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Introduction

Consider the model selection problem in linear model

y = Xβ + ε (1)

AIC, BIC, best subset selection. NP-hard problem !

LASSO: provide sparsity solution, model selection consistency: very
strong conditions(Zhang and Yu(2006))

SCAD: Oracle property, low dimension p3

n → 0 (Fan and Peng 2004)

Adaptive LASSO: Oracle property, low dimension (Zou 2006)

Dantzig selector: High dimension(p > n)), Oracle property in the
sense of Donoho and Johnstone. Need uniform uncertainty principle
condition(UUP) (Candes and Tao 2007). Linear Programming is slow
in ultrahigh dimension. p can not grow exponentially w.r.t n.

Jianqing Fan and Jinchi Lv (Journal of the Royal Statistical Society Series B. (2008) Presenter: Jingjiang Peng)Sure Independence Screening for Ultrahigh Dimensional Feature SpaceMarch 5, 2010 3 / 27



The challenges in high dimensional problems

x = (X1,X2, . . . ,Xp)T , and Σ = cov(x), z = Σ−1/2x. When p is larger
than n, we will meet the following difficulties

the matrix XTX is huge and singular. This causes trouble both in
theory and computation

the maximum spurious correlation between a covariate and the
response can be very large, which makes the model selection difficult

Σ may be singular or ill conditioned

The minimum non-zero coefficients |βi | may decay close to noise level.

The distribution of z may have heavy tails.
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An illustration
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Sure Independent Screening

Question: Is there any model selection procedure that can effectively
deal with ultrahigh dimensionality (p = O(en

α
)) and keep the Oracle

Property?

The answer: Sure Independency Screening (SIS), well in some sense!

Let M∗ = {1 ≤ i ≤ p : βi 6= 0}. The number of true non-zero
coefficients s = |M∗|, Mγ is the model selected by SIS with some
parameter γ. d = |Mγ | = [γn] < n

Main Result of SIS:
Theorem 1: Under some regular conditions,

P(M∗ ⊂Mγ) = 1− O(exp{−Cn1−2κ/log(n)}) (2)

SIS-SCAD or SIS-adaptive Lasso on Mγ can achieve Oracle Property
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SIS: A correlation learning method

Suppose X has been standardized The componentwise regression is

w = XT y (3)

SIS: For any given γ ∈ (0, 1), sort the p componentwise magnitudes
of the vector w in a decreasing order

Mγ = {1 ≤ i ≤ p : |wi | is among the first [γn] largest of all} (4)

SIS selects d = [γn] < n parameters, and reduce the dimension less
than n. SCAD, adaptive LASSO, Dantzig selector can applied to
achieve good properties, if SIS satisfies sure screening property

P(M∗ ⊂Mγ)→ 1 (5)
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SCAD, Adaptive Lasso, and Dantzig selector

SCAD:

min
1

2n

n∑
i=1

(Yi − x′iβ)2 +
d∑

i=1

pλ(|βj |)

where pλ(|βj |) is the SCAD penalty

Adaptive Lasso:

min
1

2n

n∑
i=1

(Yi − x′iβ)2 + λ

d∑
i=1

wj |βj |

where wj is the adaptive weight. Usually, it is related to least square
estimator

Dantzig selector

min‖ζ‖1 subject to ‖X′Mr‖∞ ≤ λdσ

where λd > 0 and r = y− XMζ
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Iteratively Thresholded Ridge Regression Screener (ITRRS)

Consider the ridge regression

wλ = (XTX + λIp)−1XT y (6)

wλ → β̂LS as λ→ 0

λwλ → w as λ→∞

For any given δ ∈ (0, 1), sort the p componentwise magnitudes of the
vector wλ in a descending order, and define

M1
δ,λ = {1 ≤ i ≤ p : |wλ

i | is among the first [δp] largest of all} (7)

This procedure reduces the model by a factor (1− δ). This procedure
can be applied iteratively until the remaining variable is less than n
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Steps of ITRRS

1 Carry out the procedure in submodel (7) to the full model {1, . . . , p}
and obtain a submodel M1

δ,λ with size [δp]

