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Setting

I yi = xiβ
∗ + εi , where ε1, · · · , εn are i.i.d. mean 0 and

variance σ2.

I A =
{

j : β∗j 6= 0
}

and |A| = p0 < p.

I 1
nXTX → C , where C is a positive definite matrix.

I C =

[
C11 C12

C21 C22

]
, where C11 is a p0 × p0 matrix.
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Definition of Oracle Procedures

We call δ an oracle procedure if β̂(δ) (asymptotically) has the
following oracle properties:

1. Identifies the right subset model,
{

j : β̂j 6= 0
}

= A.

2.
√

n
(
β̂(δ)A − β∗A

)
→d N (0,Σ∗), where Σ∗ is the covariance

matrix knowing the true subset model.
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Definition of LASSO (Tibshirani, 1996)

β̂(n) = arg min
β

∥∥∥y −
∑p

j=1
xjβj

∥∥∥2
+ λn

p∑
j=1

|βj |.

I λn varies with n. An =
{

j : β̂
(n)
j 6= 0

}
.

I LASSO variable selection is consistent iff limn P (An = A) = 1.
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Proposition 1: Inconsistency of LASSO

Proposition 1

If λn/
√

n → λ0 ≥ 0, then lim supn P (An = A) ≤ c < 1, where c is
a constant depending on the true model.
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Theorem 1: Necessary Condition for Consistency of LASSO

Theorem 1
Suppose that limn P (An = A) = 1. Then there exists some sign
vector s = (s1, · · · , sp0)

T , sj = 1 or −1, such that∣∣C21C
−1
11 s

∣∣ ≤ 1. (1)
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Corollary 1: Interesting Case of Inconsistency of LASSO

Corollary 1

Suppose that p0 = 2m + 1 ≥ 3 and p = p0 + 1, so there is one
irrelevant predictor. Let C11 = (1− ρ1) I + ρ1J1, where J1 is the
matrix of 1’s and C12 = ρ2

~1 and C22 = 1. If − 1
p0−1 < ρ1 < − 1

p0

and 1 + (p0 − 1) ρ1 < |ρ2| <
√

(1 + (p0 − 1) ρ1) /p0, then
condition (1) cannot be satisfied. Thus LASSO variable selection is
inconsistent.
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Definition of Adaptive LASSO

β̂∗(n) = arg min
β

∥∥∥y −
∑p

j=1
xjβj

∥∥∥2
+ λn

p∑
j=1

ŵj |βj |.

I weight vector ŵ = 1/
∣∣∣β̂∣∣∣γ (data-dependent) and γ > 0.

I β̂ is a root-n-consistent estimator to β∗, e.g. β̂ = β̂(ols).

I A∗
n =

{
j : β̂

∗(n)
j 6= 0

}
.
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Penalty Function of LASSO, SCAD and Adaptive LASSO

Zou: The Adaptive Lasso 1421
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Figure 1. Plot of Thresholding Functions With λ = 2 for (a) the Hard; (b) Bridge L.5; (c) the Lasso; (d) the SCAD; (e) the Adaptive Lasso γ = .5;
and (f) the Adaptive Lasso, γ = 2.

3.3 Oracle Inequality and Near-Minimax Optimality

As shown by Donoho and Johnstone (1994), the �1 shrinkage
leads to the near–minimax-optimal procedure for estimating
nonparametric regression functions. Because the adaptive lasso
is a modified version of the lasso with subtle and important dif-
ferences, it would be interesting to see whether the modification
affects the minimax optimality of the lasso. In this section we
derive a new oracle inequality to show that the adaptive lasso
shrinkage is near-minimax optimal.

For the minimax arguments, we consider the same multi-
ple estimation problem discussed by Donoho and Johnstone
(1994). Suppose that we are given n independent observations
{yi} generated from

yi = µi + zi, i = 1,2, . . . ,n,

where the zi’s are iid normal random variables with mean 0
and known variance σ 2. For simplicity, let us assume that
σ = 1. The objective is to estimate the mean vector (µi) by
some estimator (µ̂i), and the quality of the estimator is mea-
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Remarks: Adaptive LASSO

I The data-dependent ŵ is the key for its oracle properties.

