
Data-Driven Group AnimationYu-Chi Lai, Stephen Chenney, Shaohua FanUniversity of Wis
onsin, MadisonSeptember 28, 2005Abstra
tWe introdu
e Data-Driven Groups (DDGs), an animation te
hnique forgroups of dis
rete agents, su
h as
o
ks, herds, or small
rowds. DDGs
reatemotion by pie
ing together a sequen
e of re
orded motion
lips. The graphstru
ture identi�es
lips that
an be appended while maintaining
ontinuityin the motion. We dis
uss a method for building DDGs for dis
rete agentsand algorithms for extra
ting motion from the graph to meet environment
on-straints. The resulting animations show realisti
 motion at signi�
antly redu
ed
omputational
ost
ompared to simulation.1 Introdu
tionRule-based agent te
hniques are
ommonly used to animate groups of virtual
rea-tures in both real-time environments and o�-line produ
tion. Examples range fromthe
o
king models of Reynolds [18℄, to
ommer
ial systems like MASSIVE [7℄ andAI.implant [1℄, to any number of
rowd animation systems. Agent models must behighly eÆ
ient for appli
ations in
omputer games and intera
tive systems, parti
u-larly when used for se
ondary animation to add realism to an environment. Further-more, agent models should o�er two forms of
ontrol: over what the group looks likeand what the group does. For instan
e, an appearan
e goal might be resemblan
eto a parti
ular animal herd, while an a
tion goal might be following a parti
ularpath through the environment. In this paper we present DDGs, a data-driven agentanimation te
hnique that addresses eÆ
ien
y and both forms of
ontrol.Data-driven methods re
ord motion in a pre-produ
tion stage, and then playba
k the data to drive run-time motion (the most
ommon example is human motion
apture). DDGs re
ord the motion of an agent group as a whole, in
luding the
on�guration of agents within the group. As with human motion graphs [11, 3, 14℄,1

the data
lips are stored in a graph stru
ture that en
odes whi
h
lips
an be appendedwhile retaining realisti
,
ontinuous motion. We des
ribe te
hniques for extra
ting
lips from agent-based simulations that
an be pie
ed together in a graph stru
ture.We demonstrate uses of the resulting graph, in
luding random motion restri
ted to aregion.There are three prin
iple advantages to DDGs: eÆ
ien
y, style
ontrol, and
on-straint satisfa
tion. The run-time CPU
ost of DDGs is essentially the time takento set animation state from the
lips. In
omparison, a rule-based group simulationrequires some me
hanism for tra
king relationships between agents and evaluatingrules, whi
h leads to super-linear
ost with large
onstants. Motion
lips en
ode aparti
ular style, or an impli
it set of
onstraints on the appearan
e of the motion.This style is maintained by the playba
k s
heme, so a designer
an be
ertain thatmotion generated from their
lips will retain their style. Finally, on
e a graph of
lipshas been built it
an be sear
hed with standard te
hniques to produ
e
onstrainedtraje
tories. This is
heaper than sear
hing within a
ontinuous simulation statespa
e.This report des
ribes a method for building motion graphs for groups of dis
reteagents. The primary
omponent is a solution to the problem of �nding good transitionpositions to
onne
t the
lips seamlessly.DDGs are suitable for appli
ations where the group moves through the environ-ment as a
ohesive unit, and individual agents do not intera
t with obje
ts externalto the group. We thus see the primary appli
ation as simulations that add realisti
but previously expensive elements to large virtual environments. For example, out-door game environments
ould
heaply add a roaming herd or
ir
ling
o
k, withoutin
urring the
ost of a large-s
ale agent simulation.2 OverviewA motion graph is a dire
ted graph in whi
h edges
orrespond to pre-re
orded anima-tion
lips, and nodes represent pla
es where
lips
an be joined. Animation generatedfrom the graph
an be thought of as a point that follows an edge and makes a
hoi
eat transitions as to whi
h edge to follow next. Constru
tion of a DDG requiresidentifying transition points and, possibly, modifying the
lips to a
hieve seamlesstransitions.All of the graphs in this paper are based on the
o
king model introdu
ed byReynolds [18℄. When simulating to generate motion, ea
h agent at ea
h time-stepadjusts its traje
tory by evaluating rules based on its own state and that of its neigh-bors. The output state of the system, S(t), is the position and velo
ity of ea
hagent at ea
h timestep, and it is this that we store in group motion
lips. At a high2

