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Abstract

We present the Optimizing Control Variate (OCV) estimator,a new estimator for Monte Carlo rendering. Based
upon a deterministic sampling framework, OCV allows multiple importance sampling functions to be combined
in one algorithm. Its optimizing nature addresses a major problem with control variate estimators for render-
ing: users supply a generic correlated function which is optimized for each estimate, rather than a single highly
tuned one that must work well everywhere. We demonstrate OCVwith both direct lighting and irradiance-caching
examples, showing improvements in image error of over 35% insome cases, for little extra computation time.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism Color, shading, shadowing, and texture G.3 [Probability and Statistics]: Probabilistic Algo-
rithms
Keywords: direct lighting, deterministic mixture sampling, controlvariates

1. Introduction

Monte Carlo integration methods offer the most general so-
lution to physically accurate lighting simulation: they han-
dle near-arbitrary geometry, material properties, participa-
tory media, etc. All Monte Carlo methods require anestima-
tor that takes the information found in the samples and de-
termines a single final value. A good estimator is unbiased
and has low variance. In rendering, the unbiased property
guarantees the image has on average the correct pixel val-
ues, while variance determines the noise levels in the image,
or how much neighboring pixels tend to differ in value.

There are many possible estimators, each of which com-
bines the samples in a different way to get the final answer.
If we focus on unbiased estimators, then a good strategy is
to choose one that minimizes variance while remaining rel-
atively fast to compute. The most common estimator in ren-
dering is the sample mean or an importance weighted mean.
Alternatives exist, however, such as the Multiple Importance
Sampling (MIS) estimator [VG95] or control variate estima-
tors [SSSK04] (also referred to as correlated sampling).

In this paper we apply an Optimizing Control Variate
(OCV) estimator to the problem of estimating irradiance in-

tegrals for direct lighting. The same basic problem is also a
sub-component of many rendering algorithms, such as irra-
diance caching and photon-map gathering, for which we also
demonstrate some results. The OCV estimator solves a small
optimization problem to find a good control variate distribu-
tion given a set of samples. Unlike existing control variate
methods which require a single control variate distribution
for all estimates, OCV allows the distribution to vary over
the scene depending on surface properties and lighting con-
ditions. Furthermore, users are not burdened with finding an
optimal correlated function; they can provide a generic pa-
rameterized function that the estimator optimizes.

OCV works with the deterministic mixture sampling
(DMS) framework for constructing importance functions,
sampling from them, and computing estimates from the sam-
ples [OZ00]. In addition to providing better estimators, DMS
allows for multiple importance sampling functions to be
combined in a general way. The optimizing nature of the es-
timator ensures that the combination of samplers performs at
least as well as the best among them. In this way, OCV can
be viewed as a generalization of multiple importance sam-
pling.

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350Main Street, Malden,
MA 02148, USA.



S. Fan, S. Chenney, B. Hu, K. Tsui, Y. Lai / OCV Estimators for Rendering

2. Estimating Irradiance Integrals

In this paper we concentrate on the problem of computing
integrals over hemispheric domains. The most common such
integral in rendering computes the radiance,L(x,ω), leaving
a pointx in the directionω:

L(x,ω) = Le(x,ω)+
Z

Ω
f (x,ω,ω′)dω′ (1)

whereLe(x,ω) is light emitted atx, Ω is the hemisphere of
directionsout of x and f (x,ω,ω′) is the light reflected atx
from direction−ω′ into directionω:

f (x,ω,ω′) = Lin(x,−ω′) fr(x,ω,ω′)|cos(θ′)|

L(x,−ω′) is light arriving atx from directionω′, fr(x,ω,ω′)
is the BRDF, andθ′ is the angle betweenω′ and the normal
at x. Monte Carlo renderers use statistical sampling to esti-
mate the integral for the reflected component ofL(x,ω).

A standard importance sampling algorithm forL(x,ω)
samples directions,ω′

1, . . . ,ω′

N, out ofx according to an im-
portance distribution,p, and computes the estimate:

L̂(x,ω) =
1
N

N

∑
i=1

f (x,ω,ω′

i )

p(ω′

i )
(2)

The variance of this estimator improves asp more closely
approximatesf , and is zero whenp differs from f by a con-
stant scale.

