Asymptotic Theory for Model Selection

Jun Shao

Department of Statistics
University of Wisconsin
Madison, WI 53706, USA
Reference: Shao (1997, Statistica Sinica, pp. 221-264)

Introduction

Responses and covariates

$\mathbf{y}_{n}=\left(y_{1}, \ldots, y_{n}\right)$: independent responses
$\mathbf{X}_{n}=\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}\right)^{\prime}$: an $n \times p_{n}$ matrix whose ith row \mathbf{x}_{i} is the value of a p_{n}-dimensional covariate associated with y_{i}
We are interested in the relationship between \mathbf{y}_{n} and \mathbf{X}_{n} through

$$
\mu_{n}=E\left(\mathbf{y}_{n} \mid \mathbf{X}_{n}\right)
$$

We may be interested in inference on μ_{n}

\square
If each α corresnonds to an $n \times n_{n}(x)$ sulmatrix of X_{n}, then model

Introduction

Responses and covariates

$\mathbf{y}_{n}=\left(y_{1}, \ldots, y_{n}\right)$: independent responses
$\mathbf{X}_{n}=\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}\right)^{\prime}$: an $n \times p_{n}$ matrix whose ith row \mathbf{x}_{i} is the value of a p_{n}-dimensional covariate associated with y_{i}
We are interested in the relationship between \mathbf{y}_{n} and \mathbf{X}_{n} through

$$
\mu_{n}=E\left(\mathbf{y}_{n} \mid \mathbf{X}_{n}\right)
$$

We may be interested in inference on μ_{n}

Model/Variable selection

A class of models, indexed by $\alpha \in \mathscr{A}_{n}$, is proposed for $E\left(\mathbf{y}_{n} \mid \mathbf{X}_{n}\right)$
If \mathscr{A}_{n} contains more than one model, then we need to select a model from \mathscr{A}_{n} using the observed \mathbf{y}_{n} and \mathbf{X}_{n} If each α corresponds to an $n \times p_{n}(\alpha)$ sub-matrix of \mathbf{X}_{n}, then model selection is also called variable selection

Example 1. Linear regression

- $p_{n}=p$ for all n
- $\boldsymbol{\mu}_{n}=\mathbf{X}_{n} \boldsymbol{\beta}$
- $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{2}^{\prime}\right)^{\prime}, \mathbf{X}_{n}=\left(\mathbf{X}_{n 1}, \mathbf{X}_{n 2}\right)$
- It is suspected that $\boldsymbol{\beta}_{2}=0$ ($\mathbf{X}_{n 2}$ is unrelated to $\left.\mathbf{y}_{n}\right)$
- Model 1: $\mu_{n}=\mathbf{X}_{n 1} \boldsymbol{\beta}_{1}$
- Model 2: $\boldsymbol{\mu}_{n}=\mathbf{X}_{n} \boldsymbol{\beta}$
- $\mathscr{A}_{n}=\{1,2\}$
- Model 1 is better if $\boldsymbol{\beta}_{2}=0$
- In general, $\mathscr{A}_{n}=$ all subsets of $\{1, \ldots, p\}$
- Model $\alpha: \mu_{n}=\mathbf{X}_{n}(\alpha) \boldsymbol{\beta}(\alpha)$
- $\beta(\alpha)$: sub-vector of β with indices in α
- $\mathbf{X}_{n}(\alpha)$: the corresponding sub-matrix of \mathbf{X}_{n}
- The number of models in \mathscr{A}_{n} is 2^{p}
- Approximation to a response surface
- The i th row of $\mathbf{X}_{n}\left(\alpha_{h}\right)=\left(1, t_{i}, t_{j}^{2}, \ldots, t_{j}^{h}\right), t_{i} \in \mathscr{R}$
- $\alpha_{h}=\{1, \ldots, h\}$: a polynomial of order h
- $\mathscr{A}_{n}=\left\{\alpha_{h}: h=0,1, \ldots, p_{n}\right\}$

