The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

Presented by Dongjun Chung

March 12, 2010

Introduction

Inconsistency of LASSO

Adaptive LASSO
Definition
Oracle Properties
Computations
Relationship: Nonnegative Garrote
Extensions: GLM
Numerical Experiments and Discussion
Proofs
Theorem 2: Oracle Properties of Adaptive LASSO
Corollary 2: Consistency of Nonnegative Garrote
Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Setting

- $y_{i}=x_{i} \beta^{*}+\varepsilon_{i}$, where $\varepsilon_{1}, \cdots, \varepsilon_{n}$ are i.i.d. mean 0 and variance σ^{2}.
- $A=\left\{j: \beta_{j}^{*} \neq 0\right\}$ and $|A|=p_{0}<p$.
- $\frac{1}{n} X^{\top} X \rightarrow C$, where C is a positive definite matrix.
$-C=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]$, where C_{11} is a $p_{0} \times p_{0}$ matrix.

Definition of Oracle Procedures

We call δ an oracle procedure if $\hat{\beta}(\delta)$ (asymptotically) has the following oracle properties:

1. Identifies the right subset model, $\left\{j: \hat{\beta}_{j} \neq 0\right\}=A$.
2. $\sqrt{n}\left(\hat{\beta}(\delta)_{A}-\beta_{A}^{*}\right) \rightarrow{ }_{d} N\left(0, \Sigma^{*}\right)$, where Σ^{*} is the covariance matrix knowing the true subset model.

Definition of LASSO (Tibshirani, 1996)

$$
\hat{\beta}^{(n)}=\arg \min _{\beta}\left\|y-\sum_{j=1}^{p} x_{j} \beta_{j}\right\|^{2}+\lambda_{n} \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- λ_{n} varies with $n . A_{n}=\left\{j: \hat{\beta}_{j}^{(n)} \neq 0\right\}$.
- LASSO variable selection is consistent iff $\lim _{n} P\left(A_{n}=A\right)=1$.

Proposition 1: Inconsistency of LASSO

Proposition 1

If $\lambda_{n} / \sqrt{n} \rightarrow \lambda_{0} \geq 0$, then $\lim \sup _{n} P\left(A_{n}=A\right) \leq c<1$, where c is a constant depending on the true model.

Theorem 1: Necessary Condition for Consistency of LASSO

Theorem 1
Suppose that $\lim _{n} P\left(A_{n}=A\right)=1$. Then there exists some sign vector $s=\left(s_{1}, \cdots, s_{p_{0}}\right)^{T}, s_{j}=1$ or -1 , such that

$$
\begin{equation*}
\left|C_{21} C_{11}^{-1} s\right| \leq 1 \tag{1}
\end{equation*}
$$

Corollary 1: Interesting Case of Inconsistency of LASSO

Corollary 1

Suppose that $p_{0}=2 m+1 \geq 3$ and $p=p_{0}+1$, so there is one irrelevant predictor. Let $C_{11}=\left(1-\rho_{1}\right) /+\rho_{1} J_{1}$, where J_{1} is the matrix of 1 's and $C_{12}=\rho_{2} \overrightarrow{1}$ and $C_{22}=1$. If $-\frac{1}{\rho_{0}-1}<\rho_{1}<-\frac{1}{\rho_{0}}$ and $1+\left(p_{0}-1\right) \rho_{1}<\left|\rho_{2}\right|<\sqrt{\left(1+\left(p_{0}-1\right) \rho_{1}\right) / p_{0}}$, then condition (1) cannot be satisfied. Thus LASSO variable selection is inconsistent.

Corollary 1: Interesting Case of Inconsistency of LASSO

Definition of Adaptive LASSO

$$
\hat{\beta}^{*(n)}=\arg \min _{\beta}\left\|y-\sum_{j=1}^{p} x_{j} \beta_{j}\right\|^{2}+\lambda_{n} \sum_{j=1}^{p} \hat{w}_{j}\left|\beta_{j}\right| .
$$

- weight vector $\hat{w}=1 /|\hat{\beta}|^{\gamma}$ (data-dependent) and $\gamma>0$.
- $\hat{\beta}$ is a root- n-consistent estimator to β^{*}, e.g. $\hat{\beta}=\hat{\beta}$ (ols).
- $A_{n}^{*}=\left\{j: \hat{\beta}_{j}^{*(n)} \neq 0\right\}$.

Definition

Oracle Properties
Computations
Relationship: Nonnegative Garrote
Extensions: GLM

Penalty Function of LASSO, SCAD and Adaptive LASSO

Remarks: Adaptive LASSO

- The data-dependent \hat{w} is the key for its oracle properties.
- As n grows, the weights for zero-coefficient predictors get inflated, while the weights for nonzero-coefficient predictors converge to a finite constant.
- In the view of Fan and Li, 2001 (presented by Yang Zhao), adaptive lasso satisfies three properties of good penalty function: unbiasedness, sparsity, and continuity.

Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} n^{(\gamma-1) / 2} \rightarrow \infty$. Then the adaptive LASSO must satisfy the following:

1. Consistency in variable selection: $\lim _{n} P\left(A_{n}^{*}=A\right)=1$.
2. Asymptotic normality: $\sqrt{n}\left(\hat{\beta}_{A}^{*(n)}-\beta_{A}^{*}\right) \rightarrow_{d} N\left(0, \sigma^{2} C_{11}^{-1}\right)$.

Computations of Adaptive LASSO

- Adaptive LASSO estimates can be solved by the LARS algorithm (Efron et al., 2004). The entire solution path can be computed at the same order of computation of a single OLS fit.
- Tuning: If we use $\hat{\beta}(o / s)$, then use 2-dimensional CV to find an optimal pair of $\left(\gamma, \lambda_{n}\right)$. Or use 3-dimensional CV to find an optimal triple $(\hat{\beta}, \gamma, \lambda)$.
- $\hat{\beta}$ (ridge) may be used from the best ridge regression fit when collinearity is a concern.

Definition of Nonnegative Garrote (Breiman, 1995)

$\hat{\beta}_{j}$ (garrote) $=c_{j} \hat{\beta}_{j}$ (ols), where a set of nonnegative scaling factor $\left\{c_{j}\right\}$ is to minimize

$$
\left\|y-\sum_{j=1}^{p} x_{j} \hat{\beta}_{j}(o l s) c_{j}\right\|^{2}+\lambda_{n} \sum_{j=1}^{p} c_{j},
$$

subject to $c_{j} \geq 0, \forall j$.

- A sufficiently large λ_{n} shrinks some c_{j} to exact 0 , i.e.
$\hat{\beta}_{j}($ garrote $)=0$.
- Yuan and Lin (2007) also studied the consistency of the nonnegative garrote.

Garrote: Adaptive LASSO Formulation and Consistency

Adaptive LASSO Formulation

$$
\hat{\beta}(\text { garrote })=\arg \min _{\beta}\left\|y-\sum_{j=1}^{p} x_{j} \beta_{j}\right\|^{2}+\lambda_{n} \sum_{j=1}^{p} \hat{w}_{j}\left|\beta_{j}\right|
$$

subject to $\beta_{j} \hat{\beta}_{j}(o l s) \geq 0, \forall j$, where $\gamma=1, \hat{w}=1 /|\hat{\beta}(o l s)|$.
Corollary 2: Consistency of Nonnegative Garrote
If we choose a λ_{n} such that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} \rightarrow \infty$, then nonnegative garrote is consistent for variable selection.

Adaptive LASSO for GLM

$\hat{\beta}^{*(n)}(g / m)=\arg \min _{\beta} \sum\left(-y_{i}\left(x_{i}^{T} \beta\right)+\phi\left(x_{i}^{T} \beta\right)\right)+\lambda_{n} \sum_{j=1}^{p} \hat{w}_{j}\left|\beta_{j}\right|$.

- weight vector $\hat{w}=1 /|\hat{\beta}(m / e)|^{\gamma}$ for some $\gamma>0$.
- $f(y \mid x, \theta)=h(y) \exp (y \theta-\phi(\theta))$, where $\theta=x^{\top} \beta^{*}$.
- The Fisher information matrix $I\left(\beta^{*}\right)=\left[\begin{array}{ll}l_{11} & l_{12} \\ I_{21} & I_{22}\end{array}\right]$, where I_{11} is a $p_{0} \times p_{0}$ matrix. Then I_{11} is the Fisher information matrix with the true submodel known.

Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4
Let $A_{n}^{*}=\left\{j: \hat{\beta}_{j}^{*(n)}(g / m) \neq 0\right\}$. Suppose that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} n^{(\gamma-1) / 2} \rightarrow \infty$. Then, under some mild regularity conditions, the adaptive LASSO estimate $\hat{\beta}^{*(n)}(g / m)$ must satisfy the following:

1. Consistency in variable selection: $\lim _{n} P\left(A_{n}^{*}=A\right)=1$.
2. Asymptotic normality: $\sqrt{n}\left(\hat{\beta}_{A}^{*(n)}(g / m)-\beta_{A}^{*}\right) \rightarrow_{d} N\left(0, I_{11}^{-1}\right)$.

Experiments for Inconsistency of LASSO

Setting

We let $y=x^{\top} \beta+N\left(0, \sigma^{2}\right)$, where the true regression coefficients are $\beta=(5.6,5.6,5.6,0)$. The predictors $x_{i}(i=1, \cdots, n)$ are i.i.d. $N(0, C)$, where C is the C matrix in Corollary 1 with $\rho_{1}=-.39$ and $\rho_{2}=.23$ (red point).

Experiments for Inconsistency of LASSO

Table 1. Simulation Model 0: The Probability of Containing the True Model in the Solution Path

	$n=60, \sigma=9$	$n=120, \sigma=5$	$n=300, \sigma=3$
lasso	.55	.51	.53
adalasso $(\gamma=.5)$.59	.68	.93
adalasso $(\gamma=1)$.67	.89	1
adalasso $(\gamma=2)$.73	.97	1
adalasso $(\gamma$ by cv $)$.67	.91	1

NOTE: In this table "adalasso" is the adaptive lasso, and " γ by cv" means that γ was selected by five-fold cross-validation from three choices: $\gamma=.5, \gamma=1$, and $\gamma=2$.

General Observations

- Comparison: LASSO, Adaptive LASSO, SCAD, and nonnegative garrote.
- $p=8$ and $p_{0}=3$. Consider a few large effects $(n=20,60)$ and many small effects ($n=40,80$).
- LASSO performs best when the SNR is low.
- Adaptive LASSO, SCAD, and and nonnegative garrote outperforms LASSO with a medium or low level of SNR.
- Adaptive LASSO tends to be more stable than SCAD.
- LASSO tends to select noise variables more often than other methods.

Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} n^{(\gamma-1) / 2} \rightarrow \infty$. Then the adaptive LASSO must satisfy the following:

1. Consistency in variable selection: $\lim _{n} P\left(A_{n}^{*}=A\right)=1$.
2. Asymptotic normality: $\sqrt{n}\left(\hat{\beta}_{A}^{*(n)}-\beta_{A}^{*}\right) \rightarrow_{d} N\left(0, \sigma^{2} C_{11}^{-1}\right)$.

Proof of Theorem 2: Asymptotic Normality

Let $\beta=\beta^{*}+u / \sqrt{n}$ and

$$
\Psi_{n}(u)=\left\|y-\sum_{j=1}^{p} x_{j}\left(\beta_{j}^{*}+\frac{u_{n}}{\sqrt{n}}\right)\right\|^{2}+\lambda_{n} \sum_{j=1}^{p} \hat{w}_{j}\left|\beta_{j}^{*}+\frac{u_{n}}{\sqrt{n}}\right| .
$$

Let $\hat{u}^{(n)}=\arg \min \Psi_{n}(u)$; then $\hat{u}^{(n)}=\sqrt{n}\left(\hat{\beta}^{*(n)}-\beta^{*}\right)$.

$$
\begin{aligned}
& \Psi_{n}(u)-\Psi_{n}(0)=V_{4}^{(n)}(u), \text { where } \\
& V_{4}^{(n)}(u)=u^{T}\left(\frac{1}{n} X^{T} X\right) u-2 \frac{\varepsilon^{T} X}{\sqrt{n}} u
\end{aligned}
$$

$$
+\frac{\lambda_{n}}{\sqrt{n}} \sum_{j=1}^{p} \hat{w}_{j} \sqrt{n}\left(\left|\beta_{j}^{*}+\frac{u_{n}}{\sqrt{n}}\right|-\left|\beta_{j}^{*}\right|\right)
$$

Proof of Theorem 2: Asymptotic Normality (conti.)

