Sure Independence Screening for Ultrahigh Dimensional Feature Space

Jianqing Fan and Jinchi Lv

Journal of the Royal Statistical Society Series B. (2008)

Presenter: Jingjiang Peng

March 5, 2010

Jianqing Fan and Jinchi Lv (Journal of the RSure Independence Screening for Ultrahigh Di

Introduction

- 2 Sure Independent Screening (SIS)
- Iteratively Thresholded Ridge Regression Screener (ITRRS)
 - 4 Regularity Conditions
- 5 Theorems and Proof
- 6 Numerical Studies

• Consider the model selection problem in linear model

$$\mathsf{y} = \mathsf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

- AIC, BIC, best subset selection. NP-hard problem !
- LASSO: provide sparsity solution, model selection consistency: very strong conditions(Zhang and Yu(2006))
- SCAD: Oracle property, low dimension $\frac{p^3}{p} \rightarrow 0$ (Fan and Peng 2004)
- Adaptive LASSO: Oracle property, low dimension (Zou 2006)
- Dantzig selector: High dimension(p > n), Oracle property in the sense of Donoho and Johnstone. Need uniform uncertainty principle condition(UUP) (Candes and Tao 2007). Linear Programming is slow in ultrahigh dimension. p can not grow exponentially w.r.t n.

 $\mathbf{x} = (X_1, X_2, \dots, X_p)^T$, and $\mathbf{\Sigma} = cov(\mathbf{x})$, $\mathbf{z} = \mathbf{\Sigma}^{-1/2} \mathbf{x}$. When p is larger than n, we will meet the following difficulties

- \bullet the matrix $X^{\mathcal{T}}X$ is huge and singular. This causes trouble both in theory and computation
- the maximum spurious correlation between a covariate and the response can be very large, which makes the model selection difficult
- Σ may be singular or ill conditioned
- The minimum non-zero coefficients $|\beta_i|$ may decay close to noise level.
- The distribution of z may have heavy tails.

Figure 1: Distributions of the maximum absolute sample correlation coefficient when n = 60, p = 1000 (solid curve) and n = 60, p = 5000 (dashed curve).

Sure Independent Screening

• Question: Is there any model selection procedure that can effectively deal with ultrahigh dimensionality ($p = O(e^{n^{\alpha}})$) and keep the Oracle Property?

- Question: Is there any model selection procedure that can effectively deal with ultrahigh dimensionality ($p = O(e^{n^{\alpha}})$) and keep the Oracle Property?
- The answer: Sure Independency Screening (SIS), well in some sense!
- Let $\mathcal{M}_* = \{1 \le i \le p : \beta_i \ne 0\}$. The number of true non-zero coefficients $s = |\mathcal{M}_*|$, \mathcal{M}_{γ} is the model selected by SIS with some parameter γ . $d = |\mathcal{M}_{\gamma}| = [\gamma n] < n$
- Main Result of SIS:

Theorem 1: Under some regular conditions,

$$P(\mathcal{M}_* \subset \mathcal{M}_{\gamma}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(2)

• SIS-SCAD or SIS-adaptive Lasso on \mathcal{M}_{γ} can achieve Oracle Property

• Suppose X has been standardized The componentwise regression is

$$\mathsf{w} = \mathsf{X}^{\mathsf{T}}\mathsf{y} \tag{3}$$

 SIS: For any given γ ∈ (0, 1), sort the p componentwise magnitudes of the vector w in a decreasing order

 $\mathcal{M}_{\gamma} = \{1 \leq i \leq p : |w_i| \text{ is among the first } [\gamma n] \text{ largest of all} \}$ (4)

• SIS selects $d = [\gamma n] < n$ parameters, and reduce the dimension less than *n*. SCAD, adaptive LASSO, Dantzig selector can applied to achieve good properties, if SIS satisfies sure screening property

$$P(\mathcal{M}_* \subset \mathcal{M}_\gamma) \to 1$$
 (5)

SCAD, Adaptive Lasso, and Dantzig selector

• SCAD:

$$\min \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \mathsf{x}'_i \beta)^2 + \sum_{i=1}^{d} p_{\lambda}(|\beta_j|)$$

where $p_{\lambda}(|\beta_j|)$ is the SCAD penalty

• Adaptive Lasso:

$$\min \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \mathbf{x}'_i \boldsymbol{\beta})^2 + \lambda \sum_{i=1}^{d} w_i |\beta_i|^2$$

where w_j is the adaptive weight. Usually, it is related to least square estimator

