training set $(X_1, Y_1), \ldots, (X_n, Y_n)$. Moreover, fix some $\theta^* \in \Theta$ and let for M > 0, $\mathcal{F}_M := \{f_\theta : \theta \in \Theta, I(\theta - \theta^*) \leq M\}$ and

$$\mathbf{Z}(M) := \sup_{f \in \mathcal{F}_M} |(P_n - P)(\gamma_{f_{\theta}} - \gamma_{f_{\theta^*}})|,$$

We have

$$EZ(M) \leq 4ME\left(\max_{1\leq k\leq m}\left|\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\psi_{k}(X_{i})/\sigma_{k}\right|\right)$$

Proof of Theorem

Proof of Lemma A.2

$$\begin{aligned} \mathsf{EZ}(M) &\leq 2E \left(\sup_{f \in \mathcal{F}_M} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i \{ \gamma(f_\theta(X_i), Y_i) - \gamma(f_{\theta^*}(X_i), Y_i) \} \right| \right) \\ & E_{(X,Y)} \left(\sum_{f \in \mathcal{F}_M} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i \{ \gamma(f_\theta(X_i), Y_i) - \gamma(f_{\theta^*}(X_i), Y_i) \} \right| \right) \\ & \leq 2E_{(X,Y)} \left(\sup_{f \in \mathcal{F}_M} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f_\theta(X_i) - f_{\theta^*}(X_i)) \right| \right) \\ & \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f_\theta(X_i) - f_{\theta^*}(X_i)) \right| \leq \sum_{k=1}^m \sigma_k |\theta_k - \theta^*| \max_{1 \leq k \leq m} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i \psi_k(X_i) / \sigma_k \right| \\ & = \left| (\theta - \theta^*) \max_{1 \leq k \leq m} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i \psi_k(X_i) / \sigma_k \right| . \end{aligned}$$

Proof of Theorem

Lemma A.3

The distribution of X is denoted by Q, and the empirical distribution of covariates $\{X_i\}_{i=1}^n$ is written as Q_n .

Proof: This follows from $||\psi_k||_{\infty}/\sigma_k \leq K_m$ and $var(\psi_k(X))/\sigma_k^2 \leq 1$. So apply Lemma A.1 with $\eta_n = K_m$ and $\tau_n^2 = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Proof of Theorem

Corollary A.1

For all M > 0 and all $\theta \in \Theta$ with $I(\theta - \theta^*) \leq M$, it holds that

$$||\gamma_{f_{\theta}} - \gamma_{f_{\theta^*}}||_{\infty} \leq MK_m$$
$$P(\gamma_{f_{\theta}} - \gamma_{f_{\theta^*}})^2 \leq M^2.$$

Therefore, since by Lemma A.2 and Lemma A.3, for all M > 0,

$$\frac{E\mathbf{Z}(M)}{M} \leq \bar{\mathbf{a}}_n, \quad \bar{\mathbf{a}}_n = 4\mathbf{a}_n,$$

we have, in view of Bousquet's Concentration theorem, for all M > 0 and all t > 0,

$$\mathbf{P}\left(\mathbf{Z}(M) \geq \bar{a}_n M\left(1 + t\sqrt{2(1 + 2\bar{a}_n K_m)} + \frac{2t^2 \bar{a}_n K_m}{3}\right)\right) \leq \exp[-n\bar{a}_n^2 t^2].$$

Assumptions and Main Results 00000 00000 000 Proof of Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem ○○○○ ○●○○○○ ○●○○○○○○ ○○○○○○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A general theorem of nonrandom weights

Take
$$b > 0, d > 1$$
, and $d_b := d\left(\frac{b+d}{(d-1)b} \lor 1\right)$.
Quantities:

a
$$\lambda_n := (1+b)\bar{\lambda}_{n,0},$$
b $\mathcal{V}_{\theta} := 2\delta H(\frac{2\lambda_n\sqrt{D_{\theta}}}{\delta}), \text{ where } 0 < \delta < 1,$
a $\theta_n^* := \arg\min_{\theta \in \Theta} \{\mathcal{E}(f_{\theta}) + \mathcal{V}_{\theta}\},$
b $\epsilon_n^* := (1+\delta)\mathcal{E}(f_{\theta_n^*}) + \mathcal{V}_{\theta_n^*},$
c $\zeta_n^* := \frac{\epsilon_n^*}{\lambda_{n,0}},$
b $(\epsilon_n^*) := \arg\min_{\theta \in \Theta, I(\theta - \theta_n^*) \le d_b \zeta_n^* / b} \{\delta \mathcal{E}(f_{\theta}) - 2\lambda_n I_1(\theta - \theta_n^* | \theta_n^*)\}.$
Conditions same as in Theorem 2.1. Theorem 2.1 is the special case with $b = 1, \ \delta = 1/2$ and $d = 2.$

