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Abstract.  A robust and automatic system has been developed to detect the vis-
ual axis and extract important feature landmarks from slit-lamp photographs, 
and objectively grade the severity of nuclear sclerosis based on the intensities 
of those landmarks. Using linear regression, we first select the features that play 
important roles in classification, and then fit a linear grading function. We 
evaluated the grading function using human grades as error bounds for ”ground 
truth” grades, and compared the machine grades with the human grades. As ex-
pected, the automatic system significantly speeds up the process of grading, 
and grades computed are consistent and reproducible. Machine grading time for 
one image is less than 2 seconds on a Pentium III 996MHz machine while hu-
man grading takes about 2 minutes. Statistical results show that the predicted 
grades by the system are very reliable. For the testing set of 141 images, with 
correct grading defined by a tolerance of one grade level difference from the 
human grade, the automated system has a grading accuracy of 95.8% based on 
the AREDS grading scale. 

1   Introduction 

A cataract is a clouding or opacity of the eye’s lens that can cause vision problems. 
Nuclear sclerosis is an important type of age-related cataract. Traditionally, the degree 
of nuclear sclerosis has been evaluated by a trained human grader based on compari-
son of the photograph to be graded with a series of standard photographs (called Stan-
dards). The grading system can use either an integer scale or a decimal scale. Grading 
systems using an integer scale include the Lens Opacities Classification System 
(LOCS) I-II system [3, 4], the Wisconsin system [7], an adaptation of which became 
the Age-Related Eye Disease Study (AREDS) system, the Wilmer system [12], the 
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Cooperative Cataract Epidemiology Study Group (CCESG) system [9], and the Ox-
ford system [10]. When a decimal scale is used, the grader places the photo between 
adjacent Standards, and then assigns a grade with a decimal value in the interval. 
Decimal scale cataract grading systems include the LOCS III system [5], Wisconsin 
AREDS lens grading protocol [1], and a simplified cataract grading system in the 
World Health Organization (WHO) cataract grading group [11]. 

While very useful, subjective systems have a number of disadvantages: (1) being a 
subjective process, the method shows large variability among graders (different people 
have different spectral sensitivity) and by the same grader over time; (2) the method is 
a manual process, so it is time-consuming; (3) as commonly utilized, the traditional 
method has limited capacity to account for the variability inherent in taking and de-
veloping photographs, such as exposure and development time; and (4) it is hard to 
reliably measure cataract severity change over time. 

There have been some attempts towards computerized cataract detection recently 
[8]. However, so far there is no fully automatic and objective nuclear sclerosis grading 
system based on slit-lamp photographs. The goal of this work is to automate this proc-
ess and provide an objective and repeatable grading system for nuclear sclerosis 
evaluation from slit-lamp images. Given a slit-lamp image of the eye, the system can 
automatically extract the feature landmarks in the image, and classify the level of 
nuclear sclerosis based on the intensities of those landmarks. 

2   Materials and Photography Protocol 

A Topcon SL-6E  slit-lamp was used to take the nuclear sclerosis photographs. In this 
process, a vertical slit beam of light is shone through the lens nucleus at a 45° angle 
from visual axis after the pupil has been dilated pharmacologically, and the obliquely-
illuminated lens is photographed with a camera situated on the visual axis. The result 
approximates a cross-section of the lens, depicting the backscatter of the beam as it 
travels through the lens nucleus from anterior to posterior. Slit lamp photographs are 
acquired as color slide transparences on Ektachrome 200 film. The slides were digi-
tized on a Nikon CoolScan slider scanner. In our project, we use the AREDS grading 
system [1], which uses a decimal scale from 0.9 to 6.1. 

There are about 1000 images used in this project. Those images are originally from 
the Beaver Dam Eye Study (BDES) and can be separated into four groups: 1) Stan-
dard Set includes the six base images, 1-6, from the AREDS grading system. These 
are the images to which other images are compared for grading. 2) Sample Set1 has 57 
images that have been graded and the grades have been double-checked, so the grades 
for these images are more accurate and consistent. 3) Sample Set2 includes 93 images 
which were graded without double-checking. 4) Sample Set3 includes 800 images 
without human grades. In Sample Set1 and Sample Set2 there are a few poor-quality 
images that are rotated, blurred, or scaled. Those images were automatically detected 
and pulled out for human grading only. Sample Set1 has four images of this kind and 
Sample Set2 has five bad images.  
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Fig. 1. Feature landmarks on slit-lamp image   Fig. 2. Visual axis detection based on circle 
model 

3   Image Processing and Feature Detection 

In our images, the corneal bow is the leftmost bright vertical curve in the image. 
Tracing left to right through the image, the corneal bow is followed by the dark ante-
rior chamber. The leading edge of the anterior cortex is the second bright vertical 
curve. Other important features in the images are shown in Fig. 1.         

