The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

Presented by Dongjun Chung

March 12, 2010

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006),

イロト イポト イヨト イヨト

Introduction

Inconsistency of LASSO Adaptive LASSO Numerical Experiments and Discussion Proofs

Introduction

Inconsistency of LASSO

Adaptive LASSO

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Numerical Experiments and Discussion

Proofs

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

イロト イポト イヨト イヨト

Introduction

Inconsistency of LASSO Adaptive LASSO Numerical Experiments and Discussion Proofs

Setting

y_i = x_iβ* + ε_i, where ε₁, ..., ε_n are i.i.d. mean 0 and variance σ².
A = {j : β_j* ≠ 0} and |A| = p₀ < p.
¹/_nX^TX → C, where C is a positive definite matrix.
C = C₁₁ C₁₂ C₂₁ C₂₂, where C₁₁ is a p₀ × p₀ matrix.

・ロン ・回 と ・ ヨン ・ ヨン ・ ヨー

Definition of Oracle Procedures

We call δ an *oracle* procedure if $\hat{\beta}(\delta)$ (asymptotically) has the following oracle properties:

- 1. Identifies the right subset model, $\left\{j: \hat{\beta}_j \neq 0\right\} = A$.
- 2. $\sqrt{n} \left(\hat{\beta}(\delta)_A \beta_A^* \right) \rightarrow_d N(0, \Sigma^*)$, where Σ^* is the covariance matrix knowing the true subset model.

Definition of LASSO (Tibshirani, 1996)

$$\hat{\beta}^{(n)} = \arg\min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} |\beta_j|.$$

$$\blacktriangleright \lambda_n \text{ varies with } n. \ A_n = \left\{ j : \hat{\beta}_j^{(n)} \neq 0 \right\}.$$

• LASSO variable selection is consistent iff $\lim_{n} P(A_n = A) = 1$.

< □ > < @ > < 注 > < 注 > ... 注

Proposition 1: Inconsistency of LASSO

Proposition 1

If $\lambda_n/\sqrt{n} \to \lambda_0 \ge 0$, then $\limsup_n P(A_n = A) \le c < 1$, where c is a constant depending on the true model.

・ロト ・回ト ・ヨト ・ヨト

Theorem 1: Necessary Condition for Consistency of LASSO

Theorem 1 Suppose that $\lim_{n} P(A_n = A) = 1$. Then there exists some sign vector $s = (s_1, \dots, s_{p_0})^T$, $s_j = 1$ or -1, such that $|C_{21}C_{11}^{-1}s| \le 1.$ (1)

- 4 同 6 4 日 6 4 日 6

Corollary 1: Interesting Case of Inconsistency of LASSO

Corollary 1

Suppose that $p_0 = 2m + 1 \ge 3$ and $p = p_0 + 1$, so there is one irrelevant predictor. Let $C_{11} = (1 - \rho_1) I + \rho_1 J_1$, where J_1 is the matrix of 1's and $C_{12} = \rho_2 \vec{1}$ and $C_{22} = 1$. If $-\frac{1}{p_0 - 1} < \rho_1 < -\frac{1}{p_0}$ and $1 + (p_0 - 1) \rho_1 < |\rho_2| < \sqrt{(1 + (p_0 - 1) \rho_1) / p_0}$, then condition (1) cannot be satisfied. Thus LASSO variable selection is inconsistent.

イロト イポト イヨト イヨト 二日

Corollary 1: Interesting Case of Inconsistency of LASSO

m=1, p0=3

イロト イポト イヨト イヨト

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Definition of Adaptive LASSO

$$\hat{\beta}^{*(n)} = \arg\min_{\beta} \left\| y - \sum_{j=1}^{p} x_j \beta_j \right\|^2 + \lambda_n \sum_{j=1}^{p} \hat{w}_j |\beta_j|.$$

- weight vector $\hat{w}=1/\left|\hat{eta}
ight|^{\gamma}$ (data-dependent) and $\gamma>0.$

