
Nonconcave Penalized Likelihood with A Diverging
Number of Parameters

Jianqing Fan and Heng Peng
Presenter: Jiale Xu

March 12, 2010

Jianqing Fan and Heng Peng Presenter: Jiale Xu ()Nonconcave Penalized Likelihood with A Diverging Number of ParametersMarch 12, 2010 1 / 32



Outlines

Introduction

Penalty function

Properties of penalized likelihood estimation

Proof of theorems

Numerical examples

Jianqing Fan and Heng Peng Presenter: Jiale Xu ()Nonconcave Penalized Likelihood with A Diverging Number of ParametersMarch 12, 2010 2 / 32



Background

Traditional variable selection procedures (AIC, BIC and etc.) use a
fixed penalty on the size of a model.

Some new variable selection procedures suggest the use of a data
adaptive penalty to replace fixed penalties.

All the above procedures follow stepwise and subset selection
procedures are computationally intensive, hard to derive sampling
properties, and unstable.

Most convex penalties produce shrinkage estimators of parameters
that make trade-offs between bias and variance such as those in
smoothing splines. However, they can create unnecessary biases when
the true parameters are large and parsimonious models cannot be
produced.
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Background

Fan and Li (2001) proposed a unified approach via nonconcave
penalized least squares to automatically and simultaneously select
variables and estimate the coefficients of variables.

This method not only retains the good features of both subset
selection and ridge regression, but also produces sparse solutions,
ensures continuity of the selected models and has unbiased estimates
for large coefficients.

This is achieved by choosing suitable penalized nonconcave functions
such as the smoothly clipped absolute deviation (SCAD) by Fan
(1997). Other penalized least squares such as LASSO can also be
studied under this unified work.

The nonconcave penalized least-squares approach also corresponds to
a Bayesian model selection with an improper prior and can be
extended to likelihood-based models in various contexts.
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Nonconcave penalized likelihood

Let log f (V , β) be the likelihood for a random vector V . This includes the
likelihood of the form L(XTβ,Y ) of the generalized linear model. Let
pλ(|βj |) be a nonconcave penalized function that is indexed by a
regularization parameter λ. The penalized likelihood estimator then
maximizes

(1.1)
n∑

i=1

log f (Vi , β)−
p∑

j=1

pλ(|βj |)

The parameter λ can be chosen by cross-validation. Various algorithms
have been proposed to optimize such a high-dimensional nonconcave
likelihood function, such as the modified Newton-Raphson algorithm by
Fan and Li (2001).
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Oracle estimator

If there were an oracle assisting us in selecting variables, then we would
select variables only with nonzero coefficients and apply the MLE to this
submodel and estimate the remaining coefficients as 0. This ideal
estimator is called an oracle estimator.
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A review on Fan and Li (2001)

For the finite parameter case, Fan and Li (2001) established an
”oracle property”.

It demonstrated that penalized likelihood estimators are
asymptotically as efficient as this ideal oracle estimator for certain
penalty functions, such as SCAD and the hard thresholding penalty.

It also proposed a sandwich formula for estimating the standard error
of the estimated nonzero coefficients and empirically verifying the
consistency of the formula.

It laid down important groundwork on variable selection problems, but
their theoretical results are limited to the finite-parameter setting.
While their results are encouraging, the fundamental problems with a
growing number of parameters have not been addressed.
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Objective in this paper

The objectives in this paper are to investigate the following asymptotic
properties of a nonconcave penalized likelihood estimator.

(Oracle property.) Under certain conditions of the likelihood function
and penalty functions, if pn does not grow too fast, then by the
proper choice of λn there exists a penalized likelihood estimator such
that β̂n2 = 0 and β̂n1 behaves the same as the case in which βn2 = 0
is known in advance.
(Asymptotic normality) As the length of β̂n1 depends on n, we will
show that its arbitrary linear combination Anβ̂n1 is asymptotically
normal, where An is a q × sn matrix for any finite q.
(Consistency of the sandwich formula.) Let Σ̂n be an estimated
covariance matrix for β̂n1, then it is consistent in the sense that
AT

n Σ̂nAn converges to the asymptotic covariance matrix of Anβ̂n1.
(Likelihood ratio theory.) If one tests the linear hypothesis
H0 : Anβn1 = 0 and uses the twice-penalized likelihood ratio statistic,
then this statistic asymptotically follows a χ2 distribution.
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Penalty function

3 principles for a good penalty function: unbiasedness, sparsity and
continuity.

Consider a simple form of (1.1): 1
2 (z − θ)2 + pλ(|θ|).