Example 2. 1-mean vs p-mean

- $n=p r, p=p_{n}, r=r_{n}$
- There are p groups, each has r identically distributed observations
- Select one model from two models
- 1-mean model: all groups have the same mean μ_{1}
- p-mean model: p groups have different means μ_{1}, \ldots, μ_{p}
- $\mathscr{A}_{n}=\left\{\alpha_{1}, \alpha_{p}\right\}$

$$
\begin{gathered}
\mathbf{X}_{n}=\left(\begin{array}{ccccc}
\mathbf{1}_{r} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{1}_{r} & \mathbf{1}_{r} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{1}_{r} & \mathbf{0} & \mathbf{1}_{r} & \cdots & \mathbf{0} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{1}_{r} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{1}_{r}
\end{array}\right) \quad \boldsymbol{\beta}=\left(\begin{array}{c}
\mu_{1} \\
\mu_{2}-\mu_{1} \\
\mu_{3}-\mu_{1} \\
\cdots \\
\mu_{p}-\mu_{1}
\end{array}\right) \\
\\
\mathbf{X}_{n}\left(\alpha_{p}\right)=\mathbf{X}_{n} \quad \boldsymbol{\beta}\left(\alpha_{p}\right)=\boldsymbol{\beta} \\
\mathbf{X}_{n}\left(\alpha_{1}\right)=\mathbf{1}_{n} \quad \boldsymbol{\beta}\left(\alpha_{1}\right)=\mu_{1}
\end{gathered}
$$

Criterion for Model Selection

- μ_{n} is estimated by $\widehat{\mu}_{n}(\alpha)$ under model α
- Minimize the squared error loss

$$
L_{n}(\alpha)=\frac{\left\|\boldsymbol{\mu}_{n}-\widehat{\boldsymbol{\mu}}_{n}(\alpha)\right\|^{2}}{n} \quad \text { over } \alpha \in \mathscr{A}_{n}
$$

Equivalent to minimizing the average prediction error

$$
\frac{E\left[\left\|\mathbf{z}_{n}-\widehat{\boldsymbol{\mu}}_{n}(\alpha)\right\|^{2} \mid \mathbf{y}_{n}\right]}{n} \quad \text { over } \alpha \in \mathscr{A}_{n}
$$

\mathbf{z}_{n} : a future independent copy of \mathbf{y}_{n}

- Optimal model α_{n}^{L} :

$$
L_{n}\left(\alpha_{n}^{L}\right)=\min _{\alpha \in \mathscr{A}_{n}} L_{n}(\alpha)
$$

α_{n}^{L} may be random

Assessment of Model Selection Procedures

- $\widehat{\alpha}_{n}$: a model selected based on a model selection procedure
- The selection procedure is consistent if

$$
\lim _{n \rightarrow \infty} P\left\{\widehat{\alpha}_{n}=\alpha_{n}^{L}\right\}=1
$$

which implies

$$
\lim _{n \rightarrow \infty} P\left\{L_{n}\left(\widehat{\alpha}_{n}\right)=L_{n}\left(\alpha_{n}^{L}\right)\right\}=1
$$

$\widehat{\boldsymbol{\mu}}_{n}\left(\alpha_{n}\right)$ is asymptotically efficient, i.e., it is asymptotically as efficient as $\widehat{\mu}_{n}\left(\alpha_{n}^{L}\right)$
The two results are the same if $L_{n}(\alpha)$ has a unique minimum for all large n

- The selection procedure is asymptotically loss efficient if

$$
L_{n}\left(\widehat{\alpha}_{n}\right) / L_{n}\left(\alpha_{n}^{L}\right) \rightarrow_{p} 1
$$

which is weaker than consistency

Model Selection Procedures

Methods for fixed p or $p_{n} / n \rightarrow 0$

- Information criterion
- AIC (Akaike, 1970), C_{p} (Mallows, 1973), BIC (Schwarz, 1978)
- FPE_{λ} (Shibata, 1984)
- GIC (Nishii, 1984, Rao and Wu, 1989, Potscher, 1989)
- Cross-Validation (CV)
- Delete-1 CV (Allen, 1974, Stone, 1974)
- GCV (Craven and Wahba, 1979)
- Delete-d CV (Geisser, 1975, Burman, 1986, Shao, 1993)
- Bootstrap (Efron, 1983, Shao, 1996)
- Methods for Time Series
- PMDL and PLS (Rissanen, 1986, Wei, 1992)
- LASSO (Tibshirani, 1996)
- Methods after 1997?
- Thresholding
- Methods for $p_{n} / n \nrightarrow 0$?