\$\heta\$ is a root-*n*-consistent estimator to \$\beta^*\$, e.g. \$\heta\$ = \$\heta\$(ols).
\$\beta_n^* = \begin{bmatrix} j : \$\heta_j^{*(n)}\$ ≠ 0 \begin{bmatrix}.\$\$

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Penalty Function of LASSO, SCAD and Adaptive LASSO

Presented by Dongjun Chung The Adaptive Lasso and Its Oracle Properties Hui Zou (2006),

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Remarks: Adaptive LASSO

- The data-dependent \hat{w} is the key for its oracle properties.
- As n grows, the weights for zero-coefficient predictors get inflated, while the weights for nonzero-coefficient predictors converge to a finite constant.
- In the view of Fan and Li, 2001 (presented by Yang Zhao), adaptive lasso satisfies three properties of good penalty function: unbiasedness, sparsity, and continuity.

ヘロン 人間 とくほど くほとう

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2

Suppose that $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n n^{(\gamma-1)/2} \to \infty$. Then the adaptive LASSO must satisfy the following:

- 1. Consistency in variable selection: $\lim_{n} P(A_{n}^{*} = A) = 1$.
- 2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}_A^{*(n)} \beta_A^* \right) \rightarrow_d N \left(0, \sigma^2 C_{11}^{-1} \right).$

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Computations of Adaptive LASSO

- Adaptive LASSO estimates can be solved by the LARS algorithm (Efron et al., 2004). The entire solution path can be computed at the same order of computation of a single OLS fit.
- Tuning: If we use β̂(ols), then use 2-dimensional CV to find an optimal pair of (γ, λ_n). Or use 3-dimensional CV to find an optimal triple (β̂, γ, λ).
- ▶ Â(ridge) may be used from the best ridge regression fit when collinearity is a concern.

(ロ) (同) (E) (E) (E)

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Definition of Nonnegative Garrote (Breiman, 1995)

 $\hat{\beta}_{j}(garrote) = c_{j}\hat{\beta}_{j}(ols)$, where a set of nonnegative scaling factor $\{c_{j}\}$ is to minimize

$$\left\|y-\sum_{j=1}^{p}x_{j}\hat{\beta}_{j}(ols)c_{j}\right\|^{2}+\lambda_{n}\sum_{j=1}^{p}c_{j},$$

subject to $c_j \ge 0, \forall j$.

A sufficiently large λ_n shrinks some c_j to exact 0, i.e. $\hat{\beta}_j(garrote) = 0.$

 Yuan and Lin (2007) also studied the consistency of the nonnegative garrote.

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Garrote: Adaptive LASSO Formulation and Consistency

Adaptive LASSO Formulation

$$\hat{eta}\left(\textit{garrote}
ight) = rgmin_{eta} \left\| y - \sum_{j=1}^{p} x_{j} eta_{j}
ight\|^{2} + \lambda_{n} \sum_{j=1}^{p} \hat{w}_{j} \left| eta_{j}
ight|$$

subject to $\beta_{j}\hat{\beta}_{j}(\textit{ols}) \geq 0, \forall j$, where $\gamma = 1$, $\hat{w} = 1/\left|\hat{\beta}(\textit{ols})\right|$.

Corollary 2: Consistency of Nonnegative Garrote If we choose a λ_n such that $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n \to \infty$, then nonnegative garrote is consistent for variable selection.

소리가 소문가 소문가 소문가

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Adaptive LASSO for GLM

$$\hat{\beta}^{*(n)}(glm) = \arg\min_{\beta} \sum \left(-y_i \left(x_i^T \beta \right) + \phi \left(x_i^T \beta \right) \right) + \lambda_n \sum_{j=1}^p \hat{w}_j |\beta_j|.$$

- weight vector $\hat{w} = 1/\left|\hat{\beta}(\textit{mle})\right|^{\gamma}$ for some $\gamma > 0$.
- $f(y|x,\theta) = h(y) \exp(y\theta \phi(\theta))$, where $\theta = x^T \beta^*$.
- The Fisher information matrix $I(\beta^*) = \begin{bmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{bmatrix}$, where I_{11} is a $p_0 \times p_0$ matrix. Then I_{11} is the Fisher information matrix with the true submodel known.