In local direct lighting situations, a common choice for
p is a normalized version offr(x′,ω,ω′)|cos(θ′)| or an
approximation to it. We refer to this as BRDF-based im-
portance sampling. An alternative is light-based sampling
where the integral is broken into a sum over individual
light sources and points are sampled on the lights to gen-
erate directions [PH04, §16.1]. In environment map light-
ing situations, the wavelet product approach of Clarberg et
al. [CJAMJ05] currently provides the best way to choosep.

Control variate approaches [Vea97, §2.5.3] introduce a
correlated function,g, which should have the property that
f −g is close to a constant, and then use the estimator:

L̂(x,ω) =
Z

Ω
g(ω′)dω′ +

1
N

N

∑
i=1

(

f (x,ω,ω′

i )−g(ω′

i )
)

p(ω′

i )
(3)

The difficulty of applying this approach in rendering prob-
lems is in finding a functiong that is sufficiently close tof
in all places. We solve this problem by defining a parameter-
ized function,g(ω′ : β1, . . .,βm), and optimizing the vector
of parameters,〈β1, . . . ,βm〉, in order to best approximatef .

The MIS estimator [VG95] uses multiple importance
functions,p1, . . . , pm, and draws a fixed number of samples
from each,n1, . . . ,nm. It then computes one of several possi-
ble estimators, of which the simplest is thebalance heuristic:

L̂(x,ω) =
1
N

m

∑
j=1

nj

∑
i=1

f (x,ω,ω′

i, j)

∑m
k=1ckpk(ω′

i, j )
(4)

whereck = n j/N, the proportion of samples drawn fromp j .
The major advantage of MIS is that it enables importance
functions to be combined in an unbiased manner. Using a
slightly different estimator, thepower heuristic, the weight
of samples coming from poor importance functions can be
implicitly reduced in the final estimate.

3. Related Work

The simplest effective use of control variates is in cases
where the incoming illumination can be approximated by a
constant ambient term – Lafortune and Willems [LW94] de-
scribe this technique – but it offers less improvement with
more complex illumination. Szirmay-Kalos et al. [SKCG01]
improve upon this using radiosity to obtain an estimate of the
diffuse illumination which serves as the correlated function
in a Monte Carlo step that accounts for other illumination.
It works well for diffuse environments but not for specular
surfaces.

Szécsi et al. [SSSK04] combine control variate and im-
portance sampling estimators (Equations2 and3) in a linear
combination with weights optimized to reduce variance, but
the approach is very limited in the BRDFs that can be han-
dled. Note that this approach combines estimates, not sam-
pling strategies, so a single importance sampling function
must still be chosen. An alternate estimator, weighted impor-
tance sampling, has been used for particle tracing algorithms
by Balázs et al. [BSKG03], but a scene discretization is re-
quired and improvement is only seen under specific BRDF
and lighting configurations.

The work of Lafortune and Willems [LW95] on adaptive
BRDF sampling includes a control variate component. They
build a 5D-tree approximation to radiance in the scene, and
use it for both importance sampling and control variate esti-
mation. In some sense this is optimizing the control variate
estimator. However, large sample counts are required to ad-
equately adapt the necessary functions, and failure to adapt
correctly actually increases variance. Our algorithm usesa
low-parameter function for the control variate distribution,
so few samples are required to optimize.

OCV with deterministic mixture sampling offers a way
to combine samples from multiple importance functions. As
discussed above, Veach’s [VG95] MIS is an existing ap-
proach to this problem. DMS includes the balance heuristic
(Equation4) as a special case. We improve upon MIS with a
simple optimization process for selecting a better estimator
at each pixel.

4. Deterministic Mixture Sampling

The optimizing control variate estimator begins with a deter-
ministic mixture sampling process to generate the samples.
This is practically equivalent to MIS’s step of generating a
fixed number of samples from each of multiple importance
functions, but motivated differently.
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A mixture probability density function (PDF) is one com-
posed of a weighted sum of component PDFs:

p(x : α) =
m

∑
j=1

α j p j(x) (5)

wherem is the number of components andα is a vector of
mixture weights, 〈α1, . . . ,αm〉, with α j > 0 and∑m

j=1 α j = 1.
The simplest way to draw a sample from a mixture density
is to first select a component,j , with probability p( j) ∝ α j ,
and then sample fromp j (x).

For rendering, the mixture can include any importance
function that is typically used alone. Hence, we include a
component for sampling according to the BRDF and one
for each light source. In environment lighting conditions,
a component for sampling the environment map should be
included. We could break the BRDF into sub-components
(diffuse, glossy, etc.) but we did not experiment with this.
Also note that the environment map sampling of Carlberg
et al. [CJAMJ05] can be viewed as a mixture where each
wavelet basis function is a component.