Asymptotic Theory for GIC

The GIC in linear models
Consider linear models

$$
\boldsymbol{\mu}_{n}=\mathbf{X}_{n}(\alpha) \boldsymbol{\beta}(\alpha) \quad \alpha \in \mathscr{A}_{n}
$$

- \mathbf{X}_{n} is of full rank ($p_{n}<n$)
- $\mathbf{e}_{n}=\mathbf{y}_{n}-\boldsymbol{\mu}_{n}$ has iid components, $V\left(\mathbf{e}_{n} \mid \mathbf{X}_{n}\right)=\sigma^{2} \mathbf{I}_{n}$
- Under model $\alpha, \beta(\alpha)$ is estimated by the LSE
- $\widehat{\mu}_{n}(\alpha)=\mathbf{H}_{n}(\alpha) \mathbf{y}_{n}, \mathbf{H}_{n}(\alpha)=\mathbf{X}_{n}(\alpha)\left[\mathbf{X}_{n}(\alpha)^{\prime} \mathbf{X}_{n}(\alpha)\right]^{-1} \mathbf{X}_{n}(\alpha)$
- Correct models

$$
\mathscr{A}_{n}^{c}=\left\{\alpha \in \mathscr{A}_{n}: \boldsymbol{\mu}_{n}=\mathbf{X}_{n}(\alpha) \boldsymbol{\beta}(\alpha) \text { is true }\right\}
$$

Wrong models

$$
\mathscr{A}_{n}^{W}=\left\{\alpha \in \mathscr{A}_{n}: \alpha \notin \mathscr{A}_{n}^{c}\right\}
$$

- The loss is equal to

$$
\begin{gathered}
L_{n}(\alpha)=\Delta_{n}(\alpha)+\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n} / n \\
\Delta_{n}(\alpha)=\left\|\boldsymbol{\mu}_{n}-\mathbf{H}_{n}(\alpha) \boldsymbol{\mu}_{n}\right\|^{2} / n\left(=0 \text { if } \alpha \in \mathscr{A}_{n}^{c}\right)
\end{gathered}
$$

The GIC

A model $\widehat{\alpha}_{n} \in \mathscr{A}_{n}$ is selected by minimizing

$$
\Gamma_{n, \lambda_{n}}(\alpha)=\frac{S_{n}(\alpha)}{n}+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n} \quad \text { over } \alpha \in \mathscr{A}_{n}
$$

$S_{n}(\alpha)=\left\|\mathbf{y}_{n}-\widehat{\mu}_{n}(\alpha)\right\|^{2}$ (measuring goodness-of-fit)
$p_{n}(\alpha)$: dimension of α
λ_{n} : non-random positive penalty
$\widehat{\sigma}_{n}^{2}$: an estimator of σ^{2}, e.g., $\widehat{\sigma}_{n}^{2}=\left\|\mathbf{y}_{n}-\widehat{\mu}_{n}\right\|^{2} /\left(n-p_{n}\right)$

- If $\lambda_{n}=2$, this is the C_{p} method
- If $\lambda_{n}=\lambda$, a constant larger than 2 , this is the FPE_{λ} method
- If $\lambda_{n}=\log n$, this is almost the BIC
- In general, λ_{n} can be any sequence with $\lambda_{n} \rightarrow \infty$
- If $\lambda_{n}=2$, the GIC is asymptotically equivalent to the delete-1 CV and GCV
- If $\lambda_{n}=n /(n-d)$, then the GIC is asymptotically equivalent to the delete-d CV.

