# Sure Independence Screening for Ultrahigh Dimensional Feature Space 

Jianqing Fan and Jinchi Lv<br>Journal of the Royal Statistical Society Series B. (2008)<br>Presenter: Jingjiang Peng<br>March 5, 2010

## Outline

(1) Introduction
(2) Sure Independent Screening (SIS)
(3) Iteratively Thresholded Ridge Regression Screener (ITRRS)
(4) Regularity Conditions
(5) Theorems and Proof
(6) Numerical Studies

## Introduction

- Consider the model selection problem in linear model

$$
\begin{equation*}
y=X \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

- AIC, BIC, best subset selection. NP-hard problem !
- LASSO: provide sparsity solution, model selection consistency: very strong conditions(Zhang and $\mathrm{Yu}(2006)$ )
- SCAD: Oracle property, low dimension $\frac{p^{3}}{n} \rightarrow 0$ (Fan and Peng 2004)
- Adaptive LASSO: Oracle property, low dimension (Zou 2006)
- Dantzig selector: High dimension $(p>n)$ ), Oracle property in the sense of Donoho and Johnstone. Need uniform uncertainty principle condition(UUP) (Candes and Tao 2007). Linear Programming is slow in ultrahigh dimension. $p$ can not grow exponentially w.r.t $n$.


## The challenges in high dimensional problems

$\mathrm{x}=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{T}$, and $\boldsymbol{\Sigma}=\operatorname{cov}(\mathrm{x}), \mathrm{z}=\boldsymbol{\Sigma}^{-1 / 2} \mathrm{x}$. When $p$ is larger than $n$, we will meet the following difficulties

- the matrix $X^{T} X$ is huge and singular. This causes trouble both in theory and computation
- the maximum spurious correlation between a covariate and the response can be very large, which makes the model selection difficult
- $\boldsymbol{\Sigma}$ may be singular or ill conditioned
- The minimum non-zero coefficients $\left|\beta_{i}\right|$ may decay close to noise level.
- The distribution of $z$ may have heavy tails.


## An illustration



Figure 1: Distributions of the maximum absolute sample correlation coefficient when $n=60, p=1000$ (solid curve) and $n=60, p=5000$ (dashed curve).

## Sure Independent Screening

- Question: Is there any model selection procedure that can effectively deal with ultrahigh dimensionality $\left(p=O\left(e^{n^{\alpha}}\right)\right)$ and keep the Oracle Property?


## Sure Independent Screening

- Question: Is there any model selection procedure that can effectively deal with ultrahigh dimensionality $\left(p=O\left(e^{n^{\alpha}}\right)\right)$ and keep the Oracle Property?
- The answer: Sure Independency Screening (SIS), well in some sense!
- Let $\mathcal{M}_{*}=\left\{1 \leq i \leq p: \beta_{i} \neq 0\right\}$. The number of true non-zero coefficients $s=\left|\mathcal{M}_{*}\right|, \mathcal{M}_{\gamma}$ is the model selected by SIS with some parameter $\gamma . d=\left|\mathcal{M}_{\gamma}\right|=[\gamma n]<n$
- Main Result of SIS:

Theorem 1: Under some regular conditions,

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\gamma}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{2}
\end{equation*}
$$

- SIS-SCAD or SIS-adaptive Lasso on $\mathcal{M}_{\gamma}$ can achieve Oracle Property


## SIS: A correlation learning method

- Suppose $X$ has been standardized The componentwise regression is

$$
\begin{equation*}
\mathrm{w}=\mathrm{X}^{T} \mathrm{y} \tag{3}
\end{equation*}
$$

- SIS: For any given $\gamma \in(0,1)$, sort the $p$ componentwise magnitudes of the vector $w$ in a decreasing order

$$
\begin{equation*}
\mathcal{M}_{\gamma}=\left\{1 \leq i \leq p:\left|w_{i}\right| \text { is among the first }[\gamma n] \text { largest of all }\right\} \tag{4}
\end{equation*}
$$

- SIS selects $d=[\gamma n]<n$ parameters, and reduce the dimension less than n. SCAD, adaptive LASSO, Dantzig selector can applied to achieve good properties, if SIS satisfies sure screening property

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\gamma}\right) \rightarrow 1 \tag{5}
\end{equation*}
$$