L2-penalty pλ(|θ|) = λ|θ|2 (ridge regression) and Lq-penalty (q > 1)
reduce variability via shrinking the solutions, but do not have the
properties of sparsity.
L1-penalty pλ(|θ|) = λ|θ| (soft thresholding rule) and Lq-penalty
(q < 1) functions result in sparse solutions, but cannot keep the
estimators unbiased for large parameters.
Hard thresholding penalty function pλ(|θ|) = λ2− (|θ| − λ)2I (|θ| < λ)
results in the hard thresholding rule θ̂ = zI (|z | > λ), but the
estimator is not continuous in the data z .
SCAD penalty satisfies all the three properties and is defined by

p′λ = λ{I (θ ≤ λ) +
(aλ− θ)+

a− I
I (θ > λ)}
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Regularity condition on penalty

Let an = max1≤j≤pn{p′λ(|βn0j |)}, βn0j 6= 0 and
bn = max1≤j≤pn{p′′λ(|βn0j |)}, βn0j 6= 0. Then we need to place the
following conditions on the penalty functions:

(A) lim infn→+∞ lim infθ→0+ p′λn
(θ)/λn > 0;

(B) an = O(n−1/2);
(B′) an = o(1/

√
npn);

(C) bn → 0 as n→ +∞;
(C′) bn = op(1/

√
pn);

(D) there are constants C and D such that, when θ1, θ2 > Cλn,
|p′′λn(θ1)− p′′λn(θ2)| ≤ D|θ1 − θ2|.
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Regularity condition on penalty

Remark

(A) makes the penalty function singular at the origin so that the PLE
possess the sparsity property.

(B) and (B′) ensure the unbiasedness property for large parameters
and the existence of the root-n-consistent penalized likelihood
estimator.

(C) and (C′) guarantee that the penalty function does not have much
more influence than the likelihood function on the penalized likelihood
estimators.

(D) is a smoothness condition that is imposed on the nonconcave
penalty functions.

Under (H) all the above are satisfied by SCAD and hard thresholding
penalty, as an = 0 and bn = 0 when n is large enough.
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Regularity condition on likelihood functions

Due to the diverging number of parameters, some conditions have to be
strengthened to keep uniform properties for the likelihood functions and
sample series, compared to the conditions in the finite parameter case.

(E) For every n the observations {Vni , i = 1, 2, . . . , n} are iid with the
density fn(Vn1, βn), which has a common support, and the model is
identifiable. Furthermore, the following holds:

Eβn{
∂ log fn(Vn1, βn)

∂βnj
} = 0 for j = 1, 2, · · · , pn (1)

and

Eβn{
∂ log fn(Vn1, βn)

∂βnj

∂ log fn(Vn1, βn)

∂βnk
} = −Eβn{

∂2 log fn(Vn1, βn)

∂βnj∂βnk
} (2)

(F) The Fisher information matrix

In(βn) = E [{∂ log fn(Vn1, βn)

∂βn
}{∂ log fn(Vn1, βn)

∂βn
}T ] (3)
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Regularity condition on likelihood functions(Cont.)

satisfies conditions 0 < C1 < λmin{In(βn)} ≤ λmax{In(βn)} < C2 <∞ for
all n, and, for j , k = 1, 2, · · · , pn,

Eβn{
∂ log fn(Vn1, βn)

∂βnj

∂ log fn(Vn1, βn)

∂βnk
}2 < C3 <∞ (4)

and

Eβn{
∂2 log fn(Vn1, βn)

∂βnj∂βnk
}2 < C4 <∞ (5)

(G) There is a large enough open subset ωn of Ωn ∈ Rpn which contains
the true parameter point βn, such that for almost all Vni the density
admits all third derivatives for all βn ∈ ωn. Furthermore, there are
functions Mnjkl such that | log fn(Vn1,βn)

∂βnjβnkβnl
| ≤ Mnjkl

(H) Let the values of βn01, βn01, · · · , βn0sn be the nonzero and
βn0(sn+1), βn02, · · · , βn0pn be zero. Then min1≤j≤sn |βn0j |/λn →∞ as
n→∞.
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Regularity condition on likelihood functions

Remark

Under (F) and (G), the second and fourth moments of the likelihood
function are imposed.

(H) is necessary for obtaining the oracle property. It shows the rate at
which the penalized likelihood can distinguish nonvanishing
parameters from 0. Its zero component can be relaxed as
maxsn+1≤j≤pn |βn0j |/λn → 0 as n→∞.
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Oracle properties

Recall that Vni , i = 1, · · · , n,are iid r.v’s with density fn(Vn, βn0). Let

Ln(βn) =
n∑

i=1

log fn(Vni , βn)

be the log-likelihood function and let

Qn(βn) = Ln(βn)− n

pn∑
j=1

pλn(|βnj |)

be the penalized likelihood function.
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Oracle properties

Theorem 1 Suppose that the density fn(Vn, βn0) satisfies conditions
(E)-(G), and the penalty function pλn(·) satisfies conditions (B)-(D). If
p4
n/n→ 0 as n→∞, then there is a local maximizer β̂n of Q(βn) such

that ‖β̂n − βn0‖ = Op{
√

pn(n−1/2 + an)}.