・ロト ・回ト ・ヨト ・ヨト

Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions: GLM

Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4 Let $A_n^* = \left\{ j : \hat{\beta}_j^{*(n)}(glm) \neq 0 \right\}$. Suppose that $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n n^{(\gamma-1)/2} \to \infty$. Then, under some mild regularity conditions, the adaptive LASSO estimate $\hat{\beta}^{*(n)}(glm)$ must satisfy the following:

- 1. Consistency in variable selection: $\lim_{n} P(A_{n}^{*} = A) = 1$.
- 2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}_A^{*(n)}(glm) \beta_A^* \right) \rightarrow_d N\left(0, I_{11}^{-1} \right).$

Experiments for Inconsistency of LASSO

Setting

We let $y = x^T \beta + N(0, \sigma^2)$, where the true regression coefficients are $\beta = (5.6, 5.6, 5.6, 0)$. The predictors $x_i (i = 1, \dots, n)$ are i.i.d. N(0, C), where C is the C matrix in Corollary 1 with $\rho_1 = -.39$ and $\rho_2 = .23$ (red point).

イロト イポト イヨト イヨト

Experiments for Inconsistency of LASSO

Table 1. Simulation Model 0: The Probability of Containing the True Model in the Solution Path

	$n=60, \sigma=9$	$n = 120, \sigma = 5$	$n=300, \sigma=3$
lasso	.55	.51	.53
adalasso($\gamma = .5$)	.59	.68	.93
adalasso($\gamma = 1$)	.67	.89	1
adalasso($\gamma = 2$)	.73	.97	1
adalasso(γ by cv)	.67	.91	1

NOTE: In this table "adalasso" is the adaptive lasso, and " γ by cv" means that γ was selected by five-fold cross-validation from three choices: $\gamma = .5$, $\gamma = 1$, and $\gamma = 2$.

イロト イヨト イヨト イヨト

General Observations

- Comparison: LASSO, Adaptive LASSO, SCAD, and nonnegative garrote.
- ▶ p = 8 and $p_0 = 3$. Consider a few large effects (n = 20, 60) and many small effects (n = 40, 80).
- LASSO performs best when the SNR is low.
- Adaptive LASSO, SCAD, and and nonnegative garrote outperforms LASSO with a medium or low level of SNR.
- Adaptive LASSO tends to be more stable than SCAD.
- LASSO tends to select noise variables more often than other methods.

(ロ) (同) (E) (E) (E)

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 2: Oracle Properties of Adaptive LASSO

Theorem 2

Suppose that $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n n^{(\gamma-1)/2} \to \infty$. Then the adaptive LASSO must satisfy the following:

- 1. Consistency in variable selection: $\lim_{n} P(A_{n}^{*} = A) = 1$.
- 2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}_A^{*(n)} \beta_A^* \right) \rightarrow_d N \left(0, \sigma^2 C_{11}^{-1} \right).$

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

`

・ロン ・回と ・ヨン ・ヨン

3

Proof of Theorem 2: Asymptotic Normality

Let
$$\beta = \beta^* + u/\sqrt{n}$$
 and

$$\Psi_n(u) = \left\| y - \sum_{j=1}^p x_j \left(\beta_j^* + \frac{u_n}{\sqrt{n}} \right) \right\|^2 + \lambda_n \sum_{j=1}^p \hat{w}_j \left| \beta_j^* + \frac{u_n}{\sqrt{n}} \right|.$$

Let
$$\hat{u}^{(n)} = \arg\min \Psi_n(u)$$
; then $\hat{u}^{(n)} = \sqrt{n} \left(\hat{\beta}^{*(n)} - \beta^* \right)$.
 $\Psi_n(u) - \Psi_n(0) = V_4^{(n)}(u)$, where
 $V_4^{(n)}(u) = u^T \left(\frac{1}{n} X^T X \right) u - 2 \frac{\varepsilon^T X}{\sqrt{n}} u$
 $+ \frac{\lambda_n}{\sqrt{n}} \sum_{j=1}^p \hat{w}_j \sqrt{n} \left(\left| \beta_j^* + \frac{u_n}{\sqrt{n}} \right| - \left| \beta_j^* \right| \right)$

/

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Proof of Theorem 2: Asymptotic Normality (conti.)