3.1    Detecting the Visual Axis and Identifying the Ocular Landmark Features 

The visual axis is the anterior-posterior line that bisects the nucleus horizontally. Since 
we will measure the degree of nuclear sclerosis based on the luminance values along 
this trace, reliable placement of this visual axis is critical for feature extraction and 
further analysis. The edges of the corneal bow and the anterior cortex are the most 
reliable features in the image, regardless of the degree of sclerosis, and hence were 
selected as the features used in identifying the location of the visual axis. In most 
cases, the corneal bow and the anterior cortex are symmetric with respect to the visual 
axis. If no noise existed, their edges could be modeled well as the arcs of two circles. 
Given an arc of a circle, we can calculate the center of the circle based on its curva-
ture. After calculating the center points of the two circles defined by the corneal bow 
and the anterior cortex, the line connecting the two center points is a good approxima-
tion of the visual axis (Fig. 2). 

We used the Canny edge detection algorithm [2] to detect edge points in an input 
slit-lamp image, then extracted the edges for the corneal bow and anterior cortex 
based on their relative locations in the image. However, explicitly fitting circles based 
on the edge data is problematic given the amount of image noise. One problem comes 
from the ”keyhole” artifact in the anterior chamber, which is the reflection of the ap-
paratus used. This artifact appears in almost every image, and its location in the ante-
rior chamber varies from image to image. As a result, when we try to detect the ante-
rior cortex edge, we may actually find edge points associated with the keyhole. We 
eliminated this problem by locating the keyhole using a matched filter technique. After 
the keyhole is detected, the edge points belonging to the keyhole were avoided when 
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searching for the anterior cortex edge. The problem still exists in cases when the key-
hole overlays the anterior cortex, however.  The other problem comes from poor-
quality images, which include blurred, rotated, scaled and improperly cropped images. 
Those problems can make the automatic process fail to detect the proper edges and 
therefore the estimated visual axis is poor. 

In order to reliably detect the visual axis and automatically determine how well the 
visual axis is detected, we developed a voting scheme to obtain a confidence level 
indicating the correctness of the visual axis. This voting scheme essentially combines 
a Monte Carlo-like approach with a robust estimation technique [6].  

The voting algorithm works as follows. Assume the edge of an arc is extracted and 
a circle model fits the arc reasonably well. Our method to estimate the center of the 
circle is: (1) randomly select five widely-separated points on the arc. From these five 
points, identify the five longest chords between pairs of these points; (2) compute the 
lines perpendicular to the five chords; (3) find the intersections of these lines. If the 
arc is perfectly circular, all five lines will intersect at one point; otherwise, there will 
be 10 intersections; and (4) compute the centroid of the 10 intersections as the loca-
tion of the estimated center of the circle.  

The circle center for the corneal bow is found in two rounds. In the first round, re-
peating the above four steps many times with different sets of five edge points, each 
time an approximate center is obtained for the circle. By averaging these center point 
estimates, we get the center, C1, of the circle based on all selected sets of five points. 
Note in the first round, there may exist some outliers in the circle center approxima-
tion.  In the second round, we repeat the steps used in first round, except we use the 
approximated center C1 to eliminate outliers, i.e., centers whose distance from C1 is 
larger than a threshold. We average all the center points except the outliers in the 
second round and denote the centroid of these points C2. This two round process 
produces a robust estimate of the center even when there is a high percentage of out-
lier edge points used. 

The same algorithm is applied to estimate the center of the circle for the anterior 
cortex.  At each iteration in the second round, after we get an approximate center of 
the circle for the anterior cortex, we connect C2 with this center to form a visual axis 
line.  Since the line always goes through the fixed point C2, we can use a one-
dimensional array to record the orientation of these lines. After many iterations, the 
histogram of the orientations provides evidence of the best location of the line (with 
highest consensus) and the distribution of orientations gives a measure of the uncer-
tainty (Fig. 3). 

 
Fig. 3. Voting scheme for visual axis detection 
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In summary, the following algorithm was used to automatically detect the visual 
axis in a slit-lamp image: 

Step 1. Monte Carlo Simulation 
Randomly choose a set of five widely-separated edge points and calculate the center of 
the            circle estimated using these five points. 

Step 2. Voting for Visual Axis Detection 
i)  Repeat Step 1 many times for corneal bow edge points in two rounds. Throw out 
center point outliers in the second round and average the remaining center points to get 
a center point of the corneal bow. Use this center point, C2, as one point that defines 
the visual axis. 
ii)  Repeat Step 1 many times for anterior cortex edge points in two rounds. Throw out 
center point outliers in the second round. At each iteration in the second round, com-
pute the line connecting C2 and the calculated center point. Histogram the orientations 
of all the estimated visual axis lines. 
iii)  Select the line orientation that occurs with the highest frequency in the histogram 
as the visual axis. 