Proof of Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma A.4

Statement

1

Suppose conditions are met. For all $\theta \in \Theta$ with $I(\theta - \theta_n^*) \le d_b \zeta_n^* / b$, it holds that

$$2\lambda_n I_1(\theta - \theta_n^* | \theta_n^*) \leq \delta \mathcal{E}(f_\theta) + \epsilon_n^* - \mathcal{E}(f_{\theta_n^*}).$$

Proof:

$$egin{array}{rcl} 2\lambda_n l_1(heta- heta_n^*) &=& 2\lambda_n l_1(heta- heta_n^*) - \delta \mathcal{E}(f_ heta) + \delta \mathcal{E}(f_ heta) \ &\leq& 2\lambda_n l_1(heta(\epsilon_n^*)- heta_n^*) - \delta \mathcal{E}(f_{ heta(\epsilon^*)}) + \delta \mathcal{E}(f_ heta). \end{array}$$

By Assumption C, and Condition II,

$$2\lambda_n I_1(\theta(\epsilon_n^*) - \theta_n^*) \leq 2\lambda_n \sqrt{D_{\theta_n^*}} ||f_{\theta(\epsilon_n^*)} - f_{\theta_n^*}||.$$

Proof of Theorem ○○○○ ○○○○ ○○○●○○○○ ○○○○○

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof of Lemma A.4 (cont'd)

By the triangle inequality,

$$2\lambda_n \sqrt{D_{\theta_n^*}} ||f_{\theta(\epsilon_n^*)} - f_{\theta_n^*}|| \le 2\lambda_n \sqrt{D_{\theta_n^*}} ||f_{\theta(\epsilon_n^*)} - \bar{f}|| + 2\lambda_n \sqrt{D_{\theta_n^*}} ||f_{\theta(\epsilon_n^*)} - \bar{f}||.$$

It follows from conditions I and II, combined with Assumption B, that

$$2\lambda_n \sqrt{D_{\theta_n^*}||f_{\theta(\epsilon_n^*)} - f_{\theta_n^*}||} \leq \delta \mathcal{E}(f_{\theta(\epsilon_n^*)}) + \delta \mathcal{E}(f_{\theta_n^*}) + \mathcal{V}_{\theta_n^*}.$$

Hence, when $I(\theta - \theta_n^*) \leq d_b \zeta_n^* / b$,

$$egin{array}{rcl} 2\lambda_n I_1(heta- heta_n^*) &\leq & \delta \mathcal{E}(f_ heta)+\delta \mathcal{E}(f_{ heta_n^*})+\mathcal{V}_{ heta_n^*}\ &= & \delta \mathcal{E}(f_ heta)+\epsilon_n^*-\mathcal{E}(f_{ heta_n^*}). \end{array}$$

Proof of Theorem

Lemma A.5

Suppose Conditions I and II are met. Consider any (random) $\tilde{\theta} \in \Theta$ with $R_n(f_{\tilde{\theta}}) + \lambda_n I(\tilde{\theta}) \leq R_n(f_{\theta_n^*}) + \lambda_n I(\theta_n^*)$. Let $1 < d_0 \leq d_b$. Then

$$\mathbf{P}\left(I(\tilde{\theta}-\theta_n^*)\leq d_n\frac{\zeta_n^*}{b}\right)\leq \mathbf{P}\left(I(\tilde{\theta}-\theta_n^*)\leq \left(\frac{d_0+b}{1+b}\right)\frac{\zeta_n^*}{b}\right)+\exp[-n\bar{a}_n^2t^2]$$