Then, $V_{4}^{(n)}(u) \rightarrow{ }_{d} V_{4}(u)$ for every u, where

$$
V_{4}(u)= \begin{cases}u_{A}^{T} C_{11} u_{A}-2 u_{A}^{T} W_{A} & \text { if } u_{j}=0, \forall j \notin A \\ \infty & \text { otherwise }\end{cases}
$$

and $W_{A}=N\left(0, \sigma^{2} C_{11}\right) . V_{4}^{(n)}$ is convex, and the unique minimum of V_{4} is $\left(C_{11}^{-1} W_{A}, 0\right)^{T}$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_{A}^{(n)} \rightarrow_{d} C_{11}^{-1} W_{A}$ and $\hat{u}_{A C}^{(n)} \rightarrow_{d} 0$. Hence, we prove the asymptotic normality part.

Proof of Theorem 2: Consistency

The asymptotic normality result indicates that $\forall j \in A$, $\hat{\beta}_{j}^{*(n)} \rightarrow_{p} \beta_{j}^{*}$; thus $P\left(j \in A_{n}^{*}\right) \rightarrow 1$. Then it suffices to show that $\forall j^{\prime} \notin A, P\left(j^{\prime} \in A_{n}^{*}\right) \rightarrow 0$. Consider the event $j^{\prime} \in A_{n}^{*}$. By the KKT optimality conditions, $2 x_{j^{\prime}}^{T}\left(y-X \hat{\beta}^{*(n)}\right)=\lambda_{n} \hat{w}_{j^{\prime}}$.
$\lambda_{n} \hat{w}_{j^{\prime}} / \sqrt{n}=\lambda_{n} n^{(\gamma-1) / 2} /\left|\sqrt{n} \hat{\beta}_{j^{\prime}}\right|^{\gamma} \rightarrow_{p} \infty$ and
$2 \frac{x_{j^{\prime}}^{\top}\left(y-X \hat{\beta}^{*(n)}\right)}{\sqrt{n}}=2 \frac{x_{j^{\prime}}^{\top} X \sqrt{n}\left(\beta^{*}-\hat{\beta}^{*(n)}\right)}{n}+2 \frac{x_{j^{\prime}}^{\top} \varepsilon}{\sqrt{n}}$ and each of these two terms converges to some normal distribution. Thus

$$
P\left(j^{\prime} \in A_{n}^{*}\right) \leq P\left(2 x_{j^{\prime}}^{T}\left(y-X \hat{\beta}^{*(n)}\right)=\lambda_{n} \hat{w}_{j^{\prime}}\right) \rightarrow 0 .
$$

Corollary 2: Consistency of Nonnegative Garrote

Adaptive LASSO Formulation

$$
\hat{\beta}(\text { garrote })=\arg \min _{\beta}\left\|y-\sum_{j=1}^{p} x_{j} \beta_{j}\right\|^{2}+\lambda_{n} \sum_{j=1}^{p} \hat{w}_{j}\left|\beta_{j}\right|
$$

subject to $\beta_{j} \hat{\beta}_{j}(o l s) \geq 0, \forall j$, where $\gamma=1, \hat{w}=1 /|\hat{\beta}(o l s)|$.
Corollary 2: Consistency of Nonnegative Garrote
If we choose a λ_{n} such that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} \rightarrow \infty$, then nonnegative garrote is consistent for variable selection.

Proof of Corollary 2

Let $\hat{\beta}^{*(n)}$ be the adaptive LASSO estimates. By Theorem $2, \hat{\beta}^{*(n)}$ is an oracle estimator if $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} \rightarrow \infty$. To show the consistency, it suffices to show that $\hat{\beta}^{*(n)}$ satisfies the sign constraint with probability tending to 1 . Pick any j. If $j \in A$, then $\hat{\beta}^{*(n)}(\gamma=1)_{j} \hat{\beta}(o l s)_{j} \rightarrow_{p}\left(\beta_{j}^{*}\right)^{2}>0$. If $j \notin A$, then $P\left(\hat{\beta}^{*(n)}(\gamma=1)_{j} \hat{\beta}(o l s)_{j} \geq 0\right) \geq P\left(\hat{\beta}^{*(n)}(\gamma=1)_{j}=0\right) \rightarrow 1$. In either case, $P\left(\hat{\beta}^{*(n)}(\gamma=1)_{j} \hat{\beta}(o l s)_{j} \geq 0\right) \rightarrow 1$ for any $j=1,2, \cdots, p$.

Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4

Let $A_{n}^{*}=\left\{j: \hat{\beta}_{j}^{*(n)}(g / m) \neq 0\right\}$. Suppose that $\lambda_{n} / \sqrt{n} \rightarrow 0$ and $\lambda_{n} n^{(\gamma-1) / 2} \rightarrow \infty$. Then, under some mild regularity conditions, the adaptive LASSO estimate $\hat{\beta}^{*(n)}(\mathrm{g} / \mathrm{m})$ must satisfy the following:

1. Consistency in variable selection: $\lim _{n} P\left(A_{n}^{*}=A\right)=1$.
2. Asymptotic normality:

$$
\sqrt{n}\left(\hat{\beta}_{A}^{*(n)}(g / m)-\beta_{A}^{*}\right) \rightarrow_{d} N\left(0, \sigma^{2} I_{11}^{-1}\right) .
$$

- $f(y \mid x, \theta)=h(y) \exp (y \theta-\phi(\theta))$, where $\theta=x^{\top} \beta^{*}$.

Theorem 4: Regularity Conditions

1. The Fisher information matrix is finite and positive definite,

$$
I\left(\beta^{*}\right)=E\left[\phi^{\prime \prime}\left(x^{\top} \beta^{*}\right) x x^{T}\right]
$$

2. There is a sufficiently large enough open set O that contains β^{*} such that $\forall \beta \in O$,

$$
\left|\phi^{\prime \prime \prime}\left(x^{\top} \beta\right)\right| \leq M(x)<\infty
$$

and

$$
E\left[M(x)\left|x_{j} x_{k} x_{l}\right|\right]<\infty
$$

for all $1 \leq j, k, l \leq p$.

Proof of Theorem 4: Asymptotic Normality

Let $\beta=\beta^{*}+u / \sqrt{n}$. Define
$\Gamma_{n}(u)=\sum_{i=1}^{n}\left\{-y_{i}\left(x_{i}^{T}\left(\beta^{*}+u / \sqrt{n}\right)\right)+\phi\left(x_{i}^{T}\left(\beta^{*}+u / \sqrt{n}\right)\right)\right\}$

$$
+\lambda_{n} \sum_{j=1}^{p}\left|\beta_{j}^{*}+u_{j} / \sqrt{n}\right|
$$

Let $\hat{u}^{(n)}=\arg \min _{u} \Gamma_{n}(u)$; then $\hat{u}^{(n)}=\sqrt{n}\left(\beta^{*(n)}(g / m)-\beta^{*}\right)$. Using the Taylor expansion, we have $\Gamma_{n}(u)-\Gamma_{n}(0)=H^{(n)}(u)$, where $H^{(n)}(u)=A_{1}^{(n)}+A_{2}^{(n)}+A_{3}^{(n)}+A_{4}^{(n)}$, with

$$
\begin{aligned}
& A_{1}^{(n)}=-\sum_{i=1}^{n}\left[y_{i}-\phi^{\prime}\left(x_{i}^{T} \beta^{*}\right)\right] \frac{x_{i}^{T} u}{\sqrt{n}}, \\
& A_{2}^{(n)}=\sum_{i=1}^{n} \frac{1}{2} \phi^{\prime \prime}\left(x_{i}^{T} \beta^{*}\right) u^{T} \frac{x_{i} x_{i}^{T}}{n} u, \\
& A_{3}^{(n)}=\frac{\lambda_{n}}{\sqrt{n}} \sum_{j=1}^{p} \hat{w}_{j} \sqrt{n}\left(\left|\beta_{j}^{*}+\frac{u_{n}}{\sqrt{n}}\right|-\left|\beta_{j}^{*}\right|\right),
\end{aligned}
$$

Proof of Theorem 4: Asymptotic Normality (conti.)