  
This approach is efficient and robust to image noise. At each iteration, only five 

points are used, so computing the center for the best circle fit by those five points is 
fast.  However, using a true Monte Carlo approach requires some criterion to evaluate 
the results of each iteration. Without any such measure available, accumulating all 
estimates and taking the one with the ”most votes” maintains the benefits of randomi-
zation: statistically, we are likely to obtain valid solutions most of the time. The itera-
tions enable us to eliminate image noise as arcs fit to erroneous data produce centers 
distributed over a large area. Arcs along the true circle ”agree.” Hence we can deter-
mine, by consensus, the best center, and by looking at the distribution of centers, we 
can determine a level of uncertainty (Fig. 4). 

  
(a)          (b)     (c)             (d) 

Fig. 4. Visual axis orientation voting histograms for two images. (b) Line orientation histogram 
for image (a), (d) Line orientation histogram for image (c). The single sharp peak in (b) indi-
cates that most iterations agreed with the line location. A broader histogram in (d) indicates a 
lack of consensus, and therefore some difficulty in ascertaining the correct line location  

After the visual axis is detected, a linear densitometric track along the visual axis 
was performed to get a one-dimensional intensity profile. To make the values of the 
profile robust, a narrow band centered on the visual axis was used to average the pix-
els along the vertical direction in the band at each point on the visual axis. Based on 
this intensity profile, the original image and the edge image, landmark features can 
now be detected reliably with conventional image processing methods.  
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3.2    Construct Regression Features 

Seven landmark features were extracted from the photograph, and, for each landmark, 
an intensity mean of the pixels within a 7 pixel wide by 60 pixel high rectangle cen-
tered on this point was recorded. Based on expert knowledge, four of the seven fea-
tures were chosen as most significant: anterior lentil, sulcus, posterior lentil, and pos-
terior lamella (with variable names AnteLen, Sulcus, PostLen, and PostLam, respec-
tively).  The other three features are highly correlated with the four selected ones and 
thus considered to have negligible effect on grading. During the human grading pro-
cedure, the trend of intensity change from anterior lentil to posterior lamella along the 
visual axis plays an important role, so several composite features were also defined, 
for example, the ratio between the intensity at the anterior lentil and the posterior lentil 
(RatioALPL, RatioALPLNorm). 

Two other features considered were the standard deviation of intensity in the 
neighborhood of the sulcus in order to take into account the effect of intensity in the 
center of the lens. An eye whose image has a narrow black strip along the sulcus is 
defined to have low degree of nuclear sclerosis. Two areas of interest of different size 
were defined: one is a 7 pixel by 60 pixel rectangle, and the other is 17 by 120, both 
centered on the sulcus. The feature SulStdSmall is the intensity standard deviation of 
the pixels in the small rectangle, and the feature SulStdLarge is the intensity standard 
deviation of the pixels in the big rectangle. Intuitively, the ratio of SulStdSmall to 
SulStdLarge, which defines the feature ratioSulStd, should be small if a narrow black 
strip exists around the sulcus. In summary, 10 features were computed from each 
image and used to represent all the information for grading. 

4   Data Analysis and Results 

We built our grading function in two steps. First, the Standard Set and Sample Set1 
were used as the training data to select the most important features for grading.  Sec-
ond, the Standard Set alone was used to train the grading function, which was defined 
using the most important features selected in the first step. Strictly speaking, the only 
”ground truth” data are the Standards because the grades assigned to the Standards are 
the definition of the grades. However, six images are too few to estimate the parame-
ters in a grading function with many variables. Since the grades for the images in 
Sample Set1 were checked after grading, they are more accurate and consistent. Even 
though they can not be treated as ground truth due to the limitations of human grading, 
those scores provided a good approximation of the ”correct grades,” so it is reason-
able to use those data to determine the most important features affecting grading. After 
the most important features were identified, the Standards were used to determine the 
parameters for combining the features. We tested the grading function using Sample 
Set1 and Sample Set2 as testing data.  
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4.1    Feature Selection 

To decide which of 10 candidate features are important for grading, a linear regression 
model using all 10 features was used to fit the training data (Standard Set and Sample 
Set1).  Table 1 shows the coefficients of the model and the p-values for the 10 features 
and the constant term. 