Then,
$$V_4^{(n)}(u) \rightarrow_d V_4(u)$$
 for every u , where

$$V_{4}(u) = \begin{cases} u_{A}^{T} C_{11} u_{A} - 2u_{A}^{T} W_{A} & \text{if } u_{j} = 0, \forall j \notin A \\ \infty & \text{otherwise} \end{cases}$$

and $W_A = N(0, \sigma^2 C_{11})$. $V_4^{(n)}$ is convex, and the unique minimum of V_4 is $(C_{11}^{-1}W_A, 0)^T$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_A^{(n)} \rightarrow_d C_{11}^{-1}W_A$ and $\hat{u}_{A^C}^{(n)} \rightarrow_d 0$. Hence, we prove the asymptotic normality part.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

(日) (部) (注) (注) (言)

Proof of Theorem 2: Consistency

The asymptotic normality result indicates that $\forall j \in A$, $\hat{\beta}_{j}^{*(n)} \rightarrow_{p} \beta_{j}^{*}$; thus $P(j \in A_{n}^{*}) \rightarrow 1$. Then it suffices to show that $\forall j' \notin A, P(j' \in A_{n}^{*}) \rightarrow 0$. Consider the event $j' \in A_{n}^{*}$. By the KKT optimality conditions, $2x_{j'}^{T} \left(y - X\hat{\beta}^{*(n)}\right) = \lambda_{n}\hat{w}_{j'}$. $\lambda_{n}\hat{w}_{j'}/\sqrt{n} = \lambda_{n}n^{(\gamma-1)/2}/\left|\sqrt{n}\hat{\beta}_{j'}\right|^{\gamma} \rightarrow_{p} \infty$ and $2\frac{x_{j'}^{T}(y - X\hat{\beta}^{*(n)})}{\sqrt{n}} = 2\frac{x_{j'}^{T}X\sqrt{n}(\beta^{*} - \hat{\beta}^{*(n)})}{n} + 2\frac{x_{j'}^{T}\varepsilon}{\sqrt{n}}$ and each of these two terms converges to some normal distribution. Thus

$$P\left(j'\in A_n^*\right)\leq P\left(2x_{j'}^T\left(y-X\hat{\beta}^{*(n)}\right)=\lambda_n\hat{w}_{j'}\right)\to 0.$$

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

・ロト ・回ト ・ヨト ・ヨト

Corollary 2: Consistency of Nonnegative Garrote

Adaptive LASSO Formulation

$$\hat{\beta} (garrote) = \arg\min_{\beta} \left\| y - \sum_{j=1}^{p} x_{j} \beta_{j} \right\|^{2} + \lambda_{n} \sum_{j=1}^{p} \hat{w}_{j} \left| \beta_{j} \right|$$

subject to $\beta_{j}\hat{\beta}_{j}(\textit{ols}) \geq 0, \forall j$, where $\gamma = 1$, $\hat{w} = 1/\left|\hat{\beta}(\textit{ols})\right|$.

Corollary 2: Consistency of Nonnegative Garrote If we choose a λ_n such that $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n \to \infty$, then nonnegative garrote is consistent for variable selection.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

(ロ) (同) (E) (E) (E)