Proof: Let $\tilde{\mathcal{E}} := \mathcal{E}(f_{\tilde{\theta}})$ and $\mathcal{E}^* := \mathcal{E}(f_{\theta_n^*})$. Since $R_n(f_{\tilde{\theta}}) + \lambda_n I(\tilde{\theta}) \leq R_n(f_{\theta_n^*}) + \lambda_n I(\theta_n^*)$, and known $I(\tilde{\theta} - \theta_n^*) \leq d_0 \zeta_n^* / b$, that

$$\tilde{\mathcal{E}} + \lambda_n I(\tilde{\theta}) \leq \mathbf{Z}(d_0 \zeta_n^*/b) + \mathcal{E}^* + \lambda_n I(\theta_n^*).$$

With probability at least $1 - \exp[-n\bar{a}_n^2 t^2]$, the random variable $\mathbf{Z}(d_0\zeta_n^*/b)$ is bounded by $\bar{\lambda}_{n,0}d_0\zeta_n^*/b$. But we then have

$$ilde{\mathcal{E}} + \lambda_n I(ilde{ heta}) \leq ar{\lambda}_{n,0} d_0 \zeta_n^* / b + \mathcal{E}^* + \lambda_n I(heta_n^*).$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Proof of Theorem

Proof of Lemma A.5 (cont'd) Then on event $\{I(\tilde{\theta} - \theta_n^*) \le d_0\zeta_n^*/b\} \cup \{\mathbf{Z}(d_0\zeta_n^*/b) \le \bar{\lambda}_{n,0}d_0\zeta_n^*/b\},\$ invoking $\lambda_n = (1+b)\bar{\lambda}_{n,0}, I(\tilde{\theta}) = I_1(\tilde{\theta}) + I_2(\tilde{\theta}) \text{ and } I(\theta_n^*) = I_1(\theta_n^*),\$ that

$$ilde{\mathcal{E}} + (1+b)ar{\lambda}_{n,0}I_2(ilde{ heta}) \leq ar{\lambda}_{n,0}rac{d_0\zeta_n^*}{b} + \mathcal{E}^* + (1+b)ar{\lambda}_{n,0}I_1(ilde{ heta} - heta_n^*).$$

But $I_2(\tilde{\theta}) = I_2(\tilde{\theta} - \theta_n^*)$. So if add another $(1 + b)\bar{\lambda}_{n,0}I_1(\tilde{\theta} - \theta_n^*)$ to both sides of the last inequality, we obtain

$$egin{aligned} & ilde{\mathcal{E}}+(1+b)ar{\lambda}_{n,0}I(ilde{ heta}- heta_n^*) &\leq & ar{\lambda}_{n,0}rac{d_0\zeta_n^*}{b}+2(1+b)ar{\lambda}_{n,0}I_1(ilde{ heta}- heta_n^*)+\mathcal{E}^* \ &\leq & ar{\lambda}_{n,0}rac{d_0\zeta_n^*}{b}+\delta ilde{\mathcal{E}}+\epsilon_n^* \ &= & (d_0+b)ar{\lambda}_{n,0}rac{\zeta_n^*}{b}+\delta ilde{\mathcal{E}}, \end{aligned}$$

The result follows as $\epsilon_n^* = \bar{\lambda}_{n,0}\zeta_n^*$ and $0 < \delta < 1$,

Proof of Theorem ○○○○ ○○○○○ ○○○○○ ○○○○○○

Corollary A.2 and Lemma A.6

Corollary A.2: Suppose conditions I and II are met. Let $d_0 \leq d_b$. For any (random) $\tilde{\theta} \in \Theta$ with $R_n(f_{\tilde{\theta}}) + \lambda_n I(\tilde{\theta}) \leq R_n(f_{\theta_n^*}) + \lambda_n I(\theta_n^*)$,

$$\begin{split} \mathbf{P}\left(I(\tilde{\theta}-\theta_n^*) \leq d_n \frac{\zeta_n^*}{b}\right) \\ \leq \mathbf{P}\left(I(\theta-\theta) \leq (1+(d_0+1)(1+b)^{-N})\frac{\zeta_n^*}{b}\right) + \exp[-n\bar{a}_n^2 t^2]. \end{split}$$