## SCAD, Adaptive Lasso, and Dantzig selector

- SCAD:

$$
\min \frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-x_{i}^{\prime} \boldsymbol{\beta}\right)^{2}+\sum_{i=1}^{d} p_{\lambda}\left(\left|\beta_{j}\right|\right)
$$

where $p_{\lambda}\left(\left|\beta_{j}\right|\right)$ is the SCAD penalty

- Adaptive Lasso:

$$
\min \frac{1}{2 n} \sum_{i=1}^{n}\left(Y_{i}-x_{i}^{\prime} \boldsymbol{\beta}\right)^{2}+\lambda \sum_{i=1}^{d} w_{j}\left|\beta_{j}\right|
$$

where $w_{j}$ is the adaptive weight. Usually, it is related to least square estimator

- Dantzig selector

$$
\min \|\zeta\|_{1} \text { subject to }\left\|\mathrm{X}_{\mathcal{M}}^{\prime} r\right\|_{\infty} \leq \lambda_{d} \sigma
$$

where $\lambda_{d}>0$ and $r=\mathrm{y}-\mathrm{X}_{\mathcal{M}} \zeta$

## Iteratively Thresholded Ridge Regression Screener (ITRRS)

- Consider the ridge regression

$$
\begin{gather*}
\mathrm{w}^{\lambda}=\left(\mathrm{X}^{T} \mathrm{X}+\lambda I_{p}\right)^{-1} \mathrm{X}^{T} \mathrm{y}  \tag{6}\\
\mathrm{w}^{\lambda} \rightarrow \hat{\boldsymbol{\beta}}_{L S} \text { as } \lambda \rightarrow 0 \\
\lambda \mathrm{w}^{\lambda} \rightarrow \mathrm{w} \text { as } \lambda \rightarrow \infty
\end{gather*}
$$

- For any given $\delta \in(0,1)$, sort the $p$ componentwise magnitudes of the vector $w^{\lambda}$ in a descending order, and define

$$
\begin{equation*}
\mathcal{M}_{\delta, \lambda}^{1}=\left\{1 \leq i \leq p:\left|w_{i}^{\lambda}\right| \text { is among the first }[\delta p] \text { largest of all }\right\} \tag{7}
\end{equation*}
$$

- This procedure reduces the model by a factor $(1-\delta)$. This procedure can be applied iteratively until the remaining variable is less than $n$


## Steps of ITRRS

(1) Carry out the procedure in submodel (7) to the full model $\{1, \ldots, p\}$ and obtain a submodel $\mathcal{M}_{\delta, \lambda}^{1}$ with size $[\delta p]$
(2) Apply a similar procedure to the model $\mathcal{M}_{\delta, \lambda}^{1}$ and obtain a submodel $\mathcal{M}_{\delta, \lambda}^{2} \subset \mathcal{M}_{\delta, \lambda}^{1}$ with size $\left[\delta^{2} p\right]$, and so on
(3) Finally obtain a submodel $\mathcal{M}_{\delta, \lambda}=\mathcal{M}_{\delta, \lambda}^{k}$ with the size $d=\left[\delta^{k} p\right]<n$, where $\left[\delta^{k-1} p\right] \geq n$

Main result of ITRRS:
Theorem 3: Under some regular conditions,

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\delta, \lambda}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{8}
\end{equation*}
$$

## Regularity Conditions

- condition 1. $p>n$ and $\log (p)=O\left(n^{\xi}\right)$ for some $\xi \in(0,1-2 \kappa)$
- condition $2 . z$ has a spherically symmetric distribution. Let $Z=\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{n}\right)^{T}$, and there are some $c, c_{1}>1$ and $C_{1}>0$ such that

$$
\begin{equation*}
P\left\{\lambda_{\max }\left(\tilde{p}^{-1} \tilde{Z} \tilde{Z}^{T}\right)>c_{1} \text { or } \lambda_{\min }\left(\tilde{p}^{-1} \tilde{Z} \tilde{Z}^{T}\right)<1 / c_{1}\right\} \leq \exp \left(-C_{1} n\right) \tag{9}
\end{equation*}
$$

holds for any $n \times \tilde{p}$ submatrix $\tilde{Z}$ of $Z$ with $c n<\tilde{p} \leq p$. Also $\epsilon \sim N\left(0, \sigma^{2}\right)$

- condition 3. $\operatorname{var}(Y)=O(1)$ and for some $\kappa \geq 0$ and $c_{1}, c_{3}>0$

$$
\min _{i \in \mathcal{M}_{*}}\left|\beta_{j}\right| \geq \frac{c_{2}}{n^{\kappa}} \text { and } \min _{i \in \mathcal{M}_{*}}\left|\operatorname{cov}\left(\beta_{i}^{-1} Y, X_{i}\right)\right| \geq c_{3}
$$