Proof of Corollary 2

Let $\hat{\beta}^{*(n)}$ be the adaptive LASSO estimates. By Theorem 2, $\hat{\beta}^{*(n)}$ is an oracle estimator if $\lambda_n/\sqrt{n} \to 0$ and $\lambda_n \to \infty$. To show the consistency, it suffices to show that $\hat{\beta}^{*(n)}$ satisfies the sign constraint with probability tending to 1. Pick any j. If $j \in A$, then $\hat{\beta}^{*(n)} (\gamma = 1)_j \hat{\beta} (ols)_j \to_P (\beta_j^*)^2 > 0$. If $j \notin A$, then $P(\hat{\beta}^{*(n)} (\gamma = 1)_j \hat{\beta} (ols)_j \ge 0) \ge P(\hat{\beta}^{*(n)} (\gamma = 1)_j = 0) \to 1$. In either case, $P(\hat{\beta}^{*(n)} (\gamma = 1)_j \hat{\beta} (ols)_j \ge 0) \to 1$ for any $j = 1, 2, \cdots, p$.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Theorem 4 Let $A_n^* = \left\{ j : \hat{\beta}_j^{*(n)}(glm) \neq 0 \right\}$. Suppose that $\lambda_n / \sqrt{n} \to 0$ and $\lambda_n n^{(\gamma-1)/2} \to \infty$. Then, under some mild regularity conditions, the adaptive LASSO estimate $\hat{\beta}^{*(n)}(glm)$ must satisfy the following:

- 1. Consistency in variable selection: $\lim_{n} P(A_{n}^{*} = A) = 1$.
- 2. Asymptotic normality: $\sqrt{n} \left(\hat{\beta}_{A}^{*(n)}(glm) - \beta_{A}^{*} \right) \rightarrow_{d} N \left(0, \sigma^{2} I_{11}^{-1} \right).$

•
$$f(y|x,\theta) = h(y) \exp(y\theta - \phi(\theta))$$
, where $\theta = x^T \beta^*$.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

イロン イヨン イヨン イヨン

Theorem 4: Regularity Conditions

1. The Fisher information matrix is finite and positive definite,

$$I\left(\beta^{*}\right) = E\left[\phi^{\prime\prime}\left(\mathbf{x}^{T}\beta^{*}\right)\mathbf{x}\mathbf{x}^{T}\right]$$

2. There is a sufficiently large enough open set O that contains β^* such that $\forall \beta \in O$,

$$\left|\phi^{\prime\prime\prime}\left(x^{\mathsf{T}}\beta\right)\right| \leq M(x) < \infty$$

and

$$E\left[M\left(x\right)|x_{j}x_{k}x_{l}|\right]<\infty$$

for all $1 \leq j, k, l \leq p$.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Proof of Theorem 4: Asymptotic Normality

Let
$$\beta = \beta^* + u/\sqrt{n}$$
. Define
 $\Gamma_n(u) = \sum_{i=1}^n \left\{ -y_i \left(x_i^T \left(\beta^* + u/\sqrt{n} \right) \right) + \phi \left(x_i^T \left(\beta^* + u/\sqrt{n} \right) \right) \right\}$
 $+ \lambda_n \sum_{j=1}^p \left| \beta_j^* + u_j/\sqrt{n} \right|$

Let $\hat{u}^{(n)} = \arg \min_{u} \Gamma_n(u)$; then $\hat{u}^{(n)} = \sqrt{n} \left(\beta^{*(n)} \left(g l m \right) - \beta^* \right)$. Using the Taylor expansion, we have $\Gamma_n(u) - \Gamma_n(0) = H^{(n)}(u)$, where $H^{(n)}(u) = A_1^{(n)} + A_2^{(n)} + A_3^{(n)} + A_4^{(n)}$, with

$$\begin{aligned} A_{1}^{(n)} &= -\sum_{i=1}^{n} \left[y_{i} - \phi' \left(x_{i}^{T} \beta^{*} \right) \right] \frac{x_{i}^{T} u}{\sqrt{n}}, \\ A_{2}^{(n)} &= \sum_{i=1}^{n} \frac{1}{2} \phi'' \left(x_{i}^{T} \beta^{*} \right) u^{T} \frac{x_{i} x_{i}^{T}}{n} u, \\ A_{3}^{(n)} &= \frac{\lambda_{n}}{\sqrt{n}} \sum_{j=1}^{p} \hat{w}_{j} \sqrt{n} \left(\left| \beta_{j}^{*} + \frac{u_{n}}{\sqrt{n}} \right| - \left| \beta_{j}^{*} \right| \right), \end{aligned}$$