Input Frames

X A B A B Y

Data Driven Group

A-B
1 B-A

1
A-B

2

A BA-B
1

B-A
1

A-B
2

Figure 1: An input animation with two
on�gurations, A and B, that ea
h appeartwi
e in the sequen
e, and the motion graph that results.level, it
ould be applied to other group animation systems, even motion-
apturedgroups. However, e�e
tive DDGs require group
on�gurations that naturally repeatthemselves often or the ability to for
e su
h repetition, properties that may not beavailable in all group models.A good motion graph has many options for transitions from one
lip to another.This in
reases variety in the resulting motion. Equally important, the
lips shouldsample the spa
e of possible motions well [17℄ so that
ontrol algorithms have the
exibility to meet a wide range of goals. The
lips should be short to enable frequent
ontrol
hoi
es, but not so short that the frequent transitions
reate artifa
ts. Short
lips, well distributed over the range of motion, also save memory be
ause variety
anbe obtained by ri
h
ombinations of
lips, rather than individually
omplex
lips.DDGs are
onstru
ted by �nding
ommon
on�gurations in an input animationsequen
e and using them dire
tly as transition nodes. This is a dire
t appli
ation ofmotion graph
onstru
tion for human motion (see Se
tion 3). The primary problemto be solved is
reating a
omparison metri
 between group
on�gurations, whi
h weaddress in Se
tion 4.A variety of graph sear
h algorithms
an be applied to motion graphs to synthesizenew motion with parti
ular properties, as we des
ribe in Se
tion 6. We demonstraterandom walk on the graph, whi
h produ
es un
onstrained motion that is very similarin style to the input motion. When used for se
ondary motion, it may be desirableto keep the group within the extents of the world. Hen
e, we des
ribe a random walkwith look-ahead that restri
ts transitions to keep the group within a region.3

3 Related WorkMotion
apture [15℄ is the prominent appli
ation of data-driven animation. Theformalism of
onne
ting
lips into a graph stru
ture was independently developed byArikan and Forsyth [3℄, Lee et al. [14℄, and Kovar et al. [11℄. Ea
h group di�eredin how they mat
hed frames and generated motion from the graph, but all foundmat
hes between poses in di�erent frames and inserted transitions into the graph atthese points. To improve the responsiveness and predi
tability of motion synthesis,Glei
her et al. [8℄,
onstru
ted graphs with only a few transition nodes but manylinks; in an intera
tive appli
ation any motion is rea
hable from any other in only avery short period of time.Other appli
ations of data-driven synthesis for animation range from syntheti
motion
apture of �sh body motion [21℄, to
apturing the response of grass to awind �eld [16℄. In the former
ase, the state-spa
e was the pose of the �sh, andparameters for a periodi
 motion model were extra
ted from the simulation to speedup the run-time simulation. In the latter
ase, the bending of grass for varying windspeeds was pre-
omputed. Data-driven te
hniques have also been used to model theimpulse response of dynami
 systems su
h as
loth and plant models [10℄, howeverthe size of the state spa
e severely limited the possible impulses that
ould be applied.Notably, this method also pre-
omputed rendering parameters to provide intera
tiveglobal illumination. None of these prior systems deal with the
oordinated motion ofgroups.DDGs provide a means of
ontrolling the traje
tory of a group as a whole. Pre-vious te
hniques for guiding
o
ks in
lude Reynolds' steering behaviors [19℄ and theroadmap te
hniques of Bayazit et al. [4℄. While these te
hniques are suÆ
ient forguiding a
o
k along some general path, they
annot guarantee the
orre
t out
omebe
ause they rely on rules that
ould be superseded by other rules. The degree of
ontrol we o�er en
ompasses these previous methods and adds additional tools. An-derson et al. [2℄ des
ribe an algorithm for global
ontrol of a
o
k that
an meethard
onstraints, but the method is not suitable for on-line
ontrol. DDGs simplify
onstrained animation by redu
ing the problem to one over a dis
rete sear
h spa
e(walks on the graph). A similar approa
h was taken by Go et al. [9℄ for
ontrollingsingle vehi
les, but they did not work with an expli
it graph stru
ture.4 Data-Driven GroupsA
lip of motion is de�ned as a sequen
e of regular sampling ve
tors represented allagents' positions and velo
ities. A motion graph is a dire
ted graph where all edges
orrespond to
lips of motion. Verti
es in the graph, or nodes, serve as
hoi
e points4