- condition 4 . There are some $\tau \geq 0$ and $c_{4}>0$ such

$$
\begin{equation*}
\lambda_{\max }(\boldsymbol{\Sigma}) \leq c_{4} n^{\tau} \tag{10}
\end{equation*}
$$

## Discussion about Regularity Conditions

- The main part of condition 2 means that the $n$ non-zero singular value of the $n \times \tilde{p}$ matrix $\tilde{Z}$ are in the same order, which is reasonable. Because as $\tilde{p} \rightarrow \infty, \tilde{p}^{-1} \tilde{Z} \tilde{Z}^{T} \rightarrow I_{n}$ by random matrix theory. This condition can be shared by a wide class of distribution.
- The first part of condition 3 tells us that the smallest absolute value of non-zero coefficients can be distinguished from noise. The second part rules our the situation in which an important variable is marginally uncorrelated with Y , but jointly correlated with Y .
- Although condition 4 allows the largest eigenvalue of $\boldsymbol{\Sigma}$ to diverge as $n$ grows. We will see in the later theorem that $\tau$ must be a small number less than 1


## Theorem 1

Thereom 1(accuracy of SIS): Under condition 1-4, if $2 \kappa+\tau<1$ then there is some $\theta<1-2 \kappa-\tau$ such that when $\gamma \sim c n^{-\theta}$ with $c>0$, we have, for some $C>0$

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\gamma}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{11}
\end{equation*}
$$

- let $\mathcal{O}(p)$ denote the orthogonal group, that is for any matrix $A_{p \times p} \in \mathcal{O}(p), A^{T} A=0$. By the condition 2, the distribution of z is invariant under $\mathcal{O}(p)$. Let $S^{q-1}=\left\{x \in \mathbb{R}^{q}:\|x\|=1\right\}$ be the $q$ dimensional unit ball.
- Let $\mu_{1}^{1 / 2}, \ldots, \mu_{n}^{1 / 2}$ be the singular value of $Z$, by SVD

$$
Z_{n \times p}=V_{n \times n} D_{n \times p} U_{p \times p}
$$

where $V \in \mathcal{O}(n), U \in \mathcal{O}(p), D=\left(\operatorname{diag}\left(\mu_{1}^{1 / 2}, \ldots, \mu_{n}^{1 / 2}\right), 0, \ldots, 0\right)$

## Lemma 1

- $S=\left(Z^{T} Z\right)^{+} Z^{T} Z=U^{T} \operatorname{diag}\left(I_{n}, 0\right) U$, where $\left(Z^{T} Z\right)^{+}$is the Moore-Penrose generalized inverse.
- From the SVD, $\left(I_{n}, 0\right)_{n \times p} U=\operatorname{diag}\left(1 / \mu_{1}^{1 / 2}, \ldots, 1 / \mu_{n}^{1 / 2}\right) V^{T} Z$
- By condition 2, $Z Q={ }^{d} Z$ for any $Q \in \mathcal{O}(p)$
- Given $V$ and $\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$, the conditional distribution of $\left(I_{n}, 0\right) U$ is invariant under $\mathcal{O}(p)$
Lemma 1: $\left(I_{n}, 0\right) U={ }^{d}\left(I_{n}, 0\right) \bar{U}$ and $\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$ is independent of $\left(I_{n}, 0\right) U$, where $\bar{U}$ is uniformly distributed on the orthogonal group $\mathcal{O}(p)$ and $\mu_{1}, \ldots, \mu_{n}$ are $n$ eigenvalues of $Z Z^{T}$


## Lemma

Lemma 2: $<S e_{1}, e_{1}>=^{d} \frac{\chi_{n}^{2}}{\chi_{n}^{2}+\chi_{p-n}^{2}}$
Proof: $S={ }^{d} U^{T} \operatorname{diag}\left(I_{n}, 0\right) U$ where $U$ is uniformly distributed on $\mathcal{O}(p)$. $U e_{1}$ is a random vector uniformly distributed on the unit ball $S^{p-1}$.
Let $W=\left(W_{1}, \ldots, W_{p}\right)^{T} \sim N\left(0, I_{p}\right)$ then $U e_{1}={ }^{d} \frac{W}{\|W\|}$, and

$$
<S e_{1}, e_{1}>=\left(U e_{1}\right)^{T} \operatorname{diag}\left(I_{n}, 0\right) U e_{1}=^{d} \frac{W_{1}^{2}+\ldots W_{n}^{2}}{W_{1}^{2}+\cdots+W_{p}^{2}}
$$