Deterministicmixture sampling chooses a fixed number
of samples from each component:n j = Nα j samples are
drawn from componentp j(x) whereN is the total sample
size. We can view this as a form of stratification over the
mixture components, and Hesterberg [Hes95] shows that this
reduces variance. Note that this is exactly what MIS does,
and Equation4 can be re-written in terms ofp(ω′ : α):

L̂(x,ω) =
1
N

N

∑
i=1

f (x,ω,ω′

i )

p(ω′

i : α)
(6)

We can also construct a control variate estimate using a
mixture of functions as the correlated distribution in addition
to the importance distribution [OZ00]:

L̂(x,ω) =
m

∑
j=1

β j +
1
N

N

∑
i=1

f (x,ω,ω′

i )− p(ω′

i : β)

p(ω′

i : α)
(7)

where theβ j are a vector of real valued variables. This esti-
mator is unbiased, as can be seen by writing

E[L̂α,β] =
Z f (x)−∑m

j=1 β j p j (x)

p(x : α)
p(x : α)dx+

m

∑
j=1

β j

=
Z

f (x)dx−
m

∑
j=1

β j

Z

p j (x)dx+
m

∑
j=1

β j

=
Z

f (x)dx

Note thatp j (x) is a PDF so integrates to 1. The variance of
the estimator in Equation7 is

σ2
α,β =

Z

(

f (x)−∑m
j=1 β j p j (x)

p(x : α)
− I +

m

∑
j=1

β j

)2

p(x : α)dx

(8)
whereI is the true value of the integral being estimated.

There is no improvement over importance sampling if we
setβ j = α j for all j ; it is the same estimator as Equation6.
However, we are free to choose theβ j in a variety of ways –
they need not even sum to 1. In particular, we can solve an
optimization problem, which gives us an OCV estimator.

5. Optimizing Control Variates

A natural strategy for choosing theβ j is to minimize the
variance in Equation8. We can’t do this because we don’t
know I , the value we are trying to estimate. Instead, we
form a linear problem that minimizes the following objec-
tive function with respect to theβ j :

N

∑
i=1

(

f (Xi)−∑m
j=1 β j p j (Xi)

p(Xi : α)

)2

(9)

This is a standard linear least squares problem, but we
modify it in three ways. First, we include an intercept term,
β0 [OZ00], which after optimization evaluates to

1
N

N

∑
i=1

f (Xi)−∑m
j=1 β j p j (Xi)

p(Xi : α)

Puttingβ0 into Equation7 and simplifying, we get a simpler
form of the OCV estimator:

L̂(x,ω) = β0 +
m

∑
j=1

β j (10)

The second problem is that the condition∑m
j=1 α j = 1 re-

quired to makep(x : α) a distribution function means that
the p j(x)/p(x : α) terms are linearly dependent. This can
be solved by droppingpm from the optimization and setting
βm = 0. This leaves us minimizing‖y−Aβ‖2 with

y =











f (X1)
p(X1:α)

...
f (XN)

p(XN:α)











Aβ =











1 p1(X1)
p(X1:α)

. . .
pm−1(X1)
p(X1:α)

...
...

. . .
...

1 p1(XN)
p(XN:α)

. . .
pm−1(XN)
p(XN:α)





















β0
β1
...

βm−1











A further problem occurs when all of the samples from
some component are zero. In rendering this is quite likely
due to occlusion or some other factor that gives zero radiance
from some directions. To deal with this we usepenalized
least squareswith a penalty term pushing theβi toward zero.
The resulting objective function is‖y−Aβ‖2 +λ‖β‖2. The
solution to this problem is

β̂ =
(

A′A +λI
)−1

A′y (11)

where A′ is the transpose of A and I is the identity matrix.
We foundλ = 1 to be good in practice.
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5.1. OCV for Rendering

Optimizing control variate estimation is useful in render-
ing when evaluating integrals over a single domain, with the
same PDF used for each sample, and a choice of importance
functions. While Veach [VG95] showed a bi-directional path
tracing application, in practice the conditions are met in
gatherintegrals where we integrate incoming irradiance at a
point by sampling over the hemisphere. Such integrals arise
in direct lighting, irradiance caching, photon-mapping, and
radiosity. We show examples from the first two applications.