Dantzig selector

$$\min \|\zeta\|_1$$
 subject to $\|X'_{\mathcal{M}}r\|_{\infty} \leq \lambda_d \sigma$

where
$$\lambda_d > 0$$
 and $r = y - X_{\mathcal{M}} \zeta$

Iteratively Thresholded Ridge Regression Screener (ITRRS)

• Consider the ridge regression

$$w^{\lambda} = (X^{T}X + \lambda I_{p})^{-1}X^{T}y$$

$$w^{\lambda} \rightarrow \hat{\beta}_{LS} \text{ as } \lambda \rightarrow 0$$

$$\lambda w^{\lambda} \rightarrow w \text{ as } \lambda \rightarrow \infty$$
(6)

• For any given $\delta \in (0,1)$, sort the *p* componentwise magnitudes of the vector w^{λ} in a descending order, and define

 $\mathcal{M}^{1}_{\delta,\lambda} = \{1 \le i \le p : |w_{i}^{\lambda}| \text{ is among the first } [\delta p] \text{ largest of all} \}$ (7)

• This procedure reduces the model by a factor $(1 - \delta)$. This procedure can be applied iteratively until the remaining variable is less than n

- Carry out the procedure in submodel (7) to the full model {1,..., p} and obtain a submodel M¹_{δ,λ} with size [δp]
- Apply a similar procedure to the model $\mathcal{M}^1_{\delta,\lambda}$ and obtain a submodel $\mathcal{M}^2_{\delta,\lambda} \subset \mathcal{M}^1_{\delta,\lambda}$ with size $[\delta^2 p]$, and so on
- Finally obtain a submodel $\mathcal{M}_{\delta,\lambda} = \mathcal{M}_{\delta,\lambda}^k$ with the size $d = [\delta^k p] < n$, where $[\delta^{k-1}p] \ge n$

Main result of ITRRS:

Theorem 3: Under some regular conditions,

$$P(\mathcal{M}_* \subset \mathcal{M}_{\delta,\lambda}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(8)

Regularity Conditions

- condition 1. p > n and $log(p) = O(n^{\xi})$ for some $\xi \in (0, 1 2\kappa)$
- condition 2. z has a spherically symmetric distribution. Let $Z = (z_1, ..., z_n)^T$, and there are some $c, c_1 > 1$ and $C_1 > 0$ such that

$$P\{\lambda_{max}(\tilde{p}^{-1}\tilde{Z}\tilde{Z}^{\mathsf{T}}) > c_1 \text{ or } \lambda_{min}(\tilde{p}^{-1}\tilde{Z}\tilde{Z}^{\mathsf{T}}) < 1/c_1\} \le \exp(-C_1 n)$$
(9)

holds for any
$$n \times \tilde{p}$$
 submatrix \tilde{Z} of Z with $cn < \tilde{p} \le p$. Also $\epsilon \sim N(0, \sigma^2)$

• condition 3. var(Y)=O(1) and for some $\kappa \ge 0$ and $c_1, c_3 > 0$

$$\min_{i \in \mathcal{M}_*} |\beta_j| \geq \frac{c_2}{n^{\kappa}}$$
 and $\min_{i \in \mathcal{M}_*} |cov(\beta_i^{-1}Y, X_i)| \geq c_3$

• condition 4. There are some $au \geq 0$ and $c_4 > 0$ such

$$\lambda_{\max}(\mathbf{\Sigma}) \le c_4 n^{\tau} \tag{10}$$

- The main part of condition 2 means that the *n* non-zero singular value of the $n \times \tilde{p}$ matrix \tilde{Z} are in the same order, which is reasonable. Because as $\tilde{p} \to \infty$, $\tilde{p}^{-1}\tilde{Z}\tilde{Z}^T \to I_n$ by random matrix theory. This condition can be shared by a wide class of distribution.
- The first part of condition 3 tells us that the smallest absolute value of non-zero coefficients can be distinguished from noise. The second part rules our the situation in which an important variable is marginally uncorrelated with Y, but jointly correlated with Y.
- Although condition 4 allows the largest eigenvalue of Σ to diverge as n grows. We will see in the later theorem that τ must be a small number less than 1

March 5, 2010

12 / 27

Theorem 1

Thereom 1(accuracy of SIS): Under condition 1-4, if $2\kappa + \tau < 1$ then there is some $\theta < 1 - 2\kappa - \tau$ such that when $\gamma \sim cn^{-\theta}$ with c > 0, we have, for some C > 0

$$P(\mathcal{M}_* \subset \mathcal{M}_{\gamma}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(11)

