
Data-Driven Group AnimationYu-Chi Lai, Stephen Chenney, Shaohua FanUniversity of Wis
onsin, MadisonSeptember 28, 2005Abstra
tWe introdu
e Data-Driven Groups (DDGs), an animation te
hnique forgroups of dis
rete agents, su
h as 
o
ks, herds, or small 
rowds. DDGs 
reatemotion by pie
ing together a sequen
e of re
orded motion 
lips. The graphstru
ture identi�es 
lips that 
an be appended while maintaining 
ontinuityin the motion. We dis
uss a method for building DDGs for dis
rete agentsand algorithms for extra
ting motion from the graph to meet environment 
on-straints. The resulting animations show realisti
 motion at signi�
antly redu
ed
omputational 
ost 
ompared to simulation.1 Introdu
tionRule-based agent te
hniques are 
ommonly used to animate groups of virtual 
rea-tures in both real-time environments and o�-line produ
tion. Examples range fromthe 
o
king models of Reynolds [18℄, to 
ommer
ial systems like MASSIVE [7℄ andAI.implant [1℄, to any number of 
rowd animation systems. Agent models must behighly eÆ
ient for appli
ations in 
omputer games and intera
tive systems, parti
u-larly when used for se
ondary animation to add realism to an environment. Further-more, agent models should o�er two forms of 
ontrol: over what the group looks likeand what the group does. For instan
e, an appearan
e goal might be resemblan
eto a parti
ular animal herd, while an a
tion goal might be following a parti
ularpath through the environment. In this paper we present DDGs, a data-driven agentanimation te
hnique that addresses eÆ
ien
y and both forms of 
ontrol.Data-driven methods re
ord motion in a pre-produ
tion stage, and then playba
k the data to drive run-time motion (the most 
ommon example is human motion
apture). DDGs re
ord the motion of an agent group as a whole, in
luding the
on�guration of agents within the group. As with human motion graphs [11, 3, 14℄,1



