Break & Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike take longer.
- B. Not an admissible heuristic
Q 1.2: Which of the following are admissible heuristics?

(i) $h(s) = h^*(s)$

(ii) $h(s) = \max(2, h^*(s))$

(iii) $h(s) = \min(2, h^*(s))$

(iv) $h(s) = h^*(s) - 2$

(v) $h(s) = \sqrt{h^*(s)}$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)
Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \) No: \(h(s) \) might be too big
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \) No: \(h(s) \) might be negative
(v) \(h(s) = \sqrt{h^*(s)} \) No: if \(h^*(s) < 1 \) then \(h(s) \) is bigger

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2 (No: h_1 is a distance where each entry is at most 1, h_2 can be greater)
- C. Neither dominates the other
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is shown next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C