Apart from choosing components for the mixture, we
must also set their weights,αi . In all our experiments we
used a single BRDF-based component and one component
for each light (we did not use environmental lighting). We
made a conservative choice: half of the samples came from
the BRDF,αBRDF = 0.5, while the remainder were divided
equally among the lights. If for some reason a user thought
some sampling function was more likely to succeed then the
weight for that component could be increased.

To summarize, each time we require an estimate of the
integral in Equation1, we draw a fixed number of direction
samples,n j , from each importance function in the mixture,
p j . We trace rays for each sample to determine the incoming
radiance,Lin(x,−ω′

i ). With each sample direction evaluated,
we form the matrices and vectors and solve Equation11 for
theβ j . Finally, Equation10 is evaluated to compute the esti-
mate of outgoing radiance.

In direct lighting, an irradiance integral estimate is ob-
tained for every surface point hit with a pixel sample. For ir-
radiance caching, another application we have implemented,
the incoming irradiance must be estimated at diffuse surface
points when a nearby cached estimate is not available. The
irradiance integral is broken into two terms:

Ir (x) =

Z

Ω
Lsources(x,−ω′)dω′ +

Z

Ω
Lind(x,−ω′)dω′

whereIr (x) is the irradiance at pointx, Lsourcesis incom-
ing radiance due to light or environmental sources, and
Lind is radiance due to indirect lighting. In our implemen-
tation [PH04], Lind(x,−ω′) is computed using path tracing,
but each point along the path also evaluates the direct light-
ing integral.

We use OCV only for the irradiance due to sources. OCV
is less readily applied to the integration of indirect illumina-
tion because BRDF-based sampling is the only viable dis-
tribution and hence there is no simple way to form a mix-
ture. Note, however, that direct lighting is evaluated as part
of the path tracing procedure, so OCV does still contribute
to indirect illumination at the pixel. It may be worthwhile
to apply OCV for indirect illumination using a mixture of
BRDF components (diffuse, glossy, etc.) or a mixture of ba-
sis functions over the hemisphere, but we have not experi-
mented with this.

Figure 1: Results for MIS and OCV for the Buddha model.
MIS, left, has noticeably higher variance in the soft shadow
boundary and the base of the Buddha. The variance images,
below, reveal significant reduction in variance with OCV
over the entire image.

6. Results

We first experimented with a scene (Figure2) that demon-
strates the importance of including multiple sampling func-
tions for direct lighting (following [PH04]). This exam-
ple contains two lights, so half of all the samples come
from sampling a BRDF-based component, while one quar-
ter come from sampling the area of the yellow light and a
quarter from the blue light. Table1 presents timing and error
results, where error is a perceptually weighted error metric:

E =

[

1
n ∑

pixels

(

L−Ltrue

tvi(Ltrue)

)2
]

1
2

(12)

wheren is number of pixels,L is the luminance of the re-
sult, Ltrue is the true luminance, andtvi(x) is the percep-
tual threshold-vs-intensity function introduced by Ferwerda

c© The Eurographics Association and Blackwell Publishing 2006.



S. Fan, S. Chenney, B. Hu, K. Tsui, Y. Lai / OCV Estimators for Rendering

Figure 2: Images for the checkers scene. Left is MIS, center is OCV and right is correlated sampling. Correlated sampling
performs poorly because it must choose only one importance function before rendering begins (typically BRDF-based, aswe
have here) and the best choice is not always obvious. Bottom are perceptually-based variance images, which show the variance
of the direct illumination estimates obtained at each pixel. The most significant improvement of OCV over MIS is apparentwithin
the left glossy reflection of the large light source. Note that variance is expected to be large at material property boundaries
because different pixel samples are hitting different materials.

Figure 3: Results for MIS (left) and OCV (right) for the room scene. Theimages are very similar, but the variance images
below reveal an overall improvement with OCV over MIS.

c© The Eurographics Association and Blackwell Publishing 2006.
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Image Method SPE SPP Time (s) Err
Checks MIS 64 4 172.8 0.60

OCV 64 4 180.8 0.48
Buddha MIS 64 4 98.3 0.72

OCV 64 4 105.6 0.46
Room MIS 18 2 37.4 0.75

OCV 18 2 43.2 0.68
Box MIS 18 9 196.5 4.9

OCV 18 9 207.2 4.0

Table 1: Measurements comparing MIS to OCV for direct
lighting computations. SPE is the sample count per estimate,
with SPP estimates per pixel. Err is the error computed using
Equation12.

et al. [FPSG96]. We use perceptual weighting to avoid giv-
ing too much weight to very bright or very dark areas of the
image. The ground truth image is computed using MIS run-
ning for several hours.