Remark If an satisfies condition (B), that is, an = O(n−1/2), then there is
a root-(n/pn)-consistent estimator. For a SCAD or hard thresholding
penalty, and condition (H) is satisfied by the model, we have an = 0 when
n is large enough. The root-(n/pn)-consistent penalized likelihood
estimator exists with probability tending to 1, and no requirements are
imposed on the convergence rate of λn.
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Oracle properties

Proof Let αn =
√

pn(n−1/2 + an) and set ‖u‖ = C , where C is a large
constant. Our aim is to show that for any given ε there is a large C such
that for large n we have

P{ sup
‖u‖=C

Qn(βn0 + αnu) < Qn(βn0)} ≥ 1− ε.

This implies that with probability tending to 1 there is a local maximum
β̂n in the ball {βn0 + αnu : ‖u‖ ≤ C} such that ‖β̂n − βn0‖ = Op(αn).
Using pλn(0) = 0, we have
Dn(u) = Qn(βn0 + αnu)− Qn(βn0)

≤ Ln(βn0 + αnu)− Ln(βn0)− n
sn∑

j=1

{pλn(|βn0j + αnuj |)− pλn(|βn0j)}

= (I ) + (II )
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Oracle properties

Proof(cont.) Then by Taylor’s expansion we obtain

(I ) = αn5T Ln(βn0)u+
1

2
uT 52 Ln(βn0)uα2

n +
1

6
5T {uT 52 Ln(β∗n)u}uα3

n

= I1 + I2 + I3, where the vector β∗n lies between βn0 and βn0 + αnu, and

(II ) = −n
sn∑

j=1

[nαnp
′
λn

(|βn0j |)sgn(βn0j)uj+nα2
np
′′
λn

(βn0j)u
2
j {1+o(1)}] = I4+I5

We could show that all terms I1, I3, I4 and I5 are dominated by

I2 = −nα2
n

2 uT In(βn0)u + op(1) · nα2
n‖u‖2, which is negative. This

completes the proof of Theorem 1.
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Oracle properties

Lemma 1 Assume that conditions (A) and (E)-(H) are satisfied. If
λn → 0,

√
n/pnλn →∞ and p5

n/n→ 0 as n→∞, then with probability
tending to 1, for any given βn1 satisfying ‖βn1 − βn01‖ = Op(

√
pn/n) and

any constant C ,

Q{(βT
n1, 0)T} = max

‖βn2‖≤C(pn/n)1/2
Q{(βT

n1, β
T
n2)T}
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Oracle properties

Denote
Σλn = diag{p′′λn

(βn01), · · · , p′′λn
(βn0sn)}

and
bn = {p′λn

(|βn01|)sgn(βn01), · · · , p′λn
(|βn0sn |)sgn(βn0sn)}T .

Theorem 2 Under conditions (A)-(H) are satisfied, if
λn → 0,

√
n/pnλn →∞ and p5

n/n→ 0 as n→∞, then with probability

tending to 1, the root-(n/pn)-consistent local maximizer β̂n =
( β̂n1

β̂n2

)
in

Theorem 1 must satisfy:(i) Sparsity: β̂n2 = 0. (ii) Asymptotic normality:
√

nAnI
−1/2
n (βn01){In(βn01)+Σλn}× [β̂n1−βn01 +{In(βn01)+Σλn}−1bn]

D−→
N (0,G ), where An is a q × sn matrix such that AnA

T
n → G , and G is a

q × q nonegative symmetric matrix.
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Oracle properties

Proof As shown in Theorem 1, there is a root-n/pn-consistent local
maximizer β̂n of Qn(βn). By Lemma 1, part (i) holds that β̂n has the form
(β̂n1, 0)T . We need only prove (ii), the asymptotic normality of the
penalized nonconcave likelihood estimator β̂n1.
If we can show that

{In(βn01) + Σλn}(β̂n1 − βn01) + bn =
1

n
5 Ln(βn01) + op(n−1/2).

then

√
nAnI

−1/2
n (βn01){In(βn01) + Σλn}[β̂n1 − βn01 + {In(βn01) + Σλn}−1bn]

= 1√
n
AnI
−1/2
n (βn01)5 Ln(βn01) + op{AnI

−1/2
n (βn01)}.