and $A_{4}^{(n)}=n^{-3 / 2} \sum_{i=1}^{n} \frac{1}{6} \phi^{\prime \prime \prime}\left(x_{i}^{\top} \tilde{\beta}_{*}\right)\left(x_{i}^{T} u\right)^{3}$, where $\tilde{\beta}^{*}$ is between β^{*} and $\beta^{*}+u / \sqrt{n}$. Then, by the regularity condition 1 and 2 , $H^{(n)}(u) \rightarrow{ }_{d} H(u)$ for every u, where

$$
H(u)= \begin{cases}u_{A}^{T} l_{11} u_{A}-2 u_{A}^{T} W_{A} & \text { if } u_{j}=0, \forall j \notin A \\ \infty & \text { otherwise }\end{cases}
$$

and $W_{A}=N\left(0, l_{11}\right) . H^{(n)}$ is convex, and the unique minimum of H is $\left(I_{11}^{-1} W_{A}, 0\right)^{T}$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_{A}^{(n)} \rightarrow_{d} I_{11}^{-1} W_{A}$ and $\hat{u}_{A C}^{(n)} \rightarrow{ }_{d} 0$, and the asymptotic normality part is proven.

Proof of Theorem 4: Consistency

The asymptotic normality result indicates that $j \in A, P\left(j \in A_{n}^{*}\right) \rightarrow 1$. Then it suffices to show that $j^{\prime} \notin A, P\left(j^{\prime} \in A_{n}^{*}\right) \rightarrow 0$. Consider the event $j^{\prime} \in A_{n}^{*}$. By the KKT optimality conditions,

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i j^{\prime}}\left(y_{i}-\phi^{\prime}\left(x_{i}^{T} \hat{\beta}^{*(n)}(g / m)\right)\right)=\lambda_{n} \hat{w}_{j^{\prime}} \\
& \quad \sum_{i=1}^{n} x_{i j^{\prime}}\left(y_{i}-\phi^{\prime}\left(x_{i}^{T} \hat{\beta}^{*(n)}(g / m)\right)\right) / \sqrt{n}=B_{1}^{(n)}+B_{2}^{(n)}+B_{3}^{(n)}
\end{aligned}
$$

with

$$
\begin{aligned}
& B_{1}^{(n)}=\sum_{i=1}^{n} x_{i j^{\prime}}\left(y_{i}-\phi^{\prime}\left(x_{i}^{T} \beta^{*}\right)\right) / \sqrt{n} \\
& B_{2}^{(n)}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j^{\prime}} \phi^{\prime \prime}\left(x_{i}^{T} \beta^{*}\right) x_{i}^{T}\right) \sqrt{n}\left(\beta^{*}-\hat{\beta}^{*(n)}(g / m)\right), \\
& B_{3}^{(n)}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i j^{\prime}} \phi^{\prime \prime \prime}\left(x_{i}^{T} \tilde{\beta}_{* *}\right)\right)\left(x_{i}^{T} \sqrt{n}\left(\beta^{*}-\hat{\beta}^{*(n)}(g / m)\right)\right)^{2} / \sqrt{n},
\end{aligned}
$$

where $\tilde{\beta}_{*}$ is between $\widehat{\beta}^{*}(n)(\rho / m)$ and β^{*}

Proof of Theorem 4: Consistency (conti.)

$B_{1}^{(n)}$ and $B_{2}^{(n)}$ converge to some normal distributions and
$B_{3}^{(n)}=O_{p}(1 / \sqrt{n})$.
$\lambda_{n} \hat{w}_{j^{\prime}} / \sqrt{n}=\lambda_{n} n^{(\gamma-1) / 2} /\left|\sqrt{n} \hat{\beta}_{j^{\prime}}(g / m)\right|^{\gamma} \rightarrow_{p} \infty$. Thus
$P\left(j^{\prime} \in A_{n}^{*}\right) \leq P\left(\sum_{i=1}^{n} x_{i j^{\prime}}\left(y_{i}-\phi^{\prime}\left(x_{i}^{T} \hat{\beta}^{*(n)}(g / m)\right)\right)=\lambda_{n} \hat{w}_{j^{\prime}}\right) \rightarrow 0$.
and this completes the proof.

