Data-Driven Group Animation

Yu-Chi Lai, Stephen Chenney, Shaohua Fan

University of Wisconsin, Madison

September 28, 2005

Abstract

We introduce Data-Driven Groups (DDGs), an animation technique for
groups of discrete agents, such as flocks, herds, or small crowds. DDGs create
motion by piecing together a sequence of recorded motion clips. The graph
structure identifies clips that can be appended while maintaining continuity
in the motion. We discuss a method for building DDGs for discrete agents
and algorithms for extracting motion from the graph to meet environment con-
straints. The resulting animations show realistic motion at significantly reduced
computational cost compared to simulation.

1 Introduction

Rule-based agent techniques are commonly used to animate groups of virtual crea-
tures in both real-time environments and off-line production. Examples range from
the flocking models of Reynolds [18], to commercial systems like MASSIVE [7] and
Alimplant [1], to any number of crowd animation systems. Agent models must be
highly efficient for applications in computer games and interactive systems, particu-
larly when used for secondary animation to add realism to an environment. Further-
more, agent models should offer two forms of control: over what the group looks like
and what the group does. For instance, an appearance goal might be resemblance
to a particular animal herd, while an action goal might be following a particular
path through the environment. In this paper we present DDGs, a data-driven agent
animation technique that addresses efficiency and both forms of control.
Data-driven methods record motion in a pre-production stage, and then play
back the data to drive run-time motion (the most common example is human motion
capture). DDGs record the motion of an agent group as a whole, including the
configuration of agents within the group. As with human motion graphs [11, 3, 14],

the data clips are stored in a graph structure that encodes which clips can be appended
while retaining realistic, continuous motion. We describe techniques for extracting
clips from agent-based simulations that can be pieced together in a graph structure.
We demonstrate uses of the resulting graph, including random motion restricted to a
region.

There are three principle advantages to DDGs: efficiency, style control, and con-
straint satisfaction. The run-time CPU cost of DDGs is essentially the time taken
to set animation state from the clips. In comparison, a rule-based group simulation
requires some mechanism for tracking relationships between agents and evaluating
rules, which leads to super-linear cost with large constants. Motion clips encode a
particular style, or an implicit set of constraints on the appearance of the motion.
This style is maintained by the playback scheme, so a designer can be certain that
motion generated from their clips will retain their style. Finally, once a graph of clips
has been built it can be searched with standard techniques to produce constrained
trajectories. This is cheaper than searching within a continuous simulation state
space.

This report describes a method for building motion graphs for groups of discrete
agents. The primary component is a solution to the problem of finding good transition
positions to connect the clips seamlessly.

DDGs are suitable for applications where the group moves through the environ-
ment as a cohesive unit, and individual agents do not interact with objects external
to the group. We thus see the primary application as simulations that add realistic
but previously expensive elements to large virtual environments. For example, out-
door game environments could cheaply add a roaming herd or circling flock, without
incurring the cost of a large-scale agent simulation.

2 Overview

A motion graph is a directed graph in which edges correspond to pre-recorded anima-
tion clips, and nodes represent places where clips can be joined. Animation generated
from the graph can be thought of as a point that follows an edge and makes a choice
at transitions as to which edge to follow next. Construction of a DDG requires
identifying transition points and, possibly, modifying the clips to achieve seamless
transitions.

All of the graphs in this paper are based on the flocking model introduced by
Reynolds [18]. When simulating to generate motion, each agent at each time-step
adjusts its trajectory by evaluating rules based on its own state and that of its neigh-
bors. The output state of the system, S(t), is the position and velocity of each
agent at each timestep, and it is this that we store in group motion clips. At a high

X A B A B Y
Input Frames Q >© >© >© >O >O
AB, B-A, A-B,
A-B,
Data Driven Group A A-B B
1
B-A,

Figure 1: An input animation with two configurations, A and B, that each appear
twice in the sequence, and the motion graph that results.

level, it could be applied to other group animation systems, even motion-captured
groups. However, effective DDGs require group configurations that naturally repeat
themselves often or the ability to force such repetition, properties that may not be
available in all group models.

A good motion graph has many options for transitions from one clip to another.
This increases variety in the resulting motion. Equally important, the clips should
sample the space of possible motions well [17] so that control algorithms have the
flexibility to meet a wide range of goals. The clips should be short to enable frequent
control choices, but not so short that the frequent transitions create artifacts. Short
clips, well distributed over the range of motion, also save memory because variety can
be obtained by rich combinations of clips, rather than individually complex clips.

DDGs are constructed by finding common configurations in an input animation
sequence and using them directly as transition nodes. This is a direct application of
motion graph construction for human motion (see Section 3). The primary problem
to be solved is creating a comparison metric between group configurations, which we
address in Section 4.

A variety of graph search algorithms can be applied to motion graphs to synthesize
new motion with particular properties, as we describe in Section 6. We demonstrate
random walk on the graph, which produces unconstrained motion that is very similar
in style to the input motion. When used for secondary motion, it may be desirable
to keep the group within the extents of the world. Hence, we describe a random walk
with look-ahead that restricts transitions to keep the group within a region.

3 Related Work

Motion capture [15] is the prominent application of data-driven animation. The
formalism of connecting clips into a graph structure was independently developed by
Arikan and Forsyth [3], Lee et al. [14], and Kovar et al. [11]. Each group differed
in how they matched frames and generated motion from the graph, but all found
matches between poses in different frames and inserted transitions into the graph at
these points. To improve the responsiveness and predictability of motion synthesis,
Gleicher et al. [8], constructed graphs with only a few transition nodes but many
links; in an interactive application any motion is reachable from any other in only a
very short period of time.

Other applications of data-driven synthesis for animation range from synthetic
motion capture of fish body motion [21], to capturing the response of grass to a
wind field [16]. In the former case, the state-space was the pose of the fish, and
parameters for a periodic motion model were extracted from the simulation to speed
up the run-time simulation. In the latter case, the bending of grass for varying wind
speeds was pre-computed. Data-driven techniques have also been used to model the
impulse response of dynamic systems such as cloth and plant models [10], however
the size of the state space severely limited the possible impulses that could be applied.
Notably, this method also pre-computed rendering parameters to provide interactive
global illumination. None of these prior systems deal with the coordinated motion of
groups.

DDGs provide a means of controlling the trajectory of a group as a whole. Pre-
vious techniques for guiding flocks include Reynolds’ steering behaviors [19] and the
roadmap techniques of Bayazit et al. [4]. While these techniques are sufficient for
guiding a flock along some general path, they cannot guarantee the correct outcome
because they rely on rules that could be superseded by other rules. The degree of
control we offer encompasses these previous methods and adds additional tools. An-
derson et al. [2] describe an algorithm for global control of a flock that can meet
hard constraints, but the method is not suitable for on-line control. DDGs simplify
constrained animation by reducing the problem to one over a discrete search space
(walks on the graph). A similar approach was taken by Go et al. [9] for controlling
single vehicles, but they did not work with an explicit graph structure.

4 Data-Driven Groups

A clip of motion is defined as a sequence of regular sampling vectors represented all
agents’ positions and velocities. A motion graph is a directed graph where all edges
correspond to clips of motion. Vertices in the graph, or nodes, serve as choice points

(©

[

(a) (b) »
=

Figure 2: Configurations (a) and (b) are similar, because agents are arranged the
same way with respect to the average velocity, despite that velocity being different
in world coordinates and despite some agents switching locations. Group (c) is not
similar because the arrangement is different with respect to the group’s velocity,
despite being the same as (a) in world coordinates. Also shown is the origin and
principle axis of the configuration space coordinate system attached to each group.

connecting these clips, i.e., each clip corresponding to an outgoing edge is potentially
the successor to any incoming edge’s clip. We use the term node configuration to
refer to the configuration of the group at a graph node. For a node to have multiple
outgoing edges, there must be multiple clips that can follow the clip(s) leading into
the node.

Our strategy for constructing a graph is to search for node configurations in the
input data. Good configurations for nodes are those that recur in the input (Fig-
ure 1): the clips preceding each appearance of the node configuration in the input are
incoming edges in the graph, and succeeding clips are output edges. The instances of
a particular node configuration do not need to be exactly identical — simple blending
techniques can reliably generate a transition if two configurations are “close” to each
other.

The remainder of this section is divided into two parts. First, we describe our
comparison metric for identifying similar configurations. We then explain how to
construct the DDG.

4.1 Group Configurations

We make two assumptions about the group motion to maximize the self-similarity of
groups within a cluster (Figure 2). First, we assume that the group’s configuration
depends on the direction of travel, but not how this direction of travel is embedded
in the world (a typical assumption for motion graphs). Second, we assume that all
the agents are evaluating the same set of rules, and hence can fulfill any role within
the group. For comparing two configurations, C'x and Cy, this means that for every
agent in Cx there must be some agent near its location in Cy-, but not necessarily
the same agent.

To precisely describe a configuration, we define a local, moving configuration space
coordinate system (Figure 2). We use this coordinate system at various stages of the
construction algorithm to provide a common reference frame between groups. Assume
the group consists of N agents, each with world position x(*) and velocity vector v(?.
At any instant, the origin of configuration space is the center of mass of the agents
and the x axis is aligned with the average agent velocity:

O.(t) = x n, x(1) Xeolt) = 5 05, x0(1)
O, and X, are sufficient for a 2D coordinate system, while in 3D we require another
axis to define roll about X.: Y, = up x X, where up is an arbitrary world up
direction. We refer to the transformation from world to configuration coordinates as
at time ¢t as Xo ().

The assumptions on group motion could be removed if the group behavior made
them invalid (for instance, there was a designated leader). Note that removing the
identical behaviors assumption makes construction simpler because we could use met-
rics that measured the difference between individual agents, rather than the metric
we use that assumes no correspondences between agents. Also observe that we could
handle subsets of agents with the same behaviors by using our metric within each
subset. Working in world rather than configuration coordinates would require that
velocity be considered when comparing agents.

4.2 A Discrete Agent Comparison Metric

The metric used for comparing two configurations should give a small distance when
agents in one configuration can be blended to the next without visual artifacts. As
discussed above, we allow a rigid transformation to re-orient one configuration onto
the other, and we allow agents to swap identities during the blend. However, we must
have a one-to-one correspondence between agents to enable those in the initial blend
configuration to switch roles for the final configuration.

Say we have N agents in the group. At the time, ?4, that configuration Cy
appears, each agent has a location, x;(t4) for 1 < i < N. Similarly, at time tp the
agents are in configuration Cg in positions x;(tg). During the blend from C4 to Cg,
each agent must move from position x;(t4) to position xuq,,_) (ts), where Mp_ 4
is a one-to-one mapping. Mg, 4 tells us which slot in C'gz will be occupied by each
agent in C4.

Let X4._p be a transformation intended to align Cp with C4. Our metric,
E(ta,tg) is defined as

N
) 1 2
E(ta,tp) = min g (xi(ta) = XacBXnmp 4 (ts))

MBea,Xa«B i=1

‘ Update the
‘ transformation

A

XA»B

A 4

Find corresponding
Node A, B index between A

and B

(M B-AvaXA-B)

Figure 3: The process used to find a matching between configurations a and b

We solve the minimization problem using a combination of the iterated closest
points algorithm [5] and bipartite graph matching (Figure 3(b)).

e Optimizing M, 4: We construct a bi-partite graph, with indexes 7 in one parti-
tion and j in the other, with every vertex in one partition connected to every ver-
tex in the other. The edges are labeled with the distance — (x;(t4) — Xanx;(t5))°.
We then run the Kuhn-Munkres [12] algorithm to find the maximal weight bi-
partite matching. Each edge from a node i to node j provides Mg, 4(i) = j.

e Optimizing X4 g: With M p._ 4 set, we can update X4 g by applying standard
point set registration techniques [5].

The sequence of optimizing Mg, 4 and X4 p is repeated until the distance ceases
to change. The process must converge because the sub-steps never increase the dis-
tance, and the minimum distance is 0. A starting value for X, g is required. We
use the transformation that aligns the configuration coordinates (Section 4.1).

4.3 Constructing a Data-Driven Group

With the method described in previous section, we can construct the graph with a
method similar to [11]. First, we insert a set of candidate configurations into a long
sequence of simulation at a constant frequency. We then set up a difference matrix
whose (7, j)th element is the value E(t;,;). From this matrix a set of configuration

nodes is extracted by locating local minima in the difference matrix. We take some
number of the lowest local minima as the configuration nodes. In our case we chose
a number of nodes proportional to the clip length. Once the configuration nodes
have been chosen, the clips joining them are formed into edges of the graph, and an
algorithm is run to trim dead-ends (see Kovar et al. [11]).

5 Synthesis Algorithms

The process of synthesizing from a DDG is identical to that for human motion graphs
with the exception that we must track agent correspondences. A cumulative corre-
spondence, M .y rens(7) is maintained as synthesis progresses. The agent that started
as agent i uses agent M yreni(7)’s state from the currently active clip. Initially,

Murrent(1) = 1. At each transition, ML, .. .(i) = Mco (Meurrent(i)), where Moo
is the correspondences stored for the transition.

The synthesis process is independent of the method for choosing the sequence of
edges to be followed. In this section we discuss two graph walk algorithms, each
designed to produce a particular target motion: random walk and constraining the

group to a region.

5.1 Random Walk

Random synthesis is simply random graph walk on a DDGs. Each time a transition
point is reached, we randomly pick an outgoing edges from that node. While random
synthesis produces reasonable group motion, it offers no control over the group.

5.2 Region Constrained

Most virtual worlds are finite in extent, and we would like to constrain the flock to
stay within the world. With traditional flocking simulations this would be done either
with collision avoidance for the virtual walls of the world, or with other specific rules.
The region constraint restricts the random walk on the graph to edges that remain
within the region. At each transition node during synthesis, we choose an outgoing
node at random, then conduct depth first search to find the first future path that
remains inside the region (we test the center of mass of the group for inclusion in the
region). If no such path can be found, we choose another clip and try again.

Descr. Trans. Mem. Time
20-2D 7200 50 2200
20-3D 7200 50 2400

Table 1: Data for the DDGs we have constructed. We give a descriptive label, the
number of transitions, the total memory consumption of the graph in MB, and the
total time to construct the graph in seconds.

6 Results

We have built two demonstrations with data summarized in Table 1. Each flock
uses the same rule parameters but one in 2D and the other in 3D. Memory usage is
determined by the total animation frames stored, and total number of agents involved.
It is linear with the number of agents in the group. We choose a fixed portion of local
minima in the difference matrix for configuration nodes, so the number of transition
edges is roughly fixed (the process to trim dead-ends may reduce the number of nodes
and edges). Figure 4 is the snap shot of the constrained flock inside a fixed region.

Random synthesis took about 7.5ms per virtual second on a 2.4GHz P4. This
compares to about 100ms for simulating the same group. The difference is practically
significant: less than 0.1ms per frame is a reasonable price to pay for secondary group
motion that adds realism to a virtual environment; 10ms is not. The trade-off is in
memory consumption, but for secondary motion applications a small graph with few
configurations is likely to be acceptable.

The primary limitation of DDGs, as with any data-driven method, is that sit-
uations not in the data cannot be reproduced. In the context of group animation,
this problem is most apparent in environmental interactions. For instance, the group
cannot split around an obstacle unless a clip with a similar sized obstacle is present
in the pre-recorded data. Similarly, individual agents cannot modify their motion
in response to a local environmental feature, such as another agent not part of the

group.

7 Conclusion

DDGs offer efficient and controllable motion for small to medium sized groups. Open
problems include creating graphs directly from captured motion and further reduc-
tions in run-time cost. In particular, for large groups the cost of rendering starts
to dominate the cost of simulating. Using ideas from video textures [20] and crowd
impostors [6], it should be possible to pre-render the motion to textures that are bill-

Figure 4: Constraining a flock to a region. The trajectory of the flock is shown by
the dark red line.

boarded into a scene. The primary challenge to overcome is view independence. The
result would be computational costs that do not depend on the number of agents.

We found that pairs of very similar configurations were rare in the input data,
resulting a poorly connected graph with very long clips. This is due to a lack of
recurring configurations because there is no such thing as a regular gait or resting
pose for most groups, as there is in human motion. In addition, the complexity of the
distance metric computation is O(N?). We have extended our work to create motion
graphs using constrained simulation to build clips between configuration nodes [13].
With the help of new flock rules, we can construct the flock to smoothly transform
from one configuration to another while following a designed path.

10

Acknowledgments

This work was partly funded by NSF grant CCR-0204372, and equipment donations
from Intel.

References

1]
2]

[10]

[11]

ALimplant, 2003. http://www.ai-implant.com.

Matt Anderson, Eric McDaniel, and Stephen Chenney. Constrained animation
of flocks. In Proceedings of the 2003 ACM SIGGRAPH /Eurographics Symposium
on Computer Animation, pages 286 197, 2003.

Okan Arikan and D. A. Forsyth. Interactive motion generation from examples.
ACM Transactions on Graphics, 21(3):483-490, 2002.

O. Burchan Bayazit, Jyh-Ming Lien, and Nancy M. Amato. Better flocking
behaviors in complex environments using global roadmaps. In Proceedings of the
Workshop on Algorithmic Foundations of Robotics (WAFR’02), 2002.

Paul Besl and Neil McKay. A method for registration of 3-d shapes. IEEE Pattern
Analysis and Machine Intelligence, 14(2):239-256, Feburary /March 1992.

Simon Dobbyn, John Hamill, Keith O’Conor, and Carol O’Sullivan. Geopostors:
A real-time geometry/impostor crowd rendering system. In Proceedings of the
ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and Games,
pages 95-102, 2005.

Jody Duncan. Ring masters. Cinefer, (89):64-131, April 2002.

Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew Jepsen. Snap-
together motion: assembling run-time animations. In Proceedings of the 2003
symposium on Interactive 3D graphics, pages 181 188, 2003.

Jared Go, Thuc Vu, and James J. Kuffner. Autonomous behaviors for inter-
active vehicle animations. In SCA °04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 9 18, 2004.

Doug L. James and Kayvon Fatahalian. Precomputing interactive dynamic de-
formable scenes. ACM Trans. Graph., 22(3), 2003.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In SIG-
GRAPH 2002, pages 473-482, 2002.

11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. W. Kuhn. The hungarian method for the assignment problem. Nawval Res.
Logist. Quart., 2:83-97, 1955.

Yu-Chi Lai, Stephen Chenney, and Shaohua Fan. Group motion graphs. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 281-290,
2005.

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. Interactive control of avatars animated with human motion data. In
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 491 500, 2002.

Alberto Menache. Understanding Motion Capture for Computer Animation and
Computer Games. Morgan Kaufman, 1999.

Frank Perbet and Maric-Paule Cani. Animating prairies in real-time. In Pro-
ceedings of the 2001 symposium on Interactive 3D graphics, pages 103 110, 2001.

P. S. A. Reitsma and N. S. Pollard. Evaluating motion graphs for character
navigation. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH /Eurographics
symposium on Computer animation, pages 89 98, 2004.

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavior model.
In Computer Graphics: SIGGRAPH 87 Conference Proceedings, volume 21(4),
pages 25 34, 1987.

Craig W. Reynolds. Steering behaviors for autonomous characters. In 1999
Game Developers Conference, pages 763 782, 1999.

Arno Schodl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video tex-
tures. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 489 498, 2000.

Qinxin Yu and Demetri Terzopoulos. Synthetic motion capture: Implementing
an interactive virtual marine environment. The Visual Computer, pages 377 394,
1999.

12