(a) (c)(b)

Figure 2: Con�gurations (a) and (b) are similar, be
ause agents are arranged thesame way with respe
t to the average velo
ity, despite that velo
ity being di�erentin world
oordinates and despite some agents swit
hing lo
ations. Group (
) is notsimilar be
ause the arrangement is di�erent with respe
t to the group's velo
ity,despite being the same as (a) in world
oordinates. Also shown is the origin andprin
iple axis of the
on�guration spa
e
oordinate system atta
hed to ea
h group.
onne
ting these
lips, i.e., ea
h
lip
orresponding to an outgoing edge is potentiallythe su

essor to any in
oming edge's
lip. We use the term node
on�guration torefer to the
on�guration of the group at a graph node. For a node to have multipleoutgoing edges, there must be multiple
lips that
an follow the
lip(s) leading intothe node.Our strategy for
onstru
ting a graph is to sear
h for node
on�gurations in theinput data. Good
on�gurations for nodes are those that re
ur in the input (Fig-ure 1): the
lips pre
eding ea
h appearan
e of the node
on�guration in the input arein
oming edges in the graph, and su

eeding
lips are output edges. The instan
es ofa parti
ular node
on�guration do not need to be exa
tly identi
al { simple blendingte
hniques
an reliably generate a transition if two
on�gurations are \
lose" to ea
hother.The remainder of this se
tion is divided into two parts. First, we des
ribe our
omparison metri
 for identifying similar
on�gurations. We then explain how to
onstru
t the DDG.4.1 Group Con�gurationsWe make two assumptions about the group motion to maximize the self-similarity ofgroups within a
luster (Figure 2). First, we assume that the group's
on�gurationdepends on the dire
tion of travel, but not how this dire
tion of travel is embeddedin the world (a typi
al assumption for motion graphs). Se
ond, we assume that allthe agents are evaluating the same set of rules, and hen
e
an ful�ll any role withinthe group. For
omparing two
on�gurations, CX and CY , this means that for everyagent in CX there must be some agent near its lo
ation in CY , but not ne
essarilythe same agent. 5

To pre
isely des
ribe a
on�guration, we de�ne a lo
al, moving
on�guration spa
e
oordinate system (Figure 2). We use this
oordinate system at various stages of the
onstru
tion algorithm to provide a
ommon referen
e frame between groups. Assumethe group
onsists of N agents, ea
h with world position x(i) and velo
ity ve
tor v(i).At any instant, the origin of
on�guration spa
e is the
enter of mass of the agentsand the x axis is aligned with the average agent velo
ity:O
(t) = 1N PNi=1 x(i)(t) X
(t) = 1N PNi=1 _x(i)(t)O
 and X
 are suÆ
ient for a 2D
oordinate system, while in 3D we require anotheraxis to de�ne roll about X
: Y
 = dup�X
 where up is an arbitrary world updire
tion. We refer to the transformation from world to
on�guration
oordinates asat time t as X
 w(t).The assumptions on group motion
ould be removed if the group behavior madethem invalid (for instan
e, there was a designated leader). Note that removing theidenti
al behaviors assumption makes
onstru
tion simpler be
ause we
ould use met-ri
s that measured the di�eren
e between individual agents, rather than the metri
we use that assumes no
orresponden
es between agents. Also observe that we
ouldhandle subsets of agents with the same behaviors by using our metri
 within ea
hsubset. Working in world rather than
on�guration
oordinates would require thatvelo
ity be
onsidered when
omparing agents.4.2 A Dis
rete Agent Comparison Metri
The metri
 used for
omparing two
on�gurations should give a small distan
e whenagents in one
on�guration
an be blended to the next without visual artifa
ts. Asdis
ussed above, we allow a rigid transformation to re-orient one
on�guration ontothe other, and we allow agents to swap identities during the blend. However, we musthave a one-to-one
orresponden
e between agents to enable those in the initial blend
on�guration to swit
h roles for the �nal
on�guration.Say we have N agents in the group. At the time, tA, that
on�guration CAappears, ea
h agent has a lo
ation, xi(tA) for 1 � i � N . Similarly, at time tB theagents are in
on�guration CB in positions xi(tB). During the blend from CA to CB,ea
h agent must move from position xi(tA) to position xMB A(i)(tB), where MB Ais a one-to-one mapping. MB A tells us whi
h slot in CB will be o