the data 
lips are stored in a graph stru
ture that en
odes whi
h 
lips 
an be appendedwhile retaining realisti
, 
ontinuous motion. We des
ribe te
hniques for extra
ting
lips from agent-based simulations that 
an be pie
ed together in a graph stru
ture.We demonstrate uses of the resulting graph, in
luding random motion restri
ted to aregion.There are three prin
iple advantages to DDGs: eÆ
ien
y, style 
ontrol, and 
on-straint satisfa
tion. The run-time CPU 
ost of DDGs is essentially the time takento set animation state from the 
lips. In 
omparison, a rule-based group simulationrequires some me
hanism for tra
king relationships between agents and evaluatingrules, whi
h leads to super-linear 
ost with large 
onstants. Motion 
lips en
ode aparti
ular style, or an impli
it set of 
onstraints on the appearan
e of the motion.This style is maintained by the playba
k s
heme, so a designer 
an be 
ertain thatmotion generated from their 
lips will retain their style. Finally, on
e a graph of 
lipshas been built it 
an be sear
hed with standard te
hniques to produ
e 
onstrainedtraje
tories. This is 
heaper than sear
hing within a 
ontinuous simulation statespa
e.This report des
ribes a method for building motion graphs for groups of dis
reteagents. The primary 
omponent is a solution to the problem of �nding good transitionpositions to 
onne
t the 
lips seamlessly.DDGs are suitable for appli
ations where the group moves through the environ-ment as a 
ohesive unit, and individual agents do not intera
t with obje
ts externalto the group. We thus see the primary appli
ation as simulations that add realisti
but previously expensive elements to large virtual environments. For example, out-door game environments 
ould 
heaply add a roaming herd or 
ir
ling 
o
k, withoutin
urring the 
ost of a large-s
ale agent simulation.2 OverviewA motion graph is a dire
ted graph in whi
h edges 
orrespond to pre-re
orded anima-tion 
lips, and nodes represent pla
es where 
lips 
an be joined. Animation generatedfrom the graph 
an be thought of as a point that follows an edge and makes a 
hoi
eat transitions as to whi
h edge to follow next. Constru
tion of a DDG requiresidentifying transition points and, possibly, modifying the 
lips to a
hieve seamlesstransitions.All of the graphs in this paper are based on the 
o
king model introdu
ed byReynolds [18℄. When simulating to generate motion, ea
h agent at ea
h time-stepadjusts its traje
tory by evaluating rules based on its own state and that of its neigh-bors. The output state of the system, S(t), is the position and velo
ity of ea
hagent at ea
h timestep, and it is this that we store in group motion 
lips. At a high2
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Figure 1: An input animation with two 
on�gurations, A and B, that ea
h appeartwi
e in the sequen
e, and the motion graph that results.level, it 
ould be applied to other group animation systems, even motion-
apturedgroups. However, e�e
tive DDGs require group 
on�gurations that naturally repeatthemselves often or the ability to for
e su
h repetition, properties that may not beavailable in all group models.A good motion graph has many options for transitions from one 
lip to another.This in
reases variety in the resulting motion. Equally important, the 
lips shouldsample the spa
e of possible motions well [17℄ so that 
ontrol algorithms have the
exibility to meet a wide range of goals. The 
lips should be short to enable frequent
ontrol 
hoi
es, but not so short that the frequent transitions 
reate artifa
ts. Short
lips, well distributed over the range of motion, also save memory be
ause variety 
anbe obtained by ri
h 
ombinations of 
lips, rather than individually 
omplex 
lips.DDGs are 
onstru
ted by �nding 
ommon 
on�gurations in an input animationsequen
e and using them dire
tly as transition nodes. This is a dire
t appli
ation ofmotion graph 
onstru
tion for human motion (see Se
tion 3). The primary problemto be solved is 
reating a 
omparison metri
 between group 
on�gurations, whi
h weaddress in Se
tion 4.A variety of graph sear
h algorithms 
an be applied to motion graphs to synthesizenew motion with parti
ular properties, as we des
ribe in Se
tion 6. We demonstraterandom walk on the graph, whi
h produ
es un
onstrained motion that is very similarin style to the input motion. When used for se
ondary motion, it may be desirableto keep the group within the extents of the world. Hen
e, we des
ribe a random walkwith look-ahead that restri
ts transitions to keep the group within a region.3



3 Related WorkMotion 
apture [15℄ is the prominent appli
ation of data-driven animation. Theformalism of 
onne
ting 
lips into a graph stru
ture was independently developed byArikan and Forsyth [3℄, Lee et al. [14℄, and Kovar et al. [11℄. Ea
h group di�eredin how they mat
hed frames and generated motion from the graph, but all foundmat
hes between poses in di�erent frames and inserted transitions into the graph atthese points. To improve the responsiveness and predi
tability of motion synthesis,Glei
her et al. [8℄, 
onstru
ted graphs with only a few transition nodes but manylinks; in an intera
tive appli
ation any motion is rea
hable from any other in only avery short period of time.Other appli
ations of data-driven synthesis for animation range from syntheti
motion 
apture of �sh body motion [21℄, to 
apturing the response of grass to awind �eld [16℄. In the former 
ase, the state-spa
e was the pose of the �sh, andparameters for a periodi
 motion model were extra
ted from the simulation to speedup the run-time simulation. In the latter 
ase, the bending of grass for varying windspeeds was pre-
omputed. Data-driven te
hniques have also been used to model theimpulse response of dynami
 systems su
h as 
loth and plant models [10℄, howeverthe size of the state spa
e severely limited the possible impulses that 
ould be applied.Notably, this method also pre-
omputed rendering parameters to provide intera
tiveglobal illumination. None of these prior systems deal with the 
oordinated motion ofgroups.DDGs provide a means of 
ontrolling the traje
tory of a group as a whole. Pre-vious te
hniques for guiding 
o
ks in
lude Reynolds' steering behaviors [19℄ and theroadmap te
hniques of Bayazit et al. [4℄. While these te
hniques are suÆ
ient forguiding a 
o
k along some general path, they 
annot guarantee the 
orre
t out
omebe
ause they rely on rules that 
ould be superseded by other rules. The degree of
ontrol we o�er en
ompasses these previous methods and adds additional tools. An-derson et al. [2℄ des
ribe an algorithm for global 
ontrol of a 
o
k that 
an meethard 
onstraints, but the method is not suitable for on-line 
ontrol. DDGs simplify
onstrained animation by redu
ing the problem to one over a dis
rete sear
h spa
e(walks on the graph). A similar approa
h was taken by Go et al. [9℄ for 
ontrollingsingle vehi
les, but they did not work with an expli
it graph stru
ture.4 Data-Driven GroupsA 
lip of motion is de�ned as a sequen
e of regular sampling ve
tors represented allagents' positions and velo
ities. A motion graph is a dire
ted graph where all edges
orrespond to 
lips of motion. Verti
es in the graph, or nodes, serve as 
hoi
e points4
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Figure 2: Con�gurations (a) and (b) are similar, be
ause agents are arranged thesame way with respe
t to the average velo
ity, despite that velo
ity being di�erentin world 
oordinates and despite some agents swit
hing lo
ations. Group (
) is notsimilar be
ause the arrangement is di�erent with respe
t to the group's velo
ity,despite being the same as (a) in world 
oordinates. Also shown is the origin andprin
iple axis of the 
on�guration spa
e 
oordinate system atta
hed to ea
h group.
onne
ting these 
lips, i.e., ea
h 
lip 
orresponding to an outgoing edge is potentiallythe su