I As n grows, the weights for zero-coefficient predictors get
inflated, while the weights for nonzero-coefficient predictors
converge to a finite constant.

I In the view of Fan and Li, 2001 (presented by Yang Zhao),
adaptive lasso satisfies three properties of good penalty
function: unbiasedness, sparsity, and continuity.
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Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that λn/

√
n → 0 and λnn

(γ−1)/2 →∞. Then the
adaptive LASSO must satisfy the following:

1. Consistency in variable selection: limn P (A∗
n = A) = 1.

2. Asymptotic normality:
√

n
(
β̂
∗(n)
A − β∗A

)
→d N

(
0, σ2C−1

11

)
.
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Computations of Adaptive LASSO

I Adaptive LASSO estimates can be solved by the LARS
algorithm (Efron et al., 2004). The entire solution path can
be computed at the same order of computation of a single
OLS fit.

I Tuning: If we use β̂(ols), then use 2-dimensional CV to find
an optimal pair of (γ, λn). Or use 3-dimensional CV to find
an optimal triple (β̂, γ, λ).

I β̂(ridge) may be used from the best ridge regression fit when
collinearity is a concern.

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA



Introduction
Inconsistency of LASSO

Adaptive LASSO
Numerical Experiments and Discussion

Proofs

Definition
Oracle Properties
Computations
Relationship: Nonnegative Garrote
Extensions: GLM

Definition of Nonnegative Garrote (Breiman, 1995)

β̂j (garrote) = cj β̂j (ols) , where a set of nonnegative scaling factor
{cj} is to minimize∥∥∥y −

∑p

j=1
xj β̂j (ols) cj

∥∥∥2
+ λn

∑p

j=1
cj ,

subject to cj ≥ 0,∀j .

I A sufficiently large λn shrinks some cj to exact 0, i.e.

β̂j (garrote) = 0.

I Yuan and Lin (2007) also studied the consistency of the
nonnegative garrote.
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Garrote: Adaptive LASSO Formulation and Consistency

Adaptive LASSO Formulation

β̂ (garrote) = arg min
β

∥∥∥y −
∑p

j=1
xjβj

∥∥∥2
+ λn

∑p

j=1
ŵj |βj |

subject to βj β̂j (ols) ≥ 0,∀j , where γ = 1, ŵ = 1/
∣∣∣β̂ (ols)

∣∣∣.
Corollary 2: Consistency of Nonnegative Garrote

If we choose a λn such that λn/
√

n → 0 and λn →∞, then
nonnegative garrote is consistent for variable selection.
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Adaptive LASSO for GLM

β̂∗(n) (glm) = arg min
β

∑ (
−yi

(
xT
i β

)
+ φ

(
xT
i β

))
+ λn

∑p

j=1
ŵj |βj |.

I weight vector ŵ = 1/
∣∣∣β̂(mle)

∣∣∣γ for some γ > 0.

I f (y |x , θ) = h (y) exp (yθ − φ (θ)), where θ = xTβ∗.

I The Fisher information matrix I (β∗) =

[
I11 I12
I21 I22

]
, where

I11 is a p0 × p0 matrix. Then I11 is the Fisher information
matrix with the true submodel known.
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4
Let A∗

n =
{

j : β̂
∗(n)
j (glm) 6= 0

}
. Suppose that λn/

√
n → 0 and

λnn
(γ−1)/2 →∞. Then, under some mild regularity conditions, the

adaptive LASSO estimate β̂∗(n) (glm) must satisfy the following:

1. Consistency in variable selection: limn P (A∗
n = A) = 1.

2. Asymptotic normality:
√

n
(
β̂
∗(n)
A (glm)− β∗A

)
→d N

(
0, I−1

11

)
.
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Experiments for Inconsistency of LASSO

Setting

We let y = xTβ + N(0, σ2), where the true regression coefficients
are β = (5.6, 5.6, 5.6, 0). The predictors xi (i = 1, · · · , n) are i.i.d.
N(0,C ), where C is the C matrix in Corollary 1 with ρ1 = −.39
and ρ2 = .23 (red point).
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Zou: The Adaptive Lasso 1423

The LARS algorithm is used to compute the entire solution
path of the lasso in step (b). The computational cost is of or-
der O(np2), which is the same order of computation of a single
OLS fit. The efficient path algorithm makes the adaptive lasso
an attractive method for real applications.