upied by ea
hagent in CA.Let XA B be a transformation intended to align CB with CA. Our metri
,E(tA; tB) is de�ned asE(tA; tB) = minMB A;XA B 1N NXi=1 �xi(tA)�XA BxMB A(i)(tB)�26

Update the

transformation

Find corresponding

index between A

and B
previouscurrent EE −

0
BA←χ

BA←χ

()EM AB ,←

()BAAB EM ←← χ,,

ABM ←

Node A, B

Figure 3: The pro
ess used to �nd a mat
hing between
on�gurations a and bWe solve the minimization problem using a
ombination of the iterated
losestpoints algorithm [5℄ and bipartite graph mat
hing (Figure 3(b)).� OptimizingMB A: We
onstru
t a bi-partite graph, with indexes i in one parti-tion and j in the other, with every vertex in one partition
onne
ted to every ver-tex in the other. The edges are labeled with the distan
e� (xi(tA)� XA Bxj(tB))2.We then run the Kuhn-Munkres [12℄ algorithm to �nd the maximal weight bi-partite mat
hing. Ea
h edge from a node i to node j provides MB A(i) = j.� OptimizingXA B: WithMB A set, we
an update XA B by applying standardpoint set registration te
hniques [5℄.The sequen
e of optimizingMB A and XA B is repeated until the distan
e
easesto
hange. The pro
ess must
onverge be
ause the sub-steps never in
rease the dis-tan
e, and the minimum distan
e is 0. A starting value for XA B is required. Weuse the transformation that aligns the
on�guration
oordinates (Se
tion 4.1).4.3 Constru
ting a Data-Driven GroupWith the method des
ribed in previous se
tion, we
an
onstru
t the graph with amethod similar to [11℄. First, we insert a set of
andidate
on�gurations into a longsequen
e of simulation at a
onstant frequen
y. We then set up a di�eren
e matrixwhose (i; j)th element is the value E(ti; tj). From this matrix a set of
on�guration7

nodes is extra
ted by lo
ating lo
al minima in the di�eren
e matrix. We take somenumber of the lowest lo
al minima as the
on�guration nodes. In our
ase we
hosea number of nodes proportional to the
lip length. On
e the
on�guration nodeshave been
hosen, the
lips joining them are formed into edges of the graph, and analgorithm is run to trim dead-ends (see Kovar et al. [11℄).5 Synthesis AlgorithmsThe pro
ess of synthesizing from a DDG is identi
al to that for human motion graphswith the ex
eption that we must tra
k agent
orresponden
es. A
umulative
orre-sponden
e, M
urrent(i) is maintained as synthesis progresses. The agent that startedas agent i uses agent M
urrent(i)'s state from the
urrently a
tive
lip. Initially,M
urrent(i) = i. At ea
h transition, M0
urrent(i) = MCC0(M
urrent(i)), where MCC0is the
orresponden
es stored for the transition.The synthesis pro
ess is independent of the method for
hoosing the sequen
e ofedges to be followed. In this se
tion we dis
uss two graph walk algorithms, ea
hdesigned to produ
e a parti
ular target motion: random walk and
onstraining thegroup to a region.5.1 Random WalkRandom synthesis is simply random graph walk on a DDGs. Ea
h time a transitionpoint is rea
hed, we randomly pi
k an outgoing edges from that node. While randomsynthesis produ
es reasonable group motion, it o�ers no
ontrol over the group.5.2 Region ConstrainedMost virtual worlds are �nite in extent, and we would like to
onstrain the
o
k tostay within the world. With traditional
o
king simulations this would be done eitherwith
ollision avoidan
e for the virtual walls of the world, or with other spe
i�
 rules.The region
onstraint restri
ts the random walk on the graph to edges that remainwithin the region. At ea
h transition node during synthesis, we
hoose an outgoingnode at random, then
ondu
t depth �rst sear
h to �nd the �rst future path thatremains inside the region (we test the
enter of mass of the group for in
lusion in theregion). If no su
h path
an be found, we
hoose another
lip and try again.
8

Des
r. Trans. Mem. Time20-2D 7200 50 220020-3D 7200 50 2400Table 1: Data for the DDGs we have
onstru
ted. We give a des
riptive label, thenumber of transitions, the total memory
onsumption of the graph in MB, and thetotal time to
onstru
t the graph in se
onds.6 ResultsWe have built two demonstrations with data summarized in Table 1. Ea
h
o
kuses the same rule parameters but one in 2D and the other in 3D. Memory usage isdetermined by the total animation frames stored, and total number of agents involved.It is linear with the number of agents in the group. We
hoose a �xed portion of lo
alminima in the di�eren
e matrix for
on�guration nodes, so the number of transitionedges is roughly �xed (the pro
ess to trim dead-ends may redu
e the number of nodesand edges). Figure 4 is the snap shot of the
onstrained
o
k inside a �xed region.Random synthesis took about 7.5ms per virtual se
ond on a 2.4GHz P4. This
ompares to about 100ms for simulating the same group. The di�eren
e is pra
ti
allysigni�
ant: less than 0.1ms per frame is a reasonable pri
e to pay for se
ondary groupmotion that adds realism to a virtual environment; 10ms is not. The trade-o� is inmemory
onsumption, but for se
ondary motion appli
ations a small graph with few
on�gurations is likely to be a

eptable.The primary limitation of DDGs, as with any data-driven method, is that sit-uations not in the data
annot be reprodu
ed. In the
ontext of group animation,this problem is most apparent in environmental intera
tions. For instan
e, the group
annot split around an obsta
le unless a
lip with a similar sized obsta
le is presentin the pre-re
orded data. Similarly, individual agents
annot modify their motionin response to a lo
al environmental feature, su
h as another agent not part of thegroup.7 Con
lusionDDGs o�er eÆ
ient and
ontrollable motion for small to medium sized groups. Openproblems in
lude
reating graphs dire
tly from
aptured motion and further redu
-tions in run-time
ost. In parti
ular, for large groups the
ost of rendering startsto dominate the
ost of simulating. Using ideas from video textures [20℄ and
rowdimpostors [6℄, it should be possible to pre-render the motion to textures that are bill-9

Figure 4: Constraining a
o
k to a region. The traje
tory of the
o
k is shown bythe dark red line.boarded into a s
ene. The primary
hallenge to over
ome is view independen
e. Theresult would be
omputational
osts that do not depend on the number of agents.We found that pairs of very similar
on�gurations were rare in the input data,resulting a poorly
onne
ted graph with very long
lips. This is due to a la
k ofre
urring
on�gurations be
ause there is no su
h thing as a regular gait or restingpose for most groups, as there is in human motion. In addition, the
omplexity of thedistan
e metri

omputation is O(N3). We have extended our work to
reate motiongraphs using
onstrained simulation to build
lips between
on�guration nodes [13℄.With the help of new
o
k rules, we
an
onstru
t the
o
k to smoothly transformfrom one
on�guration to another while following a designed path.
10

A
knowledgmentsThis work was partly funded by NSF grant CCR-0204372, and equipment donationsfrom Intel.Referen
es[1℄ AI.implant, 2003. http://www.ai-implant.
om.[2℄ Matt Anderson, Eri
 M
Daniel, and Stephen Chenney. Constrained animationof
o
ks. In Pro
eedings of the 2003 ACM SIGGRAPH/Eurographi
s Symposiumon Computer Animation, pages 286{197, 2003.[3℄ Okan Arikan and D. A. Forsyth. Intera
tive motion generation from examples.ACM Transa
tions on Graphi
s, 21(3):483{490, 2002.[4℄ O. Bur
han Bayazit, Jyh-Ming Lien, and Nan
y M. Amato. Better
o
kingbehaviors in
omplex environments using global roadmaps. In Pro
eedings of theWorkshop on Algorithmi
 Foundations of Roboti
s (WAFR'02), 2002.[5℄ Paul Besl and Neil M
Kay. A method for registration of 3-d shapes. IEEE PatternAnalysis and Ma
hine Intelligen
e, 14(2):239{256, Feburary/Mar
h 1992.[6℄ Simon Dobbyn, John Hamill, Keith O'Conor, and Carol O'Sullivan. Geopostors:A real-time geometry/impostor
rowd rendering system. In Pro
eedings of theACM SIGGRAPH 2005 Symposium on Intera
tive 3D Graphi
s and Games,pages 95{102, 2005.[7℄ Jody Dun
an. Ring masters. Cinefex, (89):64{131, April 2002.[8℄ Mi
hael Glei
her, Hyun Joon Shin, Lu
as Kovar, and Andrew Jepsen. Snap-together motion: assembling run-time animations. In Pro
eedings of the 2003symposium on Intera
tive 3D graphi
s, pages 181{188, 2003.[9℄ Jared Go, Thu
 Vu, and James J. Ku�ner. Autonomous behaviors for inter-a
tive vehi
le animations. In SCA '04: Pro
eedings of the 2004 ACM SIG-GRAPH/Eurographi
s symposium on Computer animation, pages 9{18, 2004.[10℄ Doug L. James and Kayvon Fatahalian. Pre
omputing intera
tive dynami
 de-formable s
enes. ACM Trans. Graph., 22(3), 2003.[11℄ Lu
as Kovar, Mi
hael Glei
her, and Fr�ed�eri
 Pighin. Motion graphs. In SIG-GRAPH 2002, pages 473{482, 2002.11

[12℄ H. W. Kuhn. The hungarian method for the assignment problem. Naval Res.Logist. Quart., 2:83{97, 1955.[13℄ Yu-Chi Lai, Stephen Chenney, and Shaohua Fan. Group motion graphs. In ACMSIGGRAPH/Eurographi
s Symposium on Computer Animation, pages 281{290,2005.[14℄ Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessi
a K. Hodgins, and Nan
y S.Pollard. Intera
tive
ontrol of avatars animated with human motion data. InPro
eedings of the 29th annual
onferen
e on Computer graphi
s and intera
tivete
hniques, pages 491{500, 2002.[15℄ Alberto Mena
he. Understanding Motion Capture for Computer Animation andComputer Games. Morgan Kaufman, 1999.[16℄ Frank Perbet and Mari
-Paule Cani. Animating prairies in real-time. In Pro-
eedings of the 2001 symposium on Intera
tive 3D graphi
s, pages 103{110, 2001.[17℄ P. S. A. Reitsma and N. S. Pollard. Evaluating motion graphs for
hara
ternavigation. In SCA '04: Pro
eedings of the 2004 ACM SIGGRAPH/Eurographi
ssymposium on Computer animation, pages 89{98, 2004.[18℄ Craig W. Reynolds. Flo
ks, herds, and s
hools: A distributed behavior model.In Computer Graphi
s: SIGGRAPH '87 Conferen
e Pro
eedings, volume 21(4),pages 25{34, 1987.[19℄ Craig W. Reynolds. Steering behaviors for autonomous
hara
ters. In 1999Game Developers Conferen
e, pages 763{782, 1999.[20℄ Arno S
h�odl, Ri
hard Szeliski, David H. Salesin, and Irfan Essa. Video tex-tures. In Pro
eedings of the 27th annual
onferen
e on Computer graphi
s andintera
tive te
hniques, pages 489{498, 2000.[21℄ Qinxin Yu and Demetri Terzopoulos. Syntheti
 motion
apture: Implementingan intera
tive virtual marine environment. The Visual Computer, pages 377{394,1999.
12