essor to any in
oming edge's 
lip. We use the term node 
on�guration torefer to the 
on�guration of the group at a graph node. For a node to have multipleoutgoing edges, there must be multiple 
lips that 
an follow the 
lip(s) leading intothe node.Our strategy for 
onstru
ting a graph is to sear
h for node 
on�gurations in theinput data. Good 
on�gurations for nodes are those that re
ur in the input (Fig-ure 1): the 
lips pre
eding ea
h appearan
e of the node 
on�guration in the input arein
oming edges in the graph, and su

eeding 
lips are output edges. The instan
es ofa parti
ular node 
on�guration do not need to be exa
tly identi
al { simple blendingte
hniques 
an reliably generate a transition if two 
on�gurations are \
lose" to ea
hother.The remainder of this se
tion is divided into two parts. First, we des
ribe our
omparison metri
 for identifying similar 
on�gurations. We then explain how to
onstru
t the DDG.4.1 Group Con�gurationsWe make two assumptions about the group motion to maximize the self-similarity ofgroups within a 
luster (Figure 2). First, we assume that the group's 
on�gurationdepends on the dire
tion of travel, but not how this dire
tion of travel is embeddedin the world (a typi
al assumption for motion graphs). Se
ond, we assume that allthe agents are evaluating the same set of rules, and hen
e 
an ful�ll any role withinthe group. For 
omparing two 
on�gurations, CX and CY , this means that for everyagent in CX there must be some agent near its lo
ation in CY , but not ne
essarilythe same agent. 5



To pre
isely des
ribe a 
on�guration, we de�ne a lo
al, moving 
on�guration spa
e
oordinate system (Figure 2). We use this 
oordinate system at various stages of the
onstru
tion algorithm to provide a 
ommon referen
e frame between groups. Assumethe group 
onsists of N agents, ea
h with world position x(i) and velo
ity ve
tor v(i).At any instant, the origin of 
on�guration spa
e is the 
enter of mass of the agentsand the x axis is aligned with the average agent velo
ity:O
(t) = 1N PNi=1 x(i)(t) X
(t) = 1N PNi=1 _x(i)(t)O
 and X
 are suÆ
ient for a 2D 
oordinate system, while in 3D we require anotheraxis to de�ne roll about X
: Y
 = dup�X
 where up is an arbitrary world updire
tion. We refer to the transformation from world to 
on�guration 
oordinates asat time t as X
 w(t).The assumptions on group motion 
ould be removed if the group behavior madethem invalid (for instan
e, there was a designated leader). Note that removing theidenti
al behaviors assumption makes 
onstru
tion simpler be
ause we 
ould use met-ri
s that measured the di�eren
e between individual agents, rather than the metri
we use that assumes no 
orresponden
es between agents. Also observe that we 
ouldhandle subsets of agents with the same behaviors by using our metri
 within ea
hsubset. Working in world rather than 
on�guration 
oordinates would require thatvelo
ity be 
onsidered when 
omparing agents.4.2 A Dis
rete Agent Comparison Metri
The metri
 used for 
omparing two 
on�gurations should give a small distan
e whenagents in one 
on�guration 
an be blended to the next without visual artifa
ts. Asdis
ussed above, we allow a rigid transformation to re-orient one 
on�guration ontothe other, and we allow agents to swap identities during the blend. However, we musthave a one-to-one 
orresponden
e between agents to enable those in the initial blend
on�guration to swit
h roles for the �nal 
on�guration.Say we have N agents in the group. At the time, tA, that 
on�guration CAappears, ea
h agent has a lo
ation, xi(tA) for 1 � i � N . Similarly, at time tB theagents are in 
on�guration CB in positions xi(tB). During the blend from CA to CB,ea
h agent must move from position xi(tA) to position xMB A(i)(tB), where MB Ais a one-to-one mapping. MB A tells us whi
h slot in CB will be o