Tuning is an important issue in practice. Suppose that we
use β̂(ols) to construct the adaptive weights in the adaptive
lasso; we then want to find an optimal pair of (γ,λn). We can
use two-dimensional cross-validation to tune the adaptive lasso.
Note that for a given γ , we can use cross-validation along with
the LARS algorithm to exclusively search for the optimal λn. In
principle, we can also replace β̂(ols) with other consistent esti-
mators. Hence we can treat it as the third tuning parameter and
perform three-dimensional cross-validation to find an optimal
triple (β̂, γ, λn). We suggest using β̂(ols) unless collinearity is
a concern, in which case we can try β̂(ridge) from the best ridge
regression fit, because it is more stable than β̂(ols).

3.6 Standard Error Formula

We briefly discuss computing the standard errors of the adap-
tive lasso estimates. Tibshirani (1996) presented a standard er-
ror formula for the lasso. Fan and Li (2001) showed that local
quadratic approximation (LQA) can provide a sandwich for-
mula for computing the covariance of the penalized estimates
of the nonzero components. The LQA sandwich formula has
been proven to be consistent (Fan and Peng 2004).

We follow the LQA approach to derive a sandwich formula
for the adaptive lasso. For a nonzero βj, consider the LQA of
the adaptive lasso penalty,

|βj|ŵj ≈ |βj0|ŵj + 1

2

ŵj

|βj0| (β
2
j − β2

j0).

Suppose that the first d components of β are nonzero. Then let
�(β) = diag( ŵ1|β1| , . . . ,

ŵd|βd | ). Let Xd denote the first d columns
of X. By the arguments of Fan and Li (2001), the adaptive lasso
estimates can be solved by iteratively computing the ridge re-
gression,

(β1, . . . , βd)
T = (

XT
d Xd + λn�(β0)

)−1XT
d y,

which leads to the estimated covariance matrix for the nonzero
components of the adaptive lasso estimates β̂∗(n),

ĉov
(

β̂
∗(n)

A∗
n

) = σ 2(XT
A∗

n
XA∗

n
+ λn�

(

β̂
∗(n)

A∗
n

))−1

× XT
A∗

n
XA∗

n

(

XT
A∗

n
XA∗

n
+ λn�

(

β̂
∗(n)

A∗
n

))−1
.

If σ 2 is unknown, then we can replace σ 2 with its estimates
from the full model. For variables with β̂

∗(n)
j = 0, the estimated

standard errors are 0 (Tibshirani 1996; Fan and Li 2001).

3.7 Some Numerical Experiments

In this section we report a simulation study done to com-
pare the adaptive lasso with the lasso, the SCAD, and the non-
negative garotte. In the simulation we considered various linear
models, y = xTβ + N(0, σ 2). In all examples, we computed the
adaptive weights using OLS coefficients. We used the LARS
algorithm to compute the lasso and the adaptive lasso. We im-
plemented the LQA algorithm of Fan and Li (2001) to compute

the SCAD estimates and used quadratic programming to solve
the nonnegative garotte. For each competitor, we selected its
tuning parameter by fivefold cross-validation. In the adaptive
lasso, we used two-dimensional cross-validation and selected γ

from {.5,1,2}; thus the difference between the lasso and the
adaptive lasso must be contributed by the adaptive weights.

We first show a numerical demonstration of Corollary 1.

Model 0 (Inconsistent lasso path). We let y = xTβ + N(0,

σ 2), where the true regression coefficients are β = (5.6,5.6,

5.6,0). The predictors xi (i = 1, . . . ,n) are iid N(0,C), where
C is the C matrix in Corollary 1 with ρ1 = −.39 and ρ2 = .23.