Lemma A.6: Suppose conditions I and II are met, define

$$\widetilde{ heta}_s = s\widehat{ heta}_n + (1-s) heta_n^*$$

 $s = rac{d\zeta_n^*}{d\zeta_n^* + bI(\widehat{ heta}_n - heta_n^*)}.$

Then for any integer N, with probability $1 - N \exp[-n\bar{a}_n^2 t^2]$ we have

$$I(ilde{ heta}_s- heta_n^*)\leq \left(1+(d-1)(1+b)^{-N}
ight)rac{\zeta_n^*}{b}.$$

Proof of Theorem

Lemma A.7

Statement

Suppose conditions I and II are met. Let $N_1 \in \mathbf{N}$ and $N_2 \in \mathbf{N} \cup \{0\}$. Define $\delta_1 = (1+b)^{-N_1}$ ($N_1 \ge 1$), and $\delta_2 = (1+b)^{-N_2}$. With probability at least $1 - (N_1 + N_2) \exp[-n\bar{a}_n^2 t^2]$, we have

$$I(\hat{\theta}_n - \theta_n^*) \leq d(\delta_1, \delta_2) \frac{\zeta_n^*}{b},$$

with

$$d(\delta_1, \delta_2) = 1 + \left(rac{1 + (d^2 - 1)\delta_1}{(d - 1)(1 - \delta_1)}
ight)\delta_2.$$

Assumptions and Main Results 00000 00000 000 Proof of Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

1 Introduction

2 Assumptions and Main Results

- Assumptions
- Main Results
- Discussion of Assumptions

3 Proof of Theorem

- Preliminaries
- Application to M-estimation with lasso penalty
- More Lemmas...
- Proof of main theorem

Proof of Theorem

Theorem A.4

Write

$$riangle(b,\delta,\delta_1,\delta_2):=d(\delta_1,\delta_2)rac{1-\delta^2}{\delta b}ee 1.$$

Suppose condition I and II are met. Let δ_1 and δ_2 as in Lemma A.7. We have the probability at least

$$1 - \left(\log_{1+b}\frac{(1+b)^2 \bigtriangleup (b, \delta, \delta_1, \delta_2)}{\delta_1 \delta_2}\right) \exp[-n\bar{a}_n^2 t^2],$$

that

$$egin{array}{rll} \mathcal{E}(f_{\hat{ heta}_n}) &\leq & rac{\epsilon_n^*}{1-\delta}, \ \mathcal{U}(\hat{ heta}_n- heta_n^*) &\leq & d(\delta_1,\delta_2)rac{\zeta_n^*}{b}. \end{array}$$

Proof of theorem A.4

Define $\hat{\mathcal{E}} := \mathcal{E}(\hat{f}_{\hat{\theta}_n})$ and $\mathcal{E}^* := \mathcal{E}(f_{\theta_n^*})$. Set $c := \frac{\delta b}{1-\delta^2}$, we consider the cases (a) $c < d(\delta_1, \delta_2)$ and (b) $c \ge d(\delta_1, \delta_2)$. (a): Suppose that first $c < d(\delta_1, \delta_2)$. Let J be an integer satisfying $(1 + b)^{J-1}c \le d(\delta_1, \delta_2)$ and $(1 + b)^Jc > d(\delta_1, \delta_2)$. Consider two cases:

(a1) If
$$c\zeta_n^*/b < I(\hat{ heta}_n - heta_n^*) \le d(\delta_1, \delta_2)\zeta_n^*/b$$
, then

$$(1+b)^{j-1}c\zeta_n^*/b < I(\hat{ heta}_n- heta_n^*) \leq (1+b)^j c\zeta_n^*/b$$

for some $j \in \{1, ..., J\}$. Expect on set with probability at most $\exp[-n\bar{a}_n^2 t^2]$, we thus have

$$\hat{\mathcal{E}} + (1+b)ar{\lambda}_{n,0}I(\hat{ heta}_n) \leq (1+b)ar{\lambda}_{n,0}I(\hat{ heta}_n - heta_n^*) + \mathcal{E}^* + (1+b)ar{\lambda}_{n,0}I(heta_n^*).$$

So then by similar arguments as in the proof of Lemma A.5,

$$\hat{\mathcal{E}} \leq 2(1+b)\bar{\lambda}_{n,0}I_1(\hat{\theta}_n-\theta_n^*)+\mathcal{E}^*.$$

Since $d(\delta_1, \delta_2) \leq d_b$, we obtain $\hat{\mathcal{E}} \leq \epsilon_n^* + \delta \hat{\mathcal{E}}$ so then $\hat{\mathcal{E}} \leq \frac{\epsilon_n^*}{1-\delta}$.