upied by ea
hagent in CA.Let XA B be a transformation intended to align CB with CA. Our metri
,E(tA; tB) is de�ned asE(tA; tB) = minMB A;XA B 1N NXi=1 �xi(tA)�XA BxMB A(i)(tB)�26
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Figure 3: The pro
ess used to �nd a mat
hing between 
on�gurations a and bWe solve the minimization problem using a 
ombination of the iterated 
losestpoints algorithm [5℄ and bipartite graph mat
hing (Figure 3(b)).� OptimizingMB A: We 
onstru
t a bi-partite graph, with indexes i in one parti-tion and j in the other, with every vertex in one partition 
onne
ted to every ver-tex in the other. The edges are labeled with the distan
e� (xi(tA)� XA Bxj(tB))2.We then run the Kuhn-Munkres [12℄ algorithm to �nd the maximal weight bi-partite mat
hing. Ea
h edge from a node i to node j provides MB A(i) = j.� OptimizingXA B: WithMB A set, we 
an update XA B by applying standardpoint set registration te
hniques [5℄.The sequen
e of optimizingMB A and XA B is repeated until the distan
e 
easesto 
hange. The pro
ess must 
onverge be
ause the sub-steps never in
rease the dis-tan
e, and the minimum distan
e is 0. A starting value for XA B is required. Weuse the transformation that aligns the 
on�guration 
oordinates (Se
tion 4.1).4.3 Constru
ting a Data-Driven GroupWith the method des
ribed in previous se
tion, we 
an 
onstru
t the graph with amethod similar to [11℄. First, we insert a set of 
andidate 
on�gurations into a longsequen
e of simulation at a 
onstant frequen
y. We then set up a di�eren
e matrixwhose (i; j)th element is the value E(ti; tj). From this matrix a set of 
on�guration7



nodes is extra
ted by lo
ating lo
al minima in the di�eren
e matrix. We take somenumber of the lowest lo
al minima as the 
on�guration nodes. In our 
ase we 
hosea number of nodes proportional to the 
lip length. On
e the 
on�guration nodeshave been 
hosen, the 
lips joining them are formed into edges of the graph, and analgorithm is run to trim dead-ends (see Kovar et al. [11℄).5 Synthesis AlgorithmsThe pro
ess of synthesizing from a DDG is identi
al to that for human motion graphswith the ex
eption that we must tra
k agent 
orresponden
es. A 
umulative 
orre-sponden
e, M
urrent(i) is maintained as synthesis progresses. The agent that startedas agent i uses agent M
urrent(i)'s state from the 
urrently a
tive 
lip. Initially,M
urrent(i) = i. At ea
h transition, M0
urrent(i) = MCC0(M
urrent(i)), where MCC0is the 
orresponden
es stored for the transition.The synthesis pro
ess is independent of the method for 
hoosing the sequen
e ofedges to be followed. In this se
tion we dis
uss two graph walk algorithms, ea
hdesigned to produ
e a parti
ular target motion: random walk and 
onstraining thegroup to a region.5.1 Random WalkRandom synthesis is simply random graph walk on a DDGs. Ea
h time a transitionpoint is rea
hed, we randomly pi
k an outgoing edges from that node. While randomsynthesis produ
es reasonable group motion, it o�ers no 
ontrol over the group.5.2 Region ConstrainedMost virtual worlds are �nite in extent, and we would like to 
onstrain the 
o
k tostay within the world. With traditional 
o
king simulations this would be done eitherwith 
ollision avoidan
e for the virtual walls of the world, or with other spe
i�
 rules.The region 
onstraint restri
ts the random walk on the graph to edges that remainwithin the region. At ea
h transition node during synthesis, we 
hoose an outgoingnode at random, then 
ondu
t depth �rst sear
h to �nd the �rst future path thatremains inside the region (we test the 
enter of mass of the group for in
lusion in theregion). If no su
h path 
an be found, we 
hoose another 
lip and try again.
8