2 Apply a similar procedure to the model M1
δ,λ and obtain a submodel

M2
δ,λ ⊂M1

δ,λ with size [δ2p], and so on

3 Finally obtain a submodel Mδ,λ =Mk
δ,λ with the size d = [δkp] < n,

where [δk−1p] ≥ n

Main result of ITRRS:
Theorem 3: Under some regular conditions,

P(M∗ ⊂Mδ,λ) = 1− O(exp{−Cn1−2κ/log(n)}) (8)
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Regularity Conditions

condition 1. p > n and log(p) = O(nξ) for some ξ ∈ (0, 1− 2κ)

condition 2. z has a spherically symmetric distribution. Let
Z = (z1, . . . , zn)T , and there are some c , c1 > 1 and C1 > 0 such that

P{λmax(p̃−1Z̃ Z̃T ) > c1 or λmin(p̃−1Z̃ Z̃T ) < 1/c1} ≤ exp(−C1n)
(9)

holds for any n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p. Also
ε ∼ N(0, σ2)

condition 3. var(Y )=O(1) and for some κ ≥ 0 and c1, c3 > 0

mini∈M∗
|βj | ≥

c2
nκ

and mini∈M∗
|cov(β−1i Y ,Xi )| ≥ c3

condition 4. There are some τ ≥ 0 and c4 > 0 such

λmax(Σ) ≤ c4n
τ (10)
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Discussion about Regularity Conditions

The main part of condition 2 means that the n non-zero singular
value of the n × p̃ matrix Z̃ are in the same order, which is
reasonable. Because as p̃ →∞, p̃−1Z̃ Z̃T → In by random matrix
theory. This condition can be shared by a wide class of distribution.

The first part of condition 3 tells us that the smallest absolute value
of non-zero coefficients can be distinguished from noise. The second
part rules our the situation in which an important variable is
marginally uncorrelated with Y, but jointly correlated with Y.

Although condition 4 allows the largest eigenvalue of Σ to diverge as
n grows. We will see in the later theorem that τ must be a small
number less than 1
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Theorem 1

Thereom 1(accuracy of SIS): Under condition 1-4, if 2κ+ τ < 1 then
there is some θ < 1− 2κ− τ such that when γ ∼ cn−θ with c > 0, we
have, for some C > 0

P(M∗ ⊂Mγ) = 1− O(exp{−Cn1−2κ/log(n)}) (11)

let O(p) denote the orthogonal group, that is for any matrix
Ap×p ∈ O(p), ATA = 0. By the condition 2, the distribution of z is
invariant under O(p). Let Sq−1 = {x ∈ Rq : ‖x‖ = 1} be the q
dimensional unit ball.

Let µ
1/2
1 , . . . , µ

1/2
n be the singular value of Z , by SVD

Zn×p = Vn×nDn×pUp×p

where V ∈ O(n), U ∈ O(p), D = (diag(µ
1/2
1 , . . . , µ

1/2
n ), 0, . . . , 0)
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Lemma 1

S = (ZTZ )+ZTZ = UTdiag(In, 0)U, where (ZTZ )+ is the
Moore-Penrose generalized inverse.

From the SVD, (In, 0)n×pU = diag(1/µ
1/2
1 , . . . , 1/µ

1/2
n )V TZ

By condition 2, ZQ =d Z for any Q ∈ O(p)

Given V and (µ1, . . . , µn)T , the conditional distribution of (In, 0)U is
invariant under O(p)

Lemma 1: (In, 0)U =d (In, 0)Ū and (µ1, . . . , µn)T is independent of
(In, 0)U, where Ū is uniformly distributed on the orthogonal group O(p)
and µ1, . . . , µn are n eigenvalues of ZZT
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Lemma

Lemma 2: < Se1, e1 >=d χ2
n

χ2
n+χ

2
p−n

Proof : S =d UTdiag(In, 0)U where U is uniformly distributed on O(p).
Ue1 is a random vector uniformly distributed on the unit ball Sp−1.

