

CS540 Introduction to Artificial Intelligence **Convolutional Neural Networks (II)** University of Wisconsin-Madison

Spring 2022

Outline

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet

How to classify Cats vs. dogs?

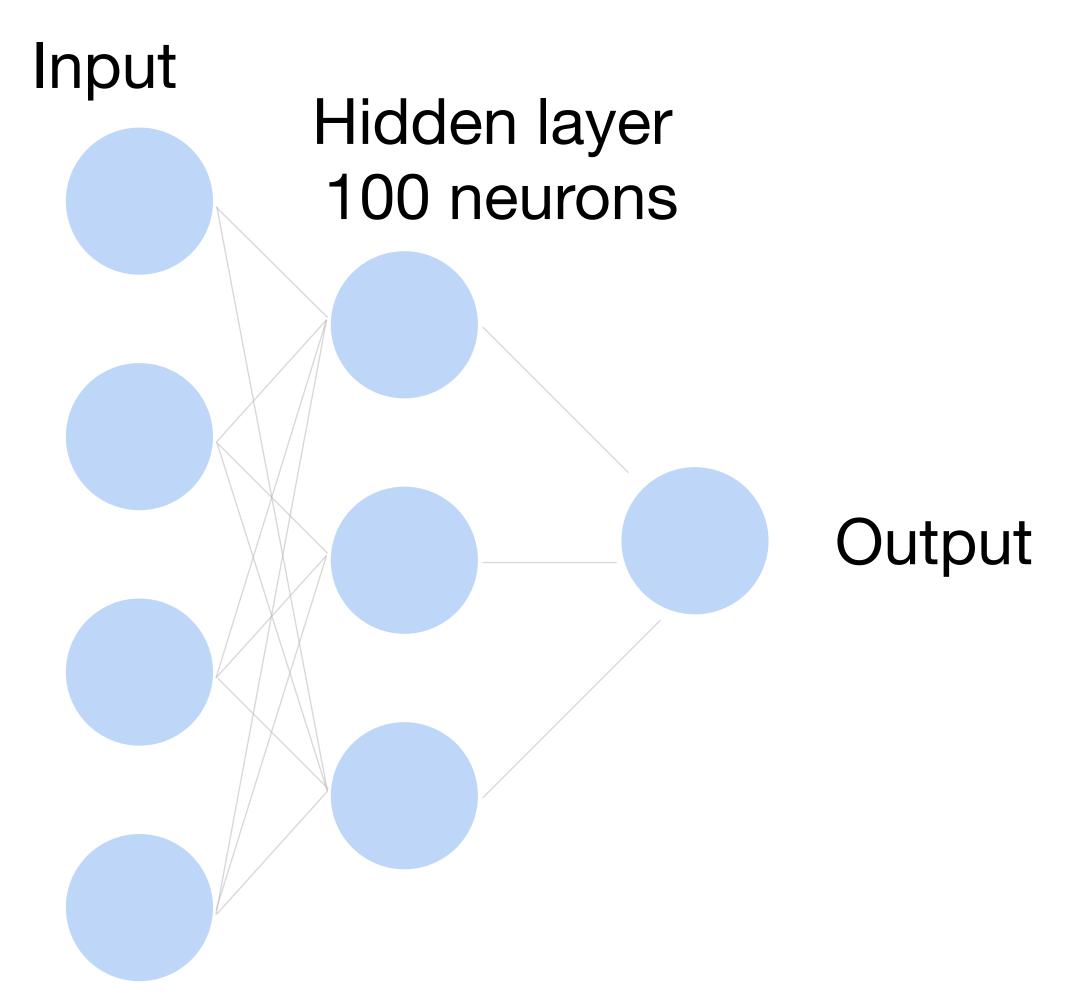
Dual 12102 wide-angle and

telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



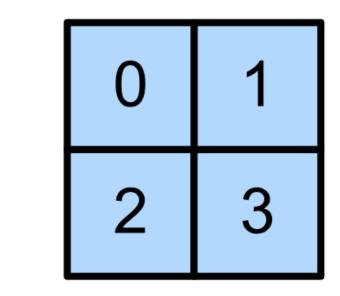
36M elements x 100 = **3.6B** parameters!