Lemma 2 says $<S e_{1}, e_{1}>$ is a beta distribution. By the property of Beta distribution we have
Lemma 4: For any $C>0$, there are $0<c_{1}<1<c_{2}$, such that

$$
\begin{equation*}
P\left(<S e_{1}, e_{1}><c_{1} \frac{n}{p} \text { or }>c_{2} \frac{n}{p}\right) \leq 4 \exp (-C n) \tag{12}
\end{equation*}
$$

Lemma 5. Let $S e_{1}=\left(V_{1}, V_{2}, \ldots, V_{p}\right)^{T}$, then, given $V_{1}=v$, the random vector $\left(V_{2}, \ldots, V_{p}\right)^{T}$ is uniformly distributed on the sphere $S^{p-2}\left(\sqrt{v-v^{2}}\right)$. Moreover, for any $C>0$, there are some $c>1$ such that

$$
\begin{equation*}
P\left(\left|V_{2}\right|>c n^{1 / 2} p^{-1}|W|\right) \leq 3 \exp (-C n) \tag{13}
\end{equation*}
$$

where $W \sim N(0,1)$
Main Idea of proof: Let $V=\left(V_{1}, \ldots, V_{p}\right)^{T}$. For $Q \in \mathcal{O}(p-1)$, define $\tilde{Q}=\operatorname{diag}(1, Q) \in \mathcal{O}(p)$, then

$$
\tilde{Q} V={ }^{d}\left(U \tilde{Q}^{T}\right)^{T} \operatorname{diag}\left(I_{n}, 0\right)\left(U \tilde{Q}^{T}\right) \tilde{Q} e_{1}={ }^{d} U^{T} \operatorname{diag}\left(I_{n}, 0\right) U e_{1}={ }^{d} V
$$

Similar to Lemma 2, conditional on $V_{1}$

$$
V_{2}={ }^{d} \sqrt{V_{1}-V_{1}^{2}} \frac{W_{1}}{\sqrt{W_{1}^{2}+\cdots+W_{p-1}^{2}}}
$$

Where $W_{1}, \ldots, W_{p-1}$ are i.i.d standard normal.

## Proof of theorem 1

Step 1: Let $\delta \in(0,1)$, define the submodel

$$
\begin{equation*}
\tilde{\mathcal{M}}_{\delta}^{1}=\left\{1 \leq i \leq p:\left|w_{i}\right| \text { is among the first }[\delta p] \text { largest of all }\right\} \tag{14}
\end{equation*}
$$

Show that

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \tilde{\mathcal{M}}_{\delta}^{1}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{15}
\end{equation*}
$$

$X=\boldsymbol{Z} \boldsymbol{\Sigma}^{1 / 2}$, and

$$
X^{T} X=p \boldsymbol{\Sigma}^{1 / 2} \tilde{U}^{T} \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) \tilde{U} \boldsymbol{\Sigma}^{1 / 2}
$$

Here $\mu_{1}, \ldots \mu_{n}$ are $n$ eigenvalue of $p^{-1} Z Z^{T}, \tilde{U}=\left(I_{n}, 0\right)_{n \times p} U$

$$
w=X^{\top} X \beta+X^{\top} \epsilon=\xi+\eta
$$

Step 1.1: Deal with $\boldsymbol{\xi}$
Step 1.1.1: Bounding $\|\boldsymbol{\xi}\|$ from above:

$$
P\left\{\|\boldsymbol{\xi}\|^{2}>O\left(n^{1+\tau} p\right)\right\} \leq O(\exp (-C n))
$$

First

$$
\|\boldsymbol{\xi}\|^{2} \leq p^{2} \lambda_{\max }(\boldsymbol{\Sigma}) \lambda_{\max }\left(p^{-1} Z Z^{T}\right)^{2} \boldsymbol{\beta}^{T} \boldsymbol{\Sigma}^{1 / 2} \tilde{U}^{T} \tilde{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}
$$

Let $Q \in \mathcal{O}(p)$ such that $\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}=\left\|\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}\right\| Q e_{1}$, then

$$
\boldsymbol{\beta}^{T} \boldsymbol{\Sigma}^{1 / 2} \tilde{U}^{T} \tilde{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}={ }^{d}\left\|\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}\right\|^{2}<S e_{1}, e_{1}>
$$