Table 1. Coefficients for a linear model with 10 features1 

 Estimate t value Pr(>|t|) 
AnteLen -0.2704 -3.134 0.0033 ** 
Sulcus 0.1012 5.678 1.45e-06 *** 

SulStdSmall 0.1227 0.256 0.7990 
SulStdLarge -0.1343 -0.502 0.6181 

PostLen 0.2163 2.760 0.0088 ** 
PostLam -0.0030 -0.211 0.8342 

RatioALPL -1.5422 -0.916 0.3651 
RatioALPLNorm 36.4366 3.722 0.0006 *** 
RatioALPostLam 0.3806 0.760 0.4519 

RatioSulStd -0.1483 -0.104 0.9179 
(Intercept) -34.7648 -3.606 0.0009 *** 

 
The features with p-values less than 0.001 are considered significantly important 

for grading. Those features are Sulcus and RatioALPLNorm. This is consistent with 
experts’ knowledge. The intensity of the sulcus is a good indicator of the general 
brightness of the image, and the images of eyes with more serious nuclear sclerosis 
tend to be brighter. The feature RatioALPLNorm indicates the intensity change from 
anterior lentil to posterior lentil. The higher the RatioALPLNorm value, the higher the 
degree of nuclear sclerosis the eye usually has. The normalized ratio, RatioALPL-
Norm, is less sensitive to image noise due to variations of exposure time or develop-
ment time compared to the un-normalized value, RatioALPL; this improvement is 
evident from the fact that RatioALPLNorm has a lower p-value than RatioALPL. The 
features designed to detect the strip around the sulcus, SulStdSmall, SulStdLarge and 
RatioSulStd, did not have low p-values, probably because of the difficulty of identify-
ing this information. 

4.2    Model Fitting and Accuracy Evaluation 

After the two most important features for the classifier were determined, a linear grad-
ing function using those features was fit using the Standards. To evaluate how well the 
grading function predicts the grades for the testing data, the computed decimal grades 
were converted to the scale used in the AREDS system by rounding the grade to the 
nearest 0.1. The difference between human grades and computed grades was quan-
tized into 40 groups (-5 to 5 at intervals of 0.25). The histogram of the grading differ-

                                                           
1 Significant level codes for p value:  ”***”: [0,0.001); ”**”:[0.001, 0.01); ”*”:[0.01,0.05); 

”.”:[0.05,0.1);   ” ”:[0.1,1] 
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ences is a good indicator of how close the machine grading is to the human grading. 
The grading function as a linear combination of the features Sulcus and RatioALPL-
Norm, was defined by: 

Grade = 0.03077*Sulcus + 1.40517*RatioALPLNorm - 0.4654 

Table 2 shows that the computed grades are very close to the real values for the Stan-
dards. 

Table 2. Computed grades for the Standards 

Standard 1 2 3 4 5 6 
Computed Grade 0.98 1.96 3.14 3.98 4.91 6.03 

   

Fig. 5. Residuals vs Fitted plot and Q-Q plot        Fig. 6. Histogram of grading differ-
ences  between human grades and 
computed grades 

The normal Q-Q plot in Fig. 5 shows the residuals are very close to being normally 
distributed. The plot of the residuals and their corresponding grades show there are no 
trends or patterns in the residuals, visually verifying the use of a linear model. 

For the grades of the testing images predicted by the grading function, Fig. 6 
shows that out of 141 images, 135 are machine graded to within one grade of the 
human grade, which is 95.8% of the population. No image has more than a two grade 
difference, and only 6 images have a two grade difference. In human grading, one 
grade fluctuation is quite common and regarded as acceptable. 

5   Concluding Remarks 

A system has been developed that automatically detects the visual axis and extracts 
features from slit-lamp photographs. Expert knowledge and a linear regression model 
were used to define and select important features for nuclear sclerosis grading. After 
the two most important features were chosen, a linear grading function was fit using 
the Standards and evaluated based on human grading. The linear grading function 
achieved a grading accuracy of 95.8% within 1 grade using the AREDS grading sys-
tem for the testing data. While adding some relatively important features such as ante-
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rior lentil and posterior lentil into the grading function may slightly reduce the residual 
standard error for prediction in some test cases, if similar classification accuracy is 
achieved, the grading function with fewer features is preferred since it has the advan-
tage of being simpler and more robust to image noise and image processing errors.  

It is interesting to point out that we achieved this classification result using only the 
six Standards as training data. This is evidence that the linear grading function using 
the two features, Sulcus and RatioALPLNorm, largely captures the relationship be-
tween the severity of nuclear sclerosis and the image. With a function of known ana-
lytical form, the two unknown parameters can be determined by two good samples. 
This may explain why using only six Standards results in a good grading function. 

To further evaluate classification accuracy, human graders can look at the machine 
grades to see how many of them are acceptable. The next step is to automatically 
grade the 800 images in Sample Set3 and ask human experts to evaluate them. Other 
images to be tested include the Standards under different exposure or development 
times, and follow-up images for individuals over time. Since selecting important fea-
tures is critical for modeling the grading function, it may be worth trying some more 
complex feature selection methods such as Likelihood Basis Pursuit (LBP) [13]. An-
other possibility is to consider non-linear grading functions.  
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