Review: 2-D Convolution

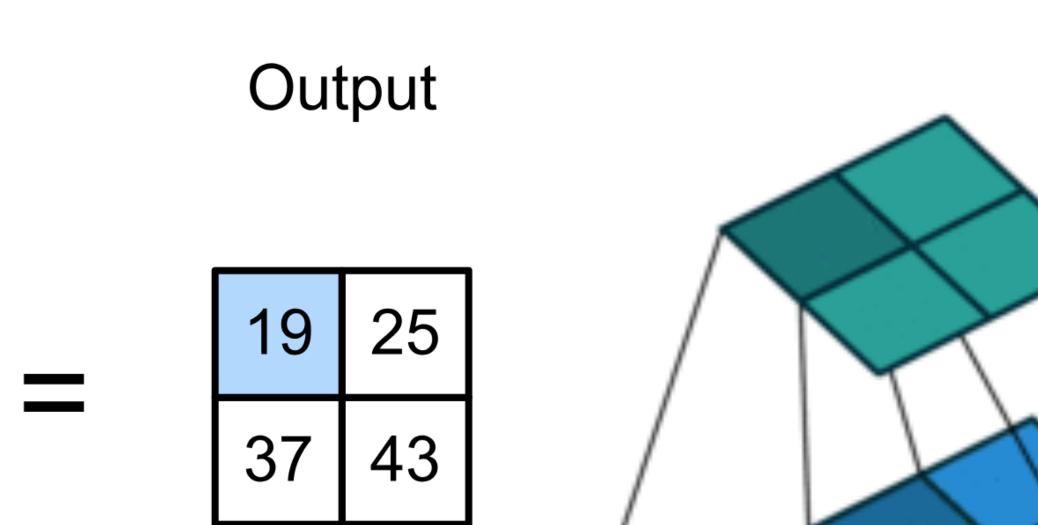
*

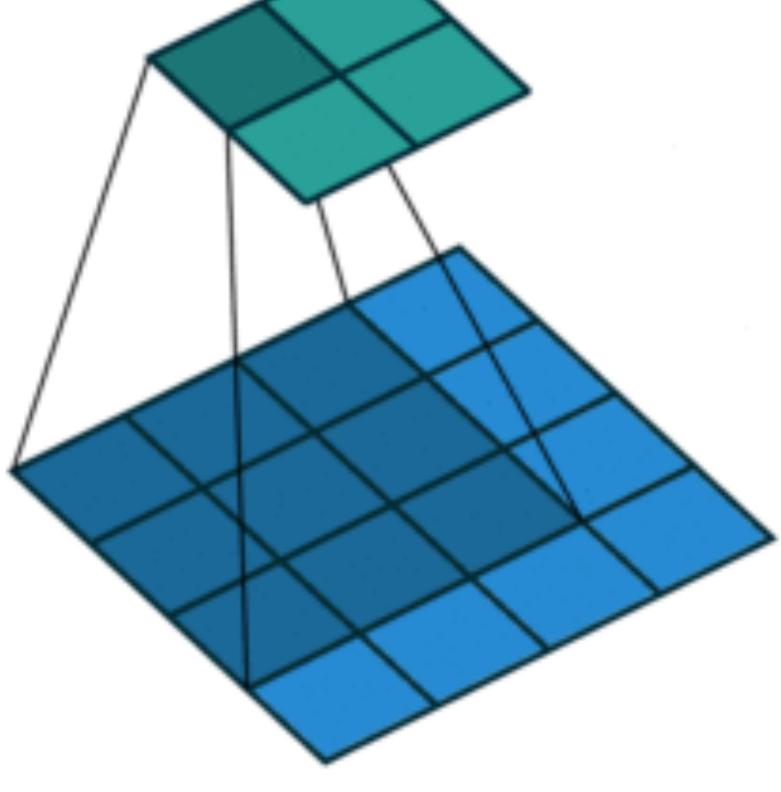
Kernel

0	1	2
3	4	5
6	7	8



 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

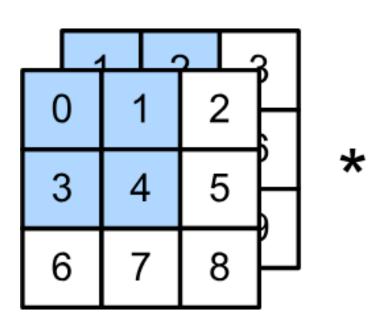




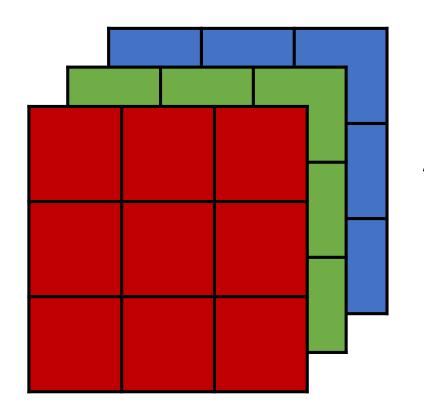
(vdumoulin@ Github)