- let O(p) denote the orthogonal group, that is for any matrix
 A_{p×p} ∈ O(p), A^TA = 0. By the condition 2, the distribution of z is
 invariant under O(p). Let S^{q-1} = {x ∈ ℝ^q : ||x|| = 1} be the q
 dimensional unit ball.
- Let $\mu_1^{1/2},\ldots,\mu_n^{1/2}$ be the singular value of Z, by SVD

$$Z_{n\times p}=V_{n\times n}D_{n\times p}U_{p\times p}$$

where $V \in \mathcal{O}(n), \ U \in \mathcal{O}(p), \ D = (diag(\mu_1^{1/2}, \dots, \mu_n^{1/2}), 0, \dots, 0)$

- $S = (Z^T Z)^+ Z^T Z = U^T diag(I_n, 0)U$, where $(Z^T Z)^+$ is the Moore-Penrose generalized inverse.
- From the SVD, $(I_n, 0)_{n \times p} U = diag(1/\mu_1^{1/2}, ..., 1/\mu_n^{1/2}) V^T Z$
- By condition 2, $ZQ =^d Z$ for any $Q \in \mathcal{O}(p)$
- Given V and (μ₁,...,μ_n)^T, the conditional distribution of (I_n,0)U is invariant under O(p)

Lemma 1: $(I_n, 0)U =^d (I_n, 0)\overline{U}$ and $(\mu_1, \ldots, \mu_n)^T$ is independent of $(I_n, 0)U$, where \overline{U} is uniformly distributed on the orthogonal group $\mathcal{O}(p)$ and μ_1, \ldots, μ_n are n eigenvalues of ZZ^T

Lemma

Lemma 2: $\langle Se_1, e_1 \rangle =^d \frac{\chi_n^2}{\chi_n^2 + \chi_{p-n}^2}$ Proof: $S =^d U^T \operatorname{diag}(I_n, 0)U$ where U is uniformly distributed on $\mathcal{O}(p)$. Ue_1 is a random vector uniformly distributed on the unit ball S^{p-1} . Let $W = (W_1, \dots, W_p)^T \sim N(0, I_p)$ then $Ue_1 =^d \frac{W}{\|W\|}$, and

$$< Se_1, e_1 >= (Ue_1)^T diag(I_n, 0) Ue_1 =^d rac{W_1^2 + \dots W_n^2}{W_1^2 + \dots + W_p^2}$$

Lemma 2 says $< Se_1, e_1 >$ is a beta distribution. By the property of Beta distribution we have

Lemma 4: For any C > 0, there are $0 < c_1 < 1 < c_2$, such that

$$P(< c_1 \frac{n}{p} \text{ or } > c_2 \frac{n}{p}) \le 4 \exp(-Cn)$$
 (12)

Lemma 5. Let $Se_1 = (V_1, V_2, ..., V_p)^T$, then, given $V_1 = v$, the random vector $(V_2, ..., V_p)^T$ is uniformly distributed on the sphere $S^{p-2}(\sqrt{v-v^2})$. Moreover, for any C > 0, there are some c > 1 such that

$$P(|V_2| > cn^{1/2}p^{-1}|W|) \le 3\exp(-Cn)$$
(13)

where $W \sim N(0, 1)$ Main Idea of proof: Let $V = (V_1, \ldots, V_p)^T$. For $Q \in \mathcal{O}(p-1)$, define $\tilde{Q} = diag(1, Q) \in \mathcal{O}(p)$, then

$$\tilde{Q}V = {}^{d} (U\tilde{Q}^{T})^{T} diag(I_{n}, 0)(U\tilde{Q}^{T})\tilde{Q}e_{1} = {}^{d} U^{T} diag(I_{n}, 0)Ue_{1} = {}^{d} V$$

Similar to Lemma 2, conditional on V_1

$$V_2 = {}^d \sqrt{V_1 - V_1^2} rac{W_1}{\sqrt{W_1^2 + \dots + W_{p-1}^2}}$$

Where W_1, \ldots, W_{p-1} are i.i.d standard normal.

Proof of theorem 1

Step 1: Let $\delta \in (0, 1)$, define the submodel

 $\tilde{\mathcal{M}}_{\delta}^{1} = \{1 \leq i \leq p : |w_{i}| \text{ is among the first } [\delta p] \text{ largest of all}\}$ (14)

Show that

$$P(\mathcal{M}_* \subset \tilde{\mathcal{M}}_{\delta}^1) = 1 - O(exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(15)

 $X = Z \mathbf{\Sigma}^{1/2}$, and

$$X^{\mathsf{T}}X = p \mathbf{\Sigma}^{1/2} ilde{U}^{\mathsf{T}} \mathit{diag}(\mu_1, \dots, \mu_n) ilde{U} \mathbf{\Sigma}^{1/2}$$