In this model we chose ρ1 = −.39 and ρ2 = .23 such that the
conditions in Corollary 1 are satisfied. Thus the design matrix C
does not allow consistent lasso selection. To show this numeri-
cally, we simulated 100 datasets from the foregoing model for
three different combinations of sample size (n) and error vari-
ance (σ 2). On each dataset, we computed the entire solution
path of the lasso, then estimated the probability of the lasso so-
lution path containing the true model. We repeated the same
procedure for the adaptive lasso. As n increases and σ de-
creases, the variable selection problem is expected to become
easier. However, as shown in Table 1, the lasso has about a
50% chance of missing the true model regardless of the choice
of (n, σ ). In contrast, the adaptive lasso is consistent in variable
selection.

We now compare the prediction accuracy of the lasso, the
adaptive lasso, the SCAD, and the nonnegative garotte. Note
that E[(ŷ−ytest)

2] = E[(ŷ−xTβ)2]+σ 2. The second term is the
inherent prediction error due to the noise. Thus for comparison,
we report the relative prediction error (RPE), E[(ŷ−xTβ)2]/σ 2.

Model 1 (A few large effects). In this example, we let β =
(3,1.5,0,0,2,0,0,0). The predictors xi (i = 1, . . . ,n) were
iid normal vectors. We set the pairwise correlation between
xj1 and xj2 to be cor( j1, j2) = (.5)| j1−j2|. We also set σ = 1,3,6
such that the corresponding signal-to-noise ratio (SNR) was
about 21.25, 2.35, and .59. We let n be 20 and 60.

Model 2 (Many small effects). We used the same model as
in model 1 but with βj = .85 for all j. We set σ = 1,3,6, and
the corresponding SNR is 14.46, 1.61, and .40. We let n = 40
and n = 80.

In both models we simulated 100 training datasets for each
combination of (n, σ 2). All of the training and tuning were
done on the training set. We also collected independent test
datasets of 10,000 observations to compute the RPE. To esti-
mate the standard error of the RPE, we generated a bootstrapped
sample from the 100 RPEs, then calculated the bootstrapped

Table 1. Simulation Model 0: The Probability of Containing
the True Model in the Solution Path

n = 60, σ = 9 n = 120, σ = 5 n = 300, σ = 3

lasso .55 .51 .53
adalasso(γ = .5) .59 .68 .93
adalasso(γ = 1) .67 .89 1
adalasso(γ = 2) .73 .97 1
adalasso(γ by cv) .67 .91 1

NOTE: In this table “adalasso” is the adaptive lasso, and “γ by cv” means that γ was selected
by five-fold cross-validation from three choices: γ = .5, γ = 1, and γ = 2.
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General Observations

I Comparison: LASSO, Adaptive LASSO, SCAD, and
nonnegative garrote.

I p = 8 and p0 = 3. Consider a few large effects (n = 20, 60)
and many small effects (n = 40, 80).

I LASSO performs best when the SNR is low.

I Adaptive LASSO, SCAD, and and nonnegative garrote
outperforms LASSO with a medium or low level of SNR.

I Adaptive LASSO tends to be more stable than SCAD.

I LASSO tends to select noise variables more often than other
methods.
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Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2
Suppose that λn/

√
n → 0 and λnn

(γ−1)/2 →∞. Then the
adaptive LASSO must satisfy the following:

1. Consistency in variable selection: limn P (A∗
n = A) = 1.

2. Asymptotic normality:
√

n
(
β̂
∗(n)
A − β∗A

)
→d N

(
0, σ2C−1

11

)
.
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Proof of Theorem 2: Asymptotic Normality

Let β = β∗ + u/
√

n and

Ψn (u) =

∥∥∥∥y −
∑p

j=1
xj

(
β∗j +

un√
n

)∥∥∥∥2

+ λn

∑p

j=1
ŵj

∣∣∣∣β∗j +
un√
n

∣∣∣∣.
Let û(n) = arg minΨn (u); then û(n) =

√
n

(
β̂∗(n) − β∗

)
.