Let W = (W1, . . . ,Wp)T ∼ N(0, Ip) then Ue1 =d W
‖W‖ , and

< Se1, e1 >= (Ue1)Tdiag(In, 0)Ue1 =d W 2
1 + . . .W 2

n

W 2
1 + · · ·+ W 2

p

Lemma 2 says < Se1, e1 > is a beta distribution. By the property of Beta
distribution we have
Lemma 4: For any C > 0, there are 0 < c1 < 1 < c2, such that

P(< Se1, e1 >< c1
n

p
or > c2

n

p
) ≤ 4 exp(−Cn) (12)
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Lemma 5. Let Se1 = (V1,V2, . . . ,Vp)T , then, given V1 = v , the random
vector (V2, . . . ,Vp)T is uniformly distributed on the sphere
Sp−2(

√
v − v2). Moreover, for any C > 0, there are some c > 1 such that

P(|V2| > cn1/2p−1|W |) ≤ 3 exp(−Cn) (13)

where W ∼ N(0, 1)
Main Idea of proof: Let V = (V1, . . . ,Vp)T . For Q ∈ O(p − 1), define
Q̃ = diag(1,Q) ∈ O(p), then

Q̃V =d (UQ̃T )Tdiag(In, 0)(UQ̃T )Q̃e1 =d UTdiag(In, 0)Ue1 =d V

Similar to Lemma 2, conditional on V1

V2 =d
√
V1 − V 2

1

W1√
W 2

1 + · · ·+ W 2
p−1

Where W1, . . . ,Wp−1 are i.i.d standard normal.
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Proof of theorem 1

Step 1: Let δ ∈ (0, 1), define the submodel

M̃1
δ = {1 ≤ i ≤ p : |wi | is among the first [δp] largest of all} (14)

Show that

P(M∗ ⊂ M̃
1
δ) = 1− O(exp{−Cn1−2κ/log(n)}) (15)

X = ZΣ1/2, and

XTX = pΣ1/2ŨTdiag(µ1, . . . , µn)ŨΣ1/2

Here µ1, . . . µn are n eigenvalue of p−1ZZT , Ũ = (In, 0)n×pU

w = XTXβ + XTε = ξ + η
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Step 1.1: Deal with ξ
Step 1.1.1: Bounding ‖ξ‖ from above:

P{‖ξ‖2 > O(n1+τp)} ≤ O(exp(−Cn))

First
‖ξ‖2 ≤ p2λmax(Σ)λmax(p−1ZZT )2βTΣ1/2ŨT ŨΣ1/2β

Let Q ∈ O(p) such that Σ1/2β = ‖Σ1/2β‖Qe1,then

βTΣ1/2ŨT ŨΣ1/2β =d ‖Σ1/2β‖2 < Se1, e1 >

By Lemma 4 and |Σ1/2β‖2 = βTΣβ ≤ var(Y ) = O(1)

P{βTΣ1/2ŨT ŨΣ1/2β > O(
n

p
)} ≤ O(exp(−Cn))

Finally note λmax(Σ) = O(nτ ) and P{λmax(p−1ZZT ) > c1} ≤ exp(−C1n)
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Step 1.1.2: Bounding ‖ξi‖, i ∈M∗ from above:

P(|ξi | < cn1−κ) ≤ O[exp{−Cn1−2κ/log(n)}] ı ∈M∗ (16)

Step 1.2 Deal with η
Step 1.2.1: Bounding ‖η‖ from above:

P{‖η‖2 > O(n1+τp)} ≤ O(exp(−Cn)) (17)

Step 1.2.2: Bounding |ηi | from above:

P{maxi |ηi | > o(n1−κ)} ≤ O[exp{−Cn1−2κ/log(n)}] (18)

Setp 1.3: Combine the result in 1.1 and 1.2, we have

P(mini∈M∗
|wi | < c1n

1−κ or ‖w‖2 > c2n
1+τp) ≤ O[s exp{−Cn1−2κ/log(n)}]

(19)
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The above equation imply that for some c > 0

#{1 ≤ k ≤ p : |wk | ≥ mini∈M∗
|wi |} ≤ c

n1+τp

(n1−κ)2
=

cp

n1−2κ−τ
(20)

If we choose δ such that δn1−2κ−τ →∞ then

P(M∗ ⊂ M̃
1
δ) = 1− O(exp{−Cn1−2κ/log(n)}) (21)

holds for some constant C > 0
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Step 2: Fix arbitrary r ∈ (0, 1) and choose the shrinking factor δ of the
form (n/p)1/(k−r) for some integer k ≥ 1.

Carry out procedure (14) and obtain a submodel M̃1
δ with size [δp]

Apply the similar procedure to model M̃1
δ to obtain a submodel

M̃2
δ ⊂ M̃

1
δ with [δ2p], and go on

Finally obtain a submodel M̃δ = M̃k
δ with size

d = [δkp] = [δrn] < n, where [δk−1p] = [δr−1n] > n

It is easy to see M̃δ =Mγ where γ = δr < 1
How to choose δ?
For fixed θ1 ∈ (0, 1− 2κ− τ) and pick some r < 1 very close to 1 such
that θ0 = θ1

r < 1− 2κ− τ . Choose δ such that

δn1−2κ−τ →∞ and δnθ0 → 0

The corresponding γ is

γnr(1−2κ−τ) →∞ and γnθ1 → 0
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Final Step to Prove Theorem 1

Based on the above steps

P(M∗ ⊂ M̃
i
δ|M∗ ⊂ M̃

i−1
δ ) = 1− O(exp{−Cn1−2κ/log(n)}) (22)

Then
P(M∗ ⊂Mγ) = 1− O(kexp{−Cn1−2κ/log(n)}) (23)

Note by the requirement of δ, k = O{log(p)/log(n)}, which is of order
O(nξ/log(n)). So

P(M∗ ⊂Mγ) = 1− O(exp{−Cn1−2κ/log(n)}) (24)

The condition of γ holds for γ ∼ cn−θ with θ < 1− 2κ− τ
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Theorem 2 and Theorem 3

Theorem 2: (Asymptotic sure screening) Under condition 1-4, if
2κ+ τ < 1, λ(p3/2n)−1 →∞ and δn1−2κ−τ →∞, the we have for
some C > 0,

P(M∗ ⊂M1
δ,γ) = 1− O(exp{−Cn1−2κ/log(n)}) (25)

Theorem 3:(Accuracy of ITRRS) Let the assumptions of theorem 2 be
satisfied. If δnθ →∞ for come θ < 1− 2κ− τ , then successive
applications of ITRRS for k times results in a submodel Mδ,λ with
size d = [δkp] < n such that for some C > 0

P(M∗ ⊂Mδ,γ) = 1− O(exp{−Cn1−2κ/log(n)}) (26)

The proofs are similar to theorem 1
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Oracle Property of SIS-SCAD

Theorem 5: if d = o(n1/3) and the assumptions of theorem in Fan and
Peng (2004) are satisfied, then, with probability tending to 1, the
SIS-SCAD estimator β̂SCAD satisfies

β̂i = 0 for any i /∈M∗
the components of β̂SCAD in M∗ perform as well as if the true model
M∗ were known
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A Simulation Example

Two models with (n, p) = (200, 1000) and (n, p) = (800, 20000). The
sizes s of the true models are 8 and 18.

The non-zero coefficients are randomly chosen as follows. Let
a = 4log(n)/n1/2 and 5log(n)/n1/2 for two different models, pick
non-zero coefficients of the form (−1)u(a + |z |) for each model,
where u ∼ Bernoulli(0.4) and z ∼ N(0, 1)

The l2 norms ‖β‖ of the two simulated models are set 6.795 and
8.908

These settings are not trivial since there is non-negligible sample
correlation between the predictors
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Discussion

Randomized design

Are the regularization conditions reasonable?

Correlation screening for Linear model. Are there any other screening
methods for more general models?

What is the relation between the correlation screening and multiple
comparison?

How to choose the tuning parameter γ, λ and δ?

Σ may become singular when p is really large. Z is not well defined in
this case.
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