Is the GIC asymptotically loss efficient or consistent?

$$
\begin{aligned}
\frac{S_{n}(\alpha)}{n} & =\frac{\left\|\mathbf{y}_{n}-\mathbf{H}_{n}(\alpha) \mathbf{y}_{n}\right\|^{2}}{n}=\frac{\left\|\boldsymbol{\mu}_{n}-\mathbf{H}_{n}(\alpha) \boldsymbol{\mu}_{n}+\mathbf{e}_{n}-\mathbf{H}_{n}(\alpha) \mathbf{e}_{n}\right\|^{2}}{n} \\
& =\Delta_{n}(\alpha)+\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}-\frac{\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}+\frac{2 \mathbf{e}_{n}^{\prime}\left[\mathbf{I}_{n}-\mathbf{H}_{n}(\alpha)\right] \boldsymbol{\mu}_{n}}{n}
\end{aligned}
$$

Is the GIC asymptotically loss efficient or consistent?

$$
\begin{aligned}
\frac{S_{n}(\alpha)}{n} & =\frac{\left\|\mathbf{y}_{n}-\mathbf{H}_{n}(\alpha) \mathbf{y}_{n}\right\|^{2}}{n}=\frac{\left\|\boldsymbol{\mu}_{n}-\mathbf{H}_{n}(\alpha) \boldsymbol{\mu}_{n}+\mathbf{e}_{n}-\mathbf{H}_{n}(\alpha) \mathbf{e}_{n}\right\|^{2}}{n} \\
& =\Delta_{n}(\alpha)+\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}-\frac{\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}+\frac{2 \mathbf{e}_{n}^{\prime}\left[\mathbf{I}_{n}-\mathbf{H}_{n}(\alpha)\right] \boldsymbol{\mu}_{n}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \in \mathscr{A}_{n}^{c} \\
& {\left[\mathbf{I}_{n}-\mathbf{H}_{n}(\alpha)\right] \boldsymbol{\mu}_{n}=\mathbf{X}_{n}(\alpha) \boldsymbol{\beta}(\alpha)-\mathbf{X}_{n}(\alpha) \boldsymbol{\beta}(\alpha)=0} \\
& \Delta_{n}(\alpha)=0 \\
& L_{n}(\alpha)=\Delta_{n}(\alpha)+\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n} / n=\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n} / n \\
& \quad \Gamma_{n, \lambda_{n}}(\alpha)=\frac{S_{n}(\alpha)}{n}+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n}=\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}-\frac{\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n} \\
& \quad=\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}+L_{n}(\alpha)+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n}-\frac{2 \mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}
\end{aligned}
$$

When $\mathscr{A}_{n}=\mathscr{A}_{n}^{c}$

- $\alpha_{n}^{L}=\alpha \in \mathscr{A}_{n}^{C}$ with the smallest $p_{n}(\alpha)$

$$
\Gamma_{n, \lambda_{n}}(\alpha)=\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}+L_{n}(\alpha)+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n}-\frac{2 \mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}
$$

- If $\lambda_{n}=2$ (the C_{p} method, AIC , delete- 1 CV , or GCV), the term

$$
\frac{2 \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n}-\frac{2 \mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}
$$

is of the same order as $L_{n}(\alpha)=\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n} / n$ unless $p_{n}(\alpha) \rightarrow \infty$ for all but one model in \mathscr{A}_{n}^{c}

- Under some conditions, the GIC with $\lambda_{n}=2$ is asymptotically loss efficient if and only if \mathscr{A}_{n}^{c} does not contain two models with fixed dimensions
- If $\lambda_{n} \rightarrow \infty$, the dominating term in $\Gamma_{n, \lambda_{n}}(\alpha)$ is $\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha) / n$

The GIC selects a model by minimizing $p_{n}(\alpha)$ Hence, the GIC is consistent