Proof of Theorem

Proof of theorem A.4 (cont'd)

(a2) If $I(\hat{\theta}_n - \theta_n^*) \le c\zeta_n^*/b$, except on a set with probability at most $\exp[-n\bar{a}_n^2 t^2]$, that

$$\hat{\mathcal{E}} + (1+b)\bar{\lambda}_{n,0}I(\hat{\theta}_n) \le \left(\frac{\delta}{1-\delta^2}\right)\bar{\lambda}_{n,0}\zeta_n^* + \mathcal{E}^* + (1+b)I(\theta_n^*), \quad (1)$$

Which gives

$$egin{aligned} \hat{\mathcal{E}} &\leq & \left(rac{\delta}{1-\delta^2}
ight)ar{\lambda}_{n,0}\zeta_n^*+\mathcal{E}^*+(1+b)ar{\lambda}_{n,0}I_1(\hat{ heta}_n- heta_n^*) \ &\leq & \left(rac{\delta}{1-\delta^2}
ight)ar{\lambda}_{n,0}\zeta_n^*+\mathcal{E}^*+rac{\delta}{2}\mathcal{E}^*+rac{\mathcal{V}_{ heta_n^*}}{2}+rac{\delta}{2}\hat{\mathcal{E}} \ &\leq & \left(rac{\delta}{1-\delta^2}+rac{1}{2}
ight)\epsilon_n^*+rac{\mathcal{E}^*}{2}+rac{\delta}{2}\hat{\mathcal{E}}. \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Proof of Theorem

Proof of theorem A.4 (cont'd)

This yields

$$\hat{\mathcal{E}} \leq \frac{2}{2-\delta} \left(\frac{\delta}{1-\delta^2} + \frac{1}{2} + \frac{1}{2(1+\delta)} \right) \epsilon_n^* = \frac{1}{1-\delta} \epsilon_n^*.$$

Furthermore, by lemma A.7, with probability at least $1 - (N_1 + N_2) \exp[-n\bar{a}_n^2 t^2]$, that

$$I(\hat{\theta}_n - \theta_n^*) \leq \frac{d(\delta_1, \delta_2)}{b} \zeta_n^*$$

The result follows from

$$J+1 \le \log_{1+b}\left(\frac{(1+b)^2 d(\delta_1, \delta_2)}{c}\right)$$
$$N_1 = \log_{1+b}\left(\frac{1}{\delta_1}\right) \quad N_2 = \log_{1+b}\left(\frac{1}{\delta_2}\right)$$

Proof of Theorem

(b) Finally, consider the case $c \ge d(\delta_1, \delta_2)$. Then on the set where $I(\hat{\theta}_n - \theta_n^*) \le d(\delta_1, \delta_2)\zeta_n^*/b$, again have that except on a subset with probability at most $\exp[-n\bar{a}_n^2 t^2]$,

$$egin{aligned} \hat{\mathcal{E}} + (1+b)ar{\lambda}_{n,0}I(\hat{ heta}_n) &\leq & d(\delta_1,\delta_2)rac{\zeta_n^*}{b} + \mathcal{E}^* + (1+b)I(heta_n^*) \ &\leq & \left(rac{\delta}{1-\delta^2}
ight)ar{\lambda}_{n,0}\zeta_n^* + \mathcal{E}^* + (1+b)I(heta_n^*), \end{aligned}$$

as

$$d(\delta_1,\delta_2)\leq c=rac{\delta b}{1-\delta_2}.$$

We arrive at the same inequality in (1) and may proceed as there. Note finally that also in this case

$$\begin{array}{ll} (N_1+N_2+1) &\leq & \log_{1+b} \frac{(1+b)^2}{\delta_1 \delta_2} \\ &\leq & \log_{1+b} \frac{(1+b)^2 \bigtriangleup (b,\delta,\delta_1,\delta_2)}{\delta_1 \delta_2}. \end{array}$$