We compare the algorithms based on the same number
of samples instead of the same computational time, because
pre-setting the number of samples allows us to use compara-
ble stratification.

Figure2 shows comparison between MIS, OCV and the
correlated sampling approach of Szécsi et al. [SSSK04].
These images were rendered at 500×500 resolution. They
highlight primarily the value in using multiple importance
functions, which correlated sampling cannot do. OCV per-
forms better than MIS on this scene with little additional
computation time. Improvement in the form of lower vari-
ance is most apparent in the glossy region reflected in the
yellow light. In this scene the OCV estimator results in a
18% improvement in image quality with about 5% more
computation time.

The Buddha images (Figure1) show a more marked im-
provement with OCV over MIS. These images were ren-
dered at 256×512 resolution, and the OCV estimator results
in a 37% improvement for 7% more time. This scene has
a greater variety of lighting conditions, ranging from tight
specularities to occluded regions. Our final direct lighting
test used a room scene (Figure3), for which the OCV esti-
mator produced lower error compared to MIS, but the addi-
tional computation cost resulted in comparable rendering ef-
ficiency. The scene requires relatively few samples to obtain
a good estimate because the light sources are small and there
is limited occlusion. Our method performs best when occlu-
sion is complex and with larger light sources. Still, due to
the optimization in OCV the results are unlikely to be worse
than alternate methods.

The Cornell Box scene (Figure4) demonstrates OCV es-
timates in irradiance caching. The perceptual RMS error
(Equation12) for the standard implementation is 4.9, which
OCV reduces to 4.0 with about 5% more computational
time.

6.1. Limitations

The primary limitation with the OCV estimator comes from
the relationship between the number of components in the
mixture and the number of samples required. A larger mix-
ture requires more samples to obtain reliable values for op-
timized β – at least as many samples as components. Fur-
thermore, more mixture components and samples increases
the cost of the optimization, to the extent that MIS would
perform better for the same computation time. Hence, very
small sample counts (less than about 10) cannot be used and
situations with many light sources cause problems, at least
as we have constructed the mixture. In a many-light situa-
tion, nearby lights could be grouped into one component or
an environmental lighting approach could be used.

We do not use OCV for the indirect lighting component
of the irradiance caching integral because our techniques for
forming a mixture result in a single component. We could
form a mixture by sub-dividing the hemisphere and using
one component for each sub-region. This would allow things
such as occluded paths to be accounted for in the estimator.

As stated above, an OCV estimator is only useful in sit-
uations when all the samples come from the same mixture
distribution. In bi-directional path tracing, this means we can
only use it on a per-path basis with a mixture component for
each method of forming the path. Path tracing is ruled out
because each path has a different length and hits a different
set of material properties, and hence has a different PDF. In-
tegrals of the form in Equation1 are very common, however,
so OCV does cover a large set of practical cases.

7. Conclusion

We have presented a new estimator for use in computing ir-
radiance gather integrals. The OCV estimator maximizes the
benefits of control variate sampling by optimizing the corre-
lated function at each estimate. This also reduces the user’s
burden of finding correlated functions. In addition, OCV al-
lows multiple importance functions to be combined, which is
particularly useful when no one function works well across
an entire image.

In importance sampling applications, one use of mixtures
is in defensivesampling [Hes95], where one component of
the mixture is certain to have “heavier tails” than the inte-
grand to ensure finite variance of the estimate. In rendering,
situations where a defensive component is useful are rare:
one example is a glossy surface under environmental light-
ing where the dominant reflectance lobe is blocked by an
occluder, and wavelet product sampling is in use. A cosine-
weighted mixture component could be used as a defensive
choice in such situations.

There are several alternate importance functions that
could be used as components. One particularly interest-
ing possibility is using the low-frequency wavelets from
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Figure 4: Results for MIS and OCV for irradiance caching computationson a box scene. Standard irradiance caching, which
uses MIS for its estimates, is on the left, while a version using OCV estimators is on the right.

Carlberg et al. [CJAMJ05]. The potential advantage is that
wavelets representing occluded directions could have their
weight in the estimate reduced. Even more advantage could
come from an approach that adapts the mixture weights, and
hence avoids any sampling in occluded directions.
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