By Lemma 4 and $\mid \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta} \|^{2}=\boldsymbol{\beta}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{\beta} \leq \operatorname{var}(Y)=O(1)$

$$
P\left\{\boldsymbol{\beta}^{T} \boldsymbol{\Sigma}^{1 / 2} \tilde{U}^{T} \tilde{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\beta}>O\left(\frac{n}{p}\right)\right\} \leq O(\exp (-C n))
$$

Finally note $\lambda_{\max }(\boldsymbol{\Sigma})=O\left(n^{\tau}\right)$ and $P\left\{\lambda_{\max }\left(p^{-1} Z Z^{T}\right)>c_{1}\right\} \leq \exp \left(-C_{1} n\right)$

Step 1.1.2: Bounding $\left\|\xi_{i}\right\|, i \in \mathcal{M}_{*}$ from above:

$$
\begin{equation*}
P\left(\left|\xi_{i}\right|<c n^{1-\kappa}\right) \leq O\left[\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right] \quad \mid \in \mathcal{M}_{*} \tag{16}
\end{equation*}
$$

Step 1.2 Deal with $\boldsymbol{\eta}$
Step 1.2.1: Bounding $\|\boldsymbol{\eta}\|$ from above:

$$
\begin{equation*}
P\left\{\|\boldsymbol{\eta}\|^{2}>O\left(n^{1+\tau} p\right)\right\} \leq O(\exp (-C n)) \tag{17}
\end{equation*}
$$

Step 1.2.2: Bounding $\left|\eta_{i}\right|$ from above:

$$
\begin{equation*}
P\left\{\max _{i}\left|\eta_{i}\right|>o\left(n^{1-\kappa}\right)\right\} \leq O\left[\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right] \tag{18}
\end{equation*}
$$

Setp 1.3: Combine the result in 1.1 and 1.2, we have
$P\left(\min _{i \in \mathcal{M}_{*}}\left|w_{i}\right|<c_{1} n^{1-\kappa}\right.$ or $\left.\|\mathrm{w}\|^{2}>c_{2} n^{1+\tau} p\right) \leq O\left[s \exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right]$

The above equation imply that for some $c>0$

$$
\begin{equation*}
\#\left\{1 \leq k \leq p:\left|w_{k}\right| \geq \min _{i \in \mathcal{M}_{*}}\left|w_{i}\right|\right\} \leq c \frac{n^{1+\tau} p}{\left(n^{1-\kappa}\right)^{2}}=\frac{c p}{n^{1-2 \kappa-\tau}} \tag{20}
\end{equation*}
$$

If we choose $\delta$ such that $\delta n^{1-2 \kappa-\tau} \rightarrow \infty$ then

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \tilde{\mathcal{M}}_{\delta}^{1}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{21}
\end{equation*}
$$

holds for some constant $C>0$

Step 2: Fix arbitrary $r \in(0,1)$ and choose the shrinking factor $\delta$ of the form $(n / p)^{1 /(k-r)}$ for some integer $k \geq 1$.

- Carry out procedure (14) and obtain a submodel $\tilde{\mathcal{M}}_{\delta}^{1}$ with size $[\delta p]$
- Apply the similar procedure to model $\tilde{\mathcal{M}}_{\delta}^{1}$ to obtain a submodel $\tilde{\mathcal{M}}_{\delta}^{2} \subset \tilde{\mathcal{M}}_{\delta}^{1}$ with $\left[\delta^{2} p\right]$, and go on
- Finally obtain a submodel $\tilde{\mathcal{M}}_{\delta}=\tilde{\mathcal{M}}_{\delta}^{k}$ with size

$$
d=\left[\delta^{k} p\right]=\left[\delta^{r} n\right]<n, \text { where }\left[\delta^{k-1} p\right]=\left[\delta^{r-1} n\right]>n
$$

It is easy to see $\tilde{\mathcal{M}}_{\delta}=\mathcal{M}_{\gamma}$ where $\gamma=\delta^{r}<1$
How to choose $\delta$ ?
For fixed $\theta_{1} \in(0,1-2 \kappa-\tau)$ and pick some $r<1$ very close to 1 such that $\theta_{0}=\frac{\theta_{1}}{r}<1-2 \kappa-\tau$. Choose $\delta$ such that

$$
\delta n^{1-2 \kappa-\tau} \rightarrow \infty \quad \text { and } \quad \delta n^{\theta_{0}} \rightarrow 0
$$