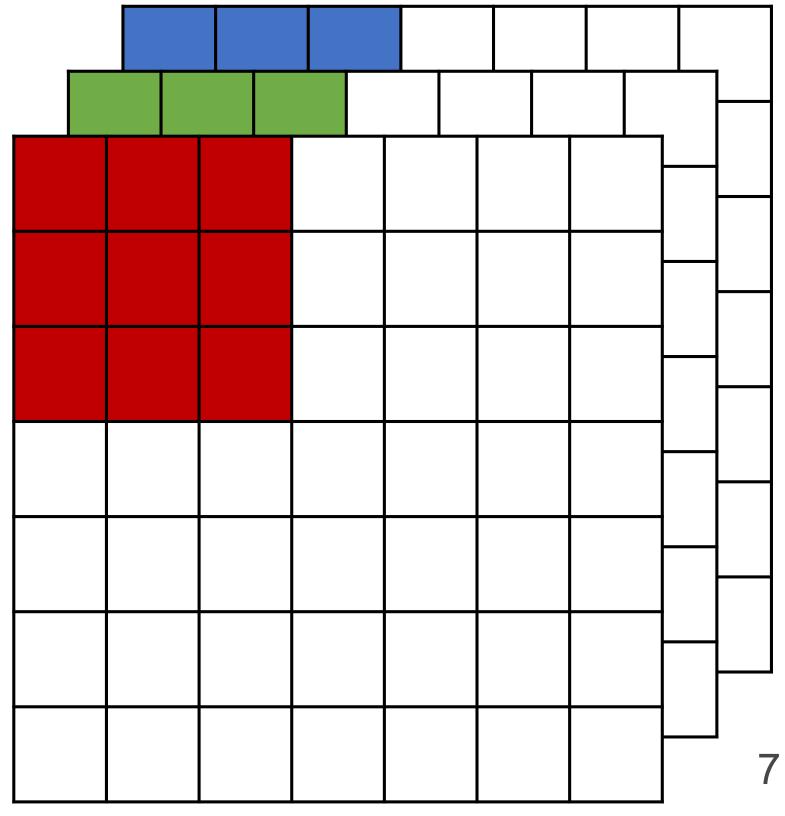
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

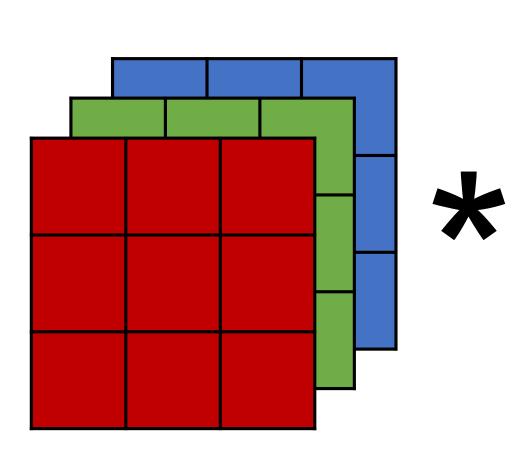


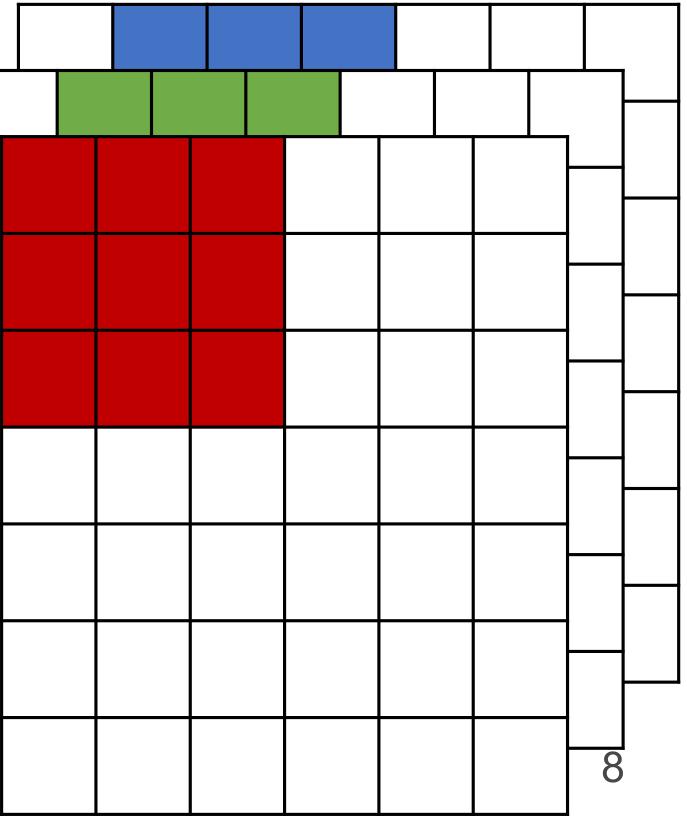
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels