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Proof of Theorem 4: Asymptotic Normality (conti.)

and $A_4^{(n)} = n^{-3/2} \sum_{i=1}^n \frac{1}{6} \phi''' \left(x_i^T \tilde{\beta}_*\right) \left(x_i^T u\right)^3$, where $\tilde{\beta}^*$ is between β^* and $\beta^* + u/\sqrt{n}$. Then, by the regularity condition 1 and 2, $H^{(n)}(u) \rightarrow_d H(u)$ for every u, where

$$H(u) = \begin{cases} u_A^T I_{11} u_A - 2u_A^T W_A & \text{if } u_j = 0, \forall j \notin A \\ \infty & \text{otherwise} \end{cases}$$

and $W_A = N(0, I_{11})$. $H^{(n)}$ is convex, and the unique minimum of H is $(I_{11}^{-1}W_A, 0)^T$. Following the epi-convergence results of Geyer (1994), we have $\hat{u}_A^{(n)} \rightarrow_d I_{11}^{-1}W_A$ and $\hat{u}_{A^C}^{(n)} \rightarrow_d 0$, and the asymptotic normality part is proven.

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

Proof of Theorem 4: Consistency

The asymptotic normality result indicates that $j \in A, P (j \in A_n^*) \to 1$. Then it suffices to show that $j' \notin A, P (j' \in A_n^*) \to 0$. Consider the event $j' \in A_n^*$. By the KKT optimality conditions, $\sum_{i=1}^n x_{ij'} \left(y_i - \phi' \left(x_i^T \hat{\beta}^{*(n)} (g/m) \right) \right) = \lambda_n \hat{w}_{j'}.$ $\sum_{i=1}^n x_{ij'} \left(y_i - \phi' \left(x_i^T \hat{\beta}^{*(n)} (g/m) \right) \right) / \sqrt{n} = B_1^{(n)} + B_2^{(n)} + B_3^{(n)}$

with

$$B_{1}^{(n)} = \sum_{i=1}^{n} x_{ij'} \left(y_{i} - \phi' \left(x_{i}^{T} \beta^{*} \right) \right) / \sqrt{n},$$

$$B_{2}^{(n)} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij'} \phi'' \left(x_{i}^{T} \beta^{*} \right) x_{i}^{T} \right) \sqrt{n} \left(\beta^{*} - \hat{\beta}^{*(n)} \left(glm \right) \right),$$

$$B_{3}^{(n)} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij'} \phi''' \left(x_{i}^{T} \hat{\beta}_{**} \right) \right) \left(x_{i}^{T} \sqrt{n} \left(\beta^{*} - \hat{\beta}^{*(n)} \left(glm \right) \right) \right)^{2} / \sqrt{n},$$
where $\tilde{\beta}_{**}$ is between $\hat{\beta}^{*(n)} \left(glm \right)$ and β^{*} . The Adaptive Lasso and its Oracle Properties Hui Zou (2000)

Theorem 2: Oracle Properties of Adaptive LASSO Corollary 2: Consistency of Nonnegative Garrote Theorem 4: Oracle Properties of Adaptive LASSO for GLM

・ロン ・回と ・ヨン・

Proof of Theorem 4: Consistency (conti.)

$$\begin{split} B_1^{(n)} & \text{and } B_2^{(n)} \text{ converge to some normal distributions and} \\ B_3^{(n)} &= O_p(1/\sqrt{n}). \\ \lambda_n \hat{w}_{j'}/\sqrt{n} &= \lambda_n n^{(\gamma-1)/2} / \left| \sqrt{n} \hat{\beta}_{j'}(glm) \right|^{\gamma} \rightarrow_p \infty. \text{ Thus} \\ P\left(j' \in A_n^*\right) &\leq P(\sum_{i=1}^n x_{ij'} \left(y_i - \phi' \left(x_i^T \hat{\beta}^{*(n)}(glm) \right) \right) = \lambda_n \hat{w}_{j'}) \rightarrow 0. \end{split}$$

and this completes the proof.