The corresponding $\gamma$ is

$$
\gamma n^{r(1-2 \kappa-\tau)} \rightarrow \infty \quad \text { and } \quad \gamma n^{\theta_{1}} \rightarrow 0
$$

## Final Step to Prove Theorem 1

Based on the above steps

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \tilde{\mathcal{M}}_{\delta}^{i} \mid \mathcal{M}_{*} \subset \tilde{\mathcal{M}}_{\delta}^{i-1}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{22}
\end{equation*}
$$

Then

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\gamma}\right)=1-O\left(\operatorname{kexp}\left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{23}
\end{equation*}
$$

Note by the requirement of $\delta, k=O\{\log (p) / \log (n)\}$, which is of order $O\left(n^{\xi} / \log (n)\right)$. So

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\gamma}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{24}
\end{equation*}
$$

The condition of $\gamma$ holds for $\gamma \sim c n^{-\theta}$ with $\theta<1-2 \kappa-\tau$

## Theorem 2 and Theorem 3

- Theorem 2: (Asymptotic sure screening) Under condition 1-4, if $2 \kappa+\tau<1, \lambda\left(p^{3 / 2} n\right)^{-1} \rightarrow \infty$ and $\delta n^{1-2 \kappa-\tau} \rightarrow \infty$, the we have for some $C>0$,

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\delta, \gamma}^{1}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{25}
\end{equation*}
$$

- Theorem 3:(Accuracy of ITRRS) Let the assumptions of theorem 2 be satisfied. If $\delta n^{\theta} \rightarrow \infty$ for come $\theta<1-2 \kappa-\tau$, then successive applications of ITRRS for $k$ times results in a submodel $\mathcal{M}_{\delta, \lambda}$ with size $d=\left[\delta^{k} p\right]<n$ such that for some $C>0$

$$
\begin{equation*}
P\left(\mathcal{M}_{*} \subset \mathcal{M}_{\delta, \gamma}\right)=1-O\left(\exp \left\{-C n^{1-2 \kappa} / \log (n)\right\}\right) \tag{26}
\end{equation*}
$$

- The proofs are similar to theorem 1


## Oracle Property of SIS-SCAD

Theorem 5: if $d=o\left(n^{1 / 3}\right)$ and the assumptions of theorem in Fan and Peng (2004) are satisfied, then, with probability tending to 1 , the SIS-SCAD estimator $\hat{\beta}_{\text {SCAD }}$ satisfies

- $\hat{\beta}_{i}=0$ for any $i \notin \mathcal{M}_{*}$
- the components of $\hat{\beta}_{S C A D}$ in $\mathcal{M}_{*}$ perform as well as if the true model $\mathcal{M}_{*}$ were known


## A Simulation Example

- Two models with $(n, p)=(200,1000)$ and $(n, p)=(800,20000)$. The sizes $s$ of the true models are 8 and 18 .
- The non-zero coefficients are randomly chosen as follows. Let $a=4 \log (n) / n^{1 / 2}$ and $5 \log (n) / n^{1 / 2}$ for two different models, pick non-zero coefficients of the form $(-1)^{u}(a+|z|)$ for each model, where $u \sim \operatorname{Bernoulli}(0.4)$ and $z \sim N(0,1)$
- The $l_{2}$ norms $\|\boldsymbol{\beta}\|$ of the two simulated models are set 6.795 and 8.908
- These settings are not trivial since there is non-negligible sample correlation between the predictors


Figure 2: Methods of model selection with ultra high dimensionality.
Table 1: Results of simulation I

| $p$ | Medians of the selected model sizes (upper entry) and the estimation errors (lower entry) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DS | Lasso | SIS-SCAD | SIS-DS | SIS-DS-SCAD | SIS-DS-AdaLass 0 |
| $1000$ | $10^{3}$ | 62.5 | 15 | 37 | 27 | 34 |
|  | 1.381 | 0.895 | 0.374 | 0.795 | 0.614 | 1.269 |
| 20000 | - | - | 37 | 119 | 60.5 | 99 |
|  | - | - | 0.288 | 0.732 | 0.372 | 1.014 |

## Discussion

- Randomized design
- Are the regularization conditions reasonable?
- Correlation screening for Linear model. Are there any other screening methods for more general models?
- What is the relation between the correlation screening and multiple comparison?
- How to choose the tuning parameter $\gamma, \lambda$ and $\delta$ ?
- $\Sigma$ may become singular when $p$ is really large. $Z$ is not well defined in this case.