- The case of $\lambda_{n}=\lambda$ is similar to the case of $\lambda_{n}=2$

When $\mathscr{A}_{n}=\mathscr{A}_{n}^{w}$

$$
\begin{aligned}
\Gamma_{n, \lambda_{n}}(\alpha) & =\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}+\Delta_{n}(\alpha)-\frac{\mathbf{e}_{n}^{\prime} \mathbf{H}_{n}(\alpha) \mathbf{e}_{n}}{n}+\frac{\lambda_{n} \widehat{\sigma}_{n}^{2} p_{n}(\alpha)}{n}+O_{P}\left(\frac{\Delta_{n}(\alpha)}{n}\right) \\
& =\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}+L_{n}(\alpha)+O_{P}\left(\frac{\lambda_{n} p_{n}(\alpha)}{n}\right)+O_{P}\left(\frac{L_{n}(\alpha)}{n}\right)
\end{aligned}
$$

Assume that

$$
\liminf _{n \rightarrow \infty} \min _{\alpha \in \mathscr{A}_{n}^{w}} \Delta_{n}(\alpha)>0 \quad \text { and } \quad \frac{\lambda_{n} p_{n}}{n} \rightarrow 0
$$

(The first condition impies that a wrong model is always worse than a correct model) Then

$$
\Gamma_{n, \lambda_{n}}(\alpha)=\frac{\left\|\mathbf{e}_{n}\right\|^{2}}{n}+L_{n}(\alpha)+o_{P}\left(L_{n}(\alpha)\right)
$$

Minimizing $\Gamma_{n, \lambda_{n}}(\alpha)$ is asymptotically the same as minimizing $L_{n}(\alpha)$ Hence, the GIC is asymptotically loss efficient The GIC can select the best model in \mathscr{A}_{n}^{W}

Conclusions (under the given conditions)

According to their asymptotic behavior, the model selection methods can be classfied into three classes
(1) The GIC with $\lambda_{n}=2, C_{p}$, AIC, delete-1 CV, GCV
(2) The GIC with $\lambda_{n} \rightarrow \infty$, delete-d CV with $d / n \rightarrow 1$, BIC, PMDL, PLS $\lambda_{n} p_{n} / n \rightarrow 0$
(3) The GIC with $\lambda_{n}=\lambda$, delete-d CV with $d / n \rightarrow \tau \in(0,1)$

Conclusions (under the given conditions)

According to their asymptotic behavior, the model selection methods can be classfied into three classes
(1) The GIC with $\lambda_{n}=2, C_{p}$, AIC, delete-1 CV, GCV
(2) The GIC with $\lambda_{n} \rightarrow \infty$, delete-d CV with $d / n \rightarrow 1$, BIC, PMDL, PLS $\lambda_{n} p_{n} / n \rightarrow 0$
(3) The GIC with $\lambda_{n}=\lambda$, delete-d CV with $d / n \rightarrow \tau \in(0,1)$

Key properties

- Methods in class (1) are useful when there is no fixed-dimension correct model
- Methods in class (2) are useful whene there are fixed-dimension correct models
- Methods in class (3) are compromises and are not recommended

Example 2. 1-mean vs p-mean

$\mathscr{A}_{n}=\left\{\alpha_{1}, \alpha_{p}\right\}$
p_{n} groups, each with r_{n} observations
$\Delta_{n}\left(\alpha_{p}\right)=\sum_{j=1}^{p}\left(\mu_{j}-\bar{\mu}\right)^{2} / p, \bar{\mu}=\sum_{j=1}^{p} \mu_{j} / p$
$n=p_{n} r_{n} \rightarrow \infty$ means that either $p_{n} \rightarrow \infty$ or $r_{n} \rightarrow \infty$

Example 2. 1-mean vs p-mean

$\mathscr{A}_{n}=\left\{\alpha_{1}, \alpha_{p}\right\}$
p_{n} groups, each with r_{n} observations
$\Delta_{n}\left(\alpha_{p}\right)=\sum_{j=1}^{p}\left(\mu_{j}-\bar{\mu}\right)^{2} / p, \bar{\mu}=\sum_{j=1}^{p} \mu_{j} / p$
$n=p_{n} r_{n} \rightarrow \infty$ means that either $p_{n} \rightarrow \infty$ or $r_{n} \rightarrow \infty$