By conditions of Theorem 2, we have the last term of op(1).
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Oracle properties

Proof (Cont.) Let Yni = 1√
n
AnI
−1/2
n (βn01)5 Lni (βn01), i = 1, 2, · · · , n.

It follows that, for any ε,

n∑
i=1

E‖Yni‖21{‖Yni‖ > ε} ≤ n{E‖Yn1‖4}1/2{P(‖Yn1‖ > ε)}1/2.

Then we can show P(‖Yn1‖ > ε) = O(n−1) and E‖Yn1‖4 = O(p2
n

n2 ). Thus,

we have
∑n

i=1 E‖Yni‖21{‖Yni‖ > ε} = O(n pn

n
1√
n

) = o(1). On the other

hand we have
∑n

i=1 cov(Yni )→ G .

Thus, Yni satisfies the conditions of Lindeberg-Feller CLT. This also means

that 1√
n
AnI
−1/2
n (βn01)5 Ln(βn01) has an asymptotic multivariate normal

distribution.
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Oracle properties

Remark By Theorem 2 the sparsity and the asymptotic normality are still
valid when the number of parameters diverges. The oracle property holds
for the SCAD and the hard thresholding penalty function. When n is large
enough, Σλn = 0 and bn = 0 for the SCAD and the hard thresholding
penalty. Hence, Theorem 2(ii) becomes

√
nAnI

1/2
n (βn01)(β̂01 − βn01)

D−→ N (0,G )
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Estimation of covariance matrix

As in Fan and Li (2001), by the sandwich formula let
Σ̂n = n{52Ln(β̂n1)− nΣλn(β̂n1)}−1

×ĉov{5Ln(β̂n1)}{52Ln(β̂n1)− nΣλn(β̂n1)}−1

be the estimated covariance matrix of β̂n1, where

ĉov{5Ln(β̂n1)} = {1

n

n∑
i=1

∂Lni (β̂n1)

∂βj

∂Lni (β̂n1)

∂βk
}

−{1

n

n∑
i=1

∂Lni (β̂n1)

∂βj
}{1

n

n∑
i=1

∂Lni (β̂n1)

∂βk
}

Denote by Σn = {In(βn01 + Σλn(βn01)}−1In(βn01){In(βn01 + Σλn(βn01)}−1

the asymptotic variance of β̂n1 in Theorem 2(ii).
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Consistency of the sandwich formula

Theorem 3 If conditions (A)-(H) are satisfied and p5
n/n→ 0 as n→∞,

then we have
AnΣ̂nA

T
n − AnΣnA

T
n

p−→ 0 n→∞ (6)

for any q× sn matrix An such that AnA
T
n = G , where q is any fixed integer.

Theorem 3 not only proves a conjecture of Fan and Li (2001) about the
consistency of the sandwich formula for the standard error matrix, but also
extends the result to the situation with a growing number of parameters.
It offers a way to construct a confidence interval for the esimtates of
parameters.
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Likelihood ratio test

Consider the problem of testing linear hypotheses:

H0 : Anβn01 = 0 vs. H1 : Anβn01 6= 0

where An is a q × sn matrix and AnA
T
n = Iq for a fixed q.

A natural ratio test for the problem is

Tn = 2{sup
Ωn

Q(βn|V)− sup
Ωn,Anβn1=0

Q(βn|V)}.

Theorem 4 When conditions (A)-(H), (B′) and (C′)are satisfied, under H0

we have
Tn

D−→ χ2
q (7)

provided that p5
n/n→ 0 as n→∞.
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Simulation study

Consider the autoregressive model:

Xi = β1Xi−1 + β2Xi−2 + · · ·+ βpXi−pn + ε, i = 1, 2, · · · , n,

where β = (11/4,−23/6, 37/12,−13/9, 1/3, 0, · · · , 0)T and ε is white
noise with variance σ2. In the simulation experiments 400 samples of sizes
100, 200, 400 and 800 with pn = [4n1/4]− 5 are from this model. The
SCAD penalty is employed. The results are summarized in the following
tables.
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Simulation Results
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Simulation Results
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Simulation Results
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Summary

In most model selection problems the number of parameters should
be large and grow with the sample size.

Some asymptotic properties of the nonconcave penalized likelihood
are established for situations in which the number of parameters tends
to ∞ as the sample size increases.

Under regularity conditions an oracle property and asymptotic
normality of the PLE are established.

Consistency of the sandwich formula of the covariance matrix is
demonstrated. And nonconcave penalized likelihood ratio statistics
are discussed.
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Thank You!

Jianqing Fan and Heng Peng Presenter: Jiale Xu ()Nonconcave Penalized Likelihood with A Diverging Number of ParametersMarch 12, 2010 32 / 32