Ψn (u)−Ψn (0) = V
(n)
4 (u), where

V
(n)
4 (u) = uT

(
1
nXTX

)
u − 2 εT X√

n
u

+
λn√

n

∑p

j=1
ŵj

√
n

(∣∣∣∣β∗j +
un√
n

∣∣∣∣− ∣∣β∗j ∣∣)
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Proof of Theorem 2: Asymptotic Normality (conti.)

Then, V
(n)
4 (u) →d V4 (u) for every u, where

V4 (u) =

{
uT
A C11uA − 2uT

A WA if uj = 0,∀j /∈ A
∞ otherwise

and WA = N
(
0, σ2C11

)
. V

(n)
4 is convex, and the unique minimum

of V4 is
(
C−1

11 WA, 0
)T

. Following the epi-convergence results of

Geyer (1994), we have û
(n)
A →d C−1

11 WA and û
(n)

AC →d 0. Hence, we
prove the asymptotic normality part.
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Proof of Theorem 2: Consistency

The asymptotic normality result indicates that ∀j ∈ A,

β̂
∗(n)
j →p β∗j ; thus P (j ∈ A∗

n) → 1. Then it suffices to show that
∀j ′ /∈ A,P (j ′ ∈ A∗

n) → 0. Consider the event j ′ ∈ A∗
n. By the KKT

optimality conditions, 2xT
j ′

(
y − X β̂∗(n)

)
= λnŵj ′ .

λnŵj ′/
√

n = λnn
(γ−1)/2/

∣∣∣√nβ̂j ′

∣∣∣γ →p ∞ and

2
xT
j′ (y−X β̂∗(n))

√
n

= 2
xT
j′ X

√
n(β∗−β̂∗(n))

n + 2
xT
j′ ε
√

n
and each of these two

terms converges to some normal distribution. Thus

P
(
j ′ ∈ A∗

n

)
≤ P

(
2xT

j ′

(
y − X β̂∗(n)

)
= λnŵj ′

)
→ 0.
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Corollary 2: Consistency of Nonnegative Garrote

Adaptive LASSO Formulation

β̂ (garrote) = arg min
β

∥∥∥y −
∑p

j=1
xjβj

∥∥∥2
+ λn

∑p

j=1
ŵj |βj |

subject to βj β̂j (ols) ≥ 0,∀j , where γ = 1, ŵ = 1/
∣∣∣β̂ (ols)

∣∣∣.
Corollary 2: Consistency of Nonnegative Garrote

If we choose a λn such that λn/
√

n → 0 and λn →∞, then
nonnegative garrote is consistent for variable selection.
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Proof of Corollary 2

Let β̂∗(n) be the adaptive LASSO estimates. By Theorem 2, β̂∗(n)

is an oracle estimator if λn/
√

n → 0 and λn →∞. To show the
consistency, it suffices to show that β̂∗(n) satisfies the sign
constraint with probability tending to 1. Pick any j . If j ∈ A, then

β̂∗(n) (γ = 1)j β̂ (ols)j →p

(
β∗j

)2
> 0. If j /∈ A, then

P
(
β̂∗(n) (γ = 1)j β̂ (ols)j ≥ 0

)
≥ P

(
β̂∗(n) (γ = 1)j = 0

)
→ 1. In

either case, P
(
β̂∗(n) (γ = 1)j β̂ (ols)j ≥ 0

)
→ 1 for any

j = 1, 2, · · · , p.
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Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4
Let A∗

n =
{

j : β̂
∗(n)
j (glm) 6= 0

}
. Suppose that λn/

√
n → 0 and

λnn
(γ−1)/2 →∞. Then, under some mild regularity conditions, the

adaptive LASSO estimate β̂∗(n) (glm) must satisfy the following:

1. Consistency in variable selection: limn P (A∗
n = A) = 1.

2. Asymptotic normality:
√

n
(
β̂
∗(n)
A (glm)− β∗A

)
→d N

(
0, σ2I−1

11

)
.

I f (y |x , θ) = h (y) exp (yθ − φ (θ)), where θ = xTβ∗.
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Theorem 4: Regularity Conditions

1. The Fisher information matrix is finite and positive definite,

I (β∗) = E
[
φ′′

(
xTβ∗

)
xxT

]
.