Here μ_1, \ldots, μ_n are n eigenvalue of $p^{-1}ZZ^T$, $\tilde{U} = (I_n, 0)_{n \times p}U$

$$\mathbf{w} = \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} + \mathbf{X}^T \boldsymbol{\epsilon} = \boldsymbol{\xi} + \boldsymbol{\eta}$$

Step 1.1: Deal with $\boldsymbol{\xi}$ Step 1.1.1: Bounding $\|\boldsymbol{\xi}\|$ from above:

$$P\{\|{m{\xi}}\|^2 > O(n^{1+\tau}p)\} \le O(\exp(-Cn))$$

First

$$\|\boldsymbol{\xi}\|^2 \leq p^2 \lambda_{max}(\boldsymbol{\Sigma}) \lambda_{max}(p^{-1}ZZ^T)^2 \boldsymbol{\beta}^T \boldsymbol{\Sigma}^{1/2} \tilde{U}^T \tilde{U} \boldsymbol{\Sigma}^{1/2} \boldsymbol{\beta}$$

Let $Q \in \mathcal{O}(p)$ such that $\boldsymbol{\Sigma}^{1/2} \boldsymbol{\beta} = \|\boldsymbol{\Sigma}^{1/2} \boldsymbol{\beta}\| Q e_1$, then

$$eta^{\mathsf{T}} \mathbf{\Sigma}^{1/2} ilde{U}^{\mathsf{T}} ilde{U} \mathbf{\Sigma}^{1/2} oldsymbol{eta} =^{d} \| \mathbf{\Sigma}^{1/2} oldsymbol{eta} \|^2 < Se_1, e_1 >$$

By Lemma 4 and $|\mathbf{\Sigma}^{1/2}\beta||^2 = \beta^T \mathbf{\Sigma}\beta \leq var(Y) = O(1)$

$$P\{\beta^{\mathsf{T}}\boldsymbol{\Sigma}^{1/2}\tilde{U}^{\mathsf{T}}\tilde{U}\boldsymbol{\Sigma}^{1/2}\beta > O(\frac{n}{p})\} \leq O(\exp(-Cn))$$

Finally note $\lambda_{max}(\mathbf{\Sigma}) = O(n^{\tau})$ and $P\{\lambda_{max}(p^{-1}ZZ^{T}) > c_1\} \leq \exp(-C_1 n)$

Step 1.1.2: Bounding $\|\xi_i\|$, $i \in \mathcal{M}_*$ from above:

$$P(|\xi_i| < cn^{1-\kappa}) \le O[\exp\{-Cn^{1-2\kappa}/\log(n)\}] \quad i \in \mathcal{M}_*$$
(16)

Step 1.2 Deal with η Step 1.2.1: Bounding $\|\eta\|$ from above:

$$P\{\|\eta\|^2 > O(n^{1+\tau}p)\} \le O(\exp(-Cn))$$
(17)

Step 1.2.2: Bounding $|\eta_i|$ from above:

$$P\{\max_i |\eta_i| > o(n^{1-\kappa})\} \le O[\exp\{-Cn^{1-2\kappa}/\log(n)\}]$$
(18)

Setp 1.3: Combine the result in 1.1 and 1.2, we have

$$P(\min_{i \in \mathcal{M}_*} |w_i| < c_1 n^{1-\kappa} \text{ or } ||w||^2 > c_2 n^{1+\tau} p) \le O[s \exp\{-Cn^{1-2\kappa}/\log(n)\}]$$
(19)

The above equation imply that for some c > 0

$$\#\{1 \le k \le p : |w_k| \ge \min_{i \in \mathcal{M}_*} |w_i|\} \le c \frac{n^{1+\tau}p}{(n^{1-\kappa})^2} = \frac{cp}{n^{1-2\kappa-\tau}}$$
(20)

If we choose δ such that $\delta \textit{n}^{1-2\kappa-\tau} \rightarrow \infty$ then

$$P(\mathcal{M}_* \subset \tilde{\mathcal{M}}_{\delta}^1) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(21)

holds for some constant C > 0

Step 2: Fix arbitrary $r \in (0,1)$ and choose the shrinking factor δ of the form $(n/p)^{1/(k-r)}$ for some integer $k \ge 1$.