Des
r. Trans. Mem. Time20-2D 7200 50 220020-3D 7200 50 2400Table 1: Data for the DDGs we have 
onstru
ted. We give a des
riptive label, thenumber of transitions, the total memory 
onsumption of the graph in MB, and thetotal time to 
onstru
t the graph in se
onds.6 ResultsWe have built two demonstrations with data summarized in Table 1. Ea
h 
o
kuses the same rule parameters but one in 2D and the other in 3D. Memory usage isdetermined by the total animation frames stored, and total number of agents involved.It is linear with the number of agents in the group. We 
hoose a �xed portion of lo
alminima in the di�eren
e matrix for 
on�guration nodes, so the number of transitionedges is roughly �xed (the pro
ess to trim dead-ends may redu
e the number of nodesand edges). Figure 4 is the snap shot of the 
onstrained 
o
k inside a �xed region.Random synthesis took about 7.5ms per virtual se
ond on a 2.4GHz P4. This
ompares to about 100ms for simulating the same group. The di�eren
e is pra
ti
allysigni�
ant: less than 0.1ms per frame is a reasonable pri
e to pay for se
ondary groupmotion that adds realism to a virtual environment; 10ms is not. The trade-o� is inmemory 
onsumption, but for se
ondary motion appli
ations a small graph with few
on�gurations is likely to be a

eptable.The primary limitation of DDGs, as with any data-driven method, is that sit-uations not in the data 
annot be reprodu
ed. In the 
ontext of group animation,this problem is most apparent in environmental intera
tions. For instan
e, the group
annot split around an obsta
le unless a 
lip with a similar sized obsta
le is presentin the pre-re
orded data. Similarly, individual agents 
annot modify their motionin response to a lo
al environmental feature, su
h as another agent not part of thegroup.7 Con
lusionDDGs o�er eÆ
ient and 
ontrollable motion for small to medium sized groups. Openproblems in
lude 
reating graphs dire
tly from 
aptured motion and further redu
-tions in run-time 
ost. In parti
ular, for large groups the 
ost of rendering startsto dominate the 
ost of simulating. Using ideas from video textures [20℄ and 
rowdimpostors [6℄, it should be possible to pre-render the motion to textures that are bill-9



Figure 4: Constraining a 
o
k to a region. The traje
tory of the 
o
k is shown bythe dark red line.boarded into a s
ene. The primary 
hallenge to over
ome is view independen
e. Theresult would be 
omputational 
osts that do not depend on the number of agents.We found that pairs of very similar 
on�gurations were rare in the input data,resulting a poorly 
onne
ted graph with very long 
lips. This is due to a la
k ofre
urring 
on�gurations be
ause there is no su
h thing as a regular gait or restingpose for most groups, as there is in human motion. In addition, the 
omplexity of thedistan
e metri
 
omputation is O(N3). We have extended our work to 
reate motiongraphs using 
onstrained simulation to build 
lips between 
on�guration nodes [13℄.With the help of new 
o
k rules, we 
an 
onstru
t the 
o
k to smoothly transformfrom one 
on�guration to another while following a designed path.
10
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