2. There is a sufficiently large enough open set O that contains
β∗ such that ∀β ∈ O,∣∣∣φ′′′ (xTβ

)∣∣∣ ≤ M (x) < ∞

and
E [M (x) |xjxkxl |] < ∞

for all 1 ≤ j , k, l ≤ p.
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Proof of Theorem 4: Asymptotic Normality

Let β = β∗ + u/
√

n. Define
Γn (u) =

∑n
i=1

{
−yi

(
xT
i

(
β∗ + u/

√
n
))

+ φ
(
xT
i

(
β∗ + u/

√
n
))}

+λn

∑p

j=1

∣∣β∗j + uj/
√

n
∣∣

Let û(n) = arg minu Γn (u); then û(n) =
√

n
(
β∗(n) (glm)− β∗

)
.

Using the Taylor expansion, we have Γn (u)− Γn (0) = H(n) (u),

where H(n) (u) = A
(n)
1 + A

(n)
2 + A

(n)
3 + A

(n)
4 , with

A
(n)
1 = −

∑n
i=1

[
yi − φ′

(
xT
i β∗

)] xT
i u√
n

,

A
(n)
2 =

∑n
i=1

1
2φ′′

(
xT
i β∗

)
uT xix

T
i

n u,

A
(n)
3 = λn√

n

∑p
j=1 ŵj

√
n

(∣∣∣β∗j + un√
n

∣∣∣− ∣∣∣β∗j ∣∣∣),
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Proof of Theorem 4: Asymptotic Normality (conti.)

and A
(n)
4 = n−3/2

∑n
i=1

1
6φ′′′

(
xT
i β̃∗

) (
xT
i u

)3
, where β̃∗ is between

β∗ and β∗ + u/
√

n. Then, by the regularity condition 1 and 2,
H(n)(u) →d H(u) for every u, where

H (u) =

{
uT
A I11uA − 2uT

A WA if uj = 0,∀j /∈ A
∞ otherwise

and WA = N (0, I11). H(n) is convex, and the unique minimum of

H is
(
I−1
11 WA, 0

)T
. Following the epi-convergence results of Geyer

(1994), we have û
(n)
A →d I−1

11 WA and û
(n)

AC →d 0, and the
asymptotic normality part is proven.
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Proof of Theorem 4: Consistency

The asymptotic normality result indicates that
j ∈ A,P (j ∈ A∗

n) → 1. Then it suffices to show that
j ′ /∈ A,P (j ′ ∈ A∗

n) → 0. Consider the event j ′ ∈ A∗
n. By the KKT

optimality conditions,∑n
i=1 xij ′

(
yi − φ′

(
xT
i β̂∗(n) (glm)

))
= λnŵj ′ .∑n

i=1
xij ′

(
yi − φ′

(
xT
i β̂∗(n) (glm)

))
/
√

n = B
(n)
1 + B

(n)
2 + B

(n)
3

with

B
(n)
1 =

∑n
i=1 xij ′

(
yi − φ′

(
xT
i β∗

))
/
√

n,

B
(n)
2 =

(
1
n

∑n
i=1 xij ′φ

′′ (xT
i β∗

)
xT
i

)√
n

(
β∗ − β̂∗(n) (glm)

)
,

B
(n)
3 =

(
1
n

∑n
i=1 xij ′φ

′′′
(
xT
i β̃∗∗

)) (
xT
i

√
n

(
β∗ − β̂∗(n) (glm)

))2
/
√

n,

where β̃∗∗ is between β̂∗(n) (glm) and β∗.
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Proof of Theorem 4: Consistency (conti.)

B
(n)
1 and B

(n)
2 converge to some normal distributions and

B
(n)
3 = Op(1/

√
n).

λnŵj ′/
√

n = λnn
(γ−1)/2/

∣∣∣√nβ̂j ′(glm)
∣∣∣γ →p ∞. Thus

P
(
j ′ ∈ A∗

n

)
≤ P(

∑n

i=1
xij ′

(
yi − φ′

(
xT
i β̂∗(n) (glm)

))
= λnŵj ′) → 0.

and this completes the proof.
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