1. $p_{n}=p$ is fixed and $r_{n} \rightarrow \infty$

- The dimensions of correct models are fixed
- The GIC with $\lambda_{n} \rightarrow \infty$ and $\lambda_{n} / n \rightarrow 0$ is consistent
- The GIC with $\lambda_{n}=2$ is inconsistent

Example 2. 1-mean vs p-mean

$\mathscr{A}_{n}=\left\{\alpha_{1}, \alpha_{p}\right\}$
p_{n} groups, each with r_{n} observations
$\Delta_{n}\left(\alpha_{p}\right)=\sum_{j=1}^{p}\left(\mu_{j}-\bar{\mu}\right)^{2} / p, \bar{\mu}=\sum_{j=1}^{p} \mu_{j} / p$
$n=p_{n} r_{n} \rightarrow \infty$ means that either $p_{n} \rightarrow \infty$ or $r_{n} \rightarrow \infty$

1. $p_{n}=p$ is fixed and $r_{n} \rightarrow \infty$

- The dimensions of correct models are fixed
- The GIC with $\lambda_{n} \rightarrow \infty$ and $\lambda_{n} / n \rightarrow 0$ is consistent
- The GIC with $\lambda_{n}=2$ is inconsistent

2. $p_{n} \rightarrow \infty$ and $r_{n}=r$ is fixed

- Only one correct model has a fixed dimension
- The GIC with $\lambda_{n}=2$ is consistent
- The GIC with $\lambda_{n} \rightarrow \infty$ is inconsistent, because $\lambda_{n} p_{n} / n=\lambda_{n} / r \rightarrow \infty$

Example 2. 1-mean vs p-mean

$\mathscr{A}_{n}=\left\{\alpha_{1}, \alpha_{p}\right\}$
p_{n} groups, each with r_{n} observations
$\Delta_{n}\left(\alpha_{\rho}\right)=\sum_{j=1}^{p}\left(\mu_{j}-\bar{\mu}\right)^{2} / p, \bar{\mu}=\sum_{j=1}^{p} \mu_{j} / p$
$n=p_{n} r_{n} \rightarrow \infty$ means that either $p_{n} \rightarrow \infty$ or $r_{n} \rightarrow \infty$

1. $p_{n}=p$ is fixed and $r_{n} \rightarrow \infty$

- The dimensions of correct models are fixed
- The GIC with $\lambda_{n} \rightarrow \infty$ and $\lambda_{n} / n \rightarrow 0$ is consistent
- The GIC with $\lambda_{n}=2$ is inconsistent

2. $p_{n} \rightarrow \infty$ and $r_{n}=r$ is fixed

- Only one correct model has a fixed dimension
- The GIC with $\lambda_{n}=2$ is consistent
- The GIC with $\lambda_{n} \rightarrow \infty$ is inconsistent, because $\lambda_{n} p_{n} / n=\lambda_{n} / r \rightarrow \infty$

3. $p_{n} \rightarrow \infty$ and $r_{n} \rightarrow \infty$

- Only one correct model has a fixed dimension
- The GIC is consistent, provided that $\lambda_{n} / r_{n} \rightarrow 0$

Variable Selection by Thresholding

Assumption A

- \mathbf{y}_{n} is normally distributed
- $\min _{j: \beta_{j} \neq 0}\left|\beta_{j}\right|>$ a positive constant, $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- $\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}$ is of rank $p(p<n)$
- $\lambda_{i n}=$ the i th eigenvalue of $\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}, i=1, \ldots, n$
$\lambda_{i n}=b_{i} \zeta_{n}, 0<b_{i} \leq b<\infty, 0<\zeta_{n} \rightarrow \infty$
- $p_{n} \rightarrow \infty$ but $\left(\log p_{n}\right) / \zeta_{n} \rightarrow 0$

Variable Selection by Thresholding

Assumption A

- \mathbf{y}_{n} is normally distributed
- $\min _{j: \beta_{j} \neq 0}\left|\beta_{j}\right|>$ a positive constant, $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)$
- $\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}$ is of rank $p(p<n)$
- $\lambda_{i n}=$ the i th eigenvalue of $\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}, i=1, \ldots, n$
$\lambda_{i n}=b_{i} \zeta_{n}, 0<b_{i} \leq b<\infty, 0<\zeta_{n} \rightarrow \infty$
- $p_{n} \rightarrow \infty$ but $\left(\log p_{n}\right) / \zeta_{n} \rightarrow 0$

Thresholding

- $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1} \mathbf{X}_{n}^{\prime} \mathbf{y}_{n}=\left(\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ (the LSE)
$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}_{n}^{\prime} \mathbf{X}_{n}\right)^{-1}\right)$
- $a_{n}=\left[\left(\log p_{n}\right) / \zeta_{n}\right]^{\alpha}, \alpha \in(0,1 / 2), a_{n} \rightarrow 0$
- Variable \mathbf{x}_{i} is selected if and only if $\left|\widehat{\beta}_{i}\right|>a_{n}$

Asymptotic properties

1. $\lim _{n \rightarrow \infty} P\left(\left|\widehat{\beta}_{i}\right| \leq a_{n}\right.$ for all i with $\left.\beta_{i}=0\right)=1$
2. $\lim _{n \rightarrow \infty} P\left(\left|\widehat{\beta}_{i}\right|>a_{n}\right.$ for all i with $\left.\beta_{i} \neq 0\right)=1$

Asymptotic properties

1. $\lim _{n \rightarrow \infty} P\left(\left|\widehat{\beta}_{i}\right| \leq a_{n}\right.$ for all i with $\left.\beta_{i}=0\right)=1$
2. $\lim _{n \rightarrow \infty} P\left(\left|\widehat{\beta}_{i}\right|>a_{n}\right.$ for all i with $\left.\beta_{i} \neq 0\right)=1$

Proof

$$
\begin{aligned}
1-P\left(\left|\widehat{\beta}_{i}\right| \leq a_{n} \text { for all } i \text { with } \beta_{i}=0\right) & =P\left(\cup_{i: \beta_{i}=0}\left\{\left|\widehat{\beta}_{i}-\beta_{i}\right|>a_{n}\right\}\right) \\
& \leq \sum_{i: \beta_{i}=0} P\left(\left\{\left|\widehat{\beta}_{i}-\beta_{i}\right|>a_{n}\right\}\right) \\
& =2 \sum_{i: \beta_{i}=0} \Phi\left(-\frac{a_{n}}{\tau_{i}}\right) \\
& \leq \sum_{i: \beta_{i}=0} e^{-a_{n}^{2} /\left(2 \tau_{i}^{2}\right)}
\end{aligned}
$$

$\tau_{i} \leq c \zeta_{n}^{-1}$ for a constant c

$$
\frac{a_{n}^{2}}{2 \tau_{i}^{2}} \geq \frac{a_{n}^{2} \zeta_{n}}{2 c}=\frac{1}{2 c}\left(\frac{\log p_{n}}{\zeta_{n}}\right)^{2 \alpha-1} \log p_{n} \geq M \log p_{n}
$$

for any $M>0$, since $\left(\log p_{n}\right) / \zeta_{n} \rightarrow 0$ and $\alpha<1 / 2$
Then

$$
\begin{aligned}
1-P\left(\left|\widehat{\beta}_{i}\right| \leq a_{n} \text { for all } i \text { with } \beta_{i}=0\right) & \leq \sum_{i: \beta_{i}=0} e^{-M \log p} \\
& \leq p e^{-M \log p} \\
& =p^{1-M} \\
& \rightarrow 0
\end{aligned}
$$

This proves property 1
The proof for property 2 is similar

Topics of Covered in 992

- LASSO and its asymptotic properties
- Nonconcave penalized likelihood method
- Sure independence screening
- High dimensional variable selection by Wasserman and Roeder
- Bayesian model/variable selection
- A review by Fan and Lv
- Others