- Carry out procedure (14) and obtain a submodel $ilde{\mathcal{M}}^1_\delta$ with size $[\delta p]$
- Apply the similar procedure to model $\tilde{\mathcal{M}}^1_{\delta}$ to obtain a submodel $\tilde{\mathcal{M}}^2_{\delta} \subset \tilde{\mathcal{M}}^1_{\delta}$ with $[\delta^2 p]$, and go on

• Finally obtain a submodel $\tilde{\mathcal{M}}_{\delta} = \tilde{\mathcal{M}}_{\delta}^{k}$ with size $d = [\delta^{k}p] = [\delta^{r}n] < n$, where $[\delta^{k-1}p] = [\delta^{r-1}n] > n$ It is easy to see $\tilde{\mathcal{M}}_{\delta} = \mathcal{M}_{\gamma}$ where $\gamma = \delta^{r} < 1$ How to choose δ ?

For fixed $\theta_1 \in (0, 1 - 2\kappa - \tau)$ and pick some r < 1 very close to 1 such that $\theta_0 = \frac{\theta_1}{r} < 1 - 2\kappa - \tau$. Choose δ such that

$$\delta n^{1-2\kappa- au} o \infty$$
 and $\delta n^{ heta_0} o 0$

The corresponding γ is

$$\gamma n^{r(1-2\kappa- au)} o \infty$$
 and $\gamma n^{ heta_1} o 0$

Based on the above steps

$$P(\mathcal{M}_* \subset \tilde{\mathcal{M}}^i_{\delta} | \mathcal{M}_* \subset \tilde{\mathcal{M}}^{i-1}_{\delta}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(22)

Then

$$P(\mathcal{M}_* \subset \mathcal{M}_{\gamma}) = 1 - O(kexp\{-Cn^{1-2\kappa}/log(n)\})$$
(23)

Note by the requirement of δ , $k = O\{log(p)/log(n)\}$, which is of order $O(n^{\xi}/log(n))$. So

$$P(\mathcal{M}_* \subset \mathcal{M}_{\gamma}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(24)

The condition of γ holds for $\gamma \sim \textit{cn}^{-\theta}$ with $\theta < 1 - 2\kappa - \tau$

• Theorem 2: (Asymptotic sure screening) Under condition 1-4, if $2\kappa + \tau < 1$, $\lambda(p^{3/2}n)^{-1} \to \infty$ and $\delta n^{1-2\kappa-\tau} \to \infty$, the we have for some C > 0,

$$P(\mathcal{M}_* \subset \mathcal{M}^1_{\delta,\gamma}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(25)

Theorem 3:(Accuracy of ITRRS) Let the assumptions of theorem 2 be satisfied. If δn^θ → ∞ for come θ < 1 - 2κ - τ, then successive applications of ITRRS for k times results in a submodel M_{δ,λ} with size d = [δ^kp] < n such that for some C > 0

$$P(\mathcal{M}_* \subset \mathcal{M}_{\delta,\gamma}) = 1 - O(\exp\{-Cn^{1-2\kappa}/\log(n)\})$$
(26)

• The proofs are similar to theorem 1

Theorem 5: if $d = o(n^{1/3})$ and the assumptions of theorem in Fan and Peng (2004) are satisfied, then, with probability tending to 1, the SIS-SCAD estimator $\hat{\beta}_{SCAD}$ satisfies

- $\hat{\beta}_i = 0$ for any $i \notin \mathcal{M}_*$
- the components of $\hat{\beta}_{SCAD}$ in \mathcal{M}_* perform as well as if the true model \mathcal{M}_* were known

- Two models with (n, p) = (200, 1000) and (n, p) = (800, 20000). The sizes s of the true models are 8 and 18.
- The non-zero coefficients are randomly chosen as follows. Let $a = 4log(n)/n^{1/2}$ and $5log(n)/n^{1/2}$ for two different models, pick non-zero coefficients of the form $(-1)^u(a + |z|)$ for each model, where $u \sim Bernoulli(0.4)$ and $z \sim N(0, 1)$
- The I_2 norms $\|\boldsymbol{\beta}\|$ of the two simulated models are set 6.795 and 8.908
- These settings are not trivial since there is non-negligible sample correlation between the predictors

Figure 2: Methods of model selection with ultra high dimensionality.

Table 1: Results of simulation I

	Medians of the selected model sizes (upper entry)					
p	DS	Lasso	SIS-SCAD	SIS-DS	SIS-DS-SCAD	SIS-DS-AdaLasso
1000	10^{3}	62.5	15	37	27	34
	1.381	0.895	0.374	0.795	0.614	1.269
20000	_	-	37	119	60.5	99
			0.288	0.732	0.372	1.014

- Randomized design
- Are the regularization conditions reasonable?
- Correlation screening for Linear model. Are there any other screening methods for more general models?
- What is the relation between the correlation screening and multiple comparison?
- How to choose the tuning parameter γ , λ and δ ?
- Σ may become singular when *p* is really large. *Z* is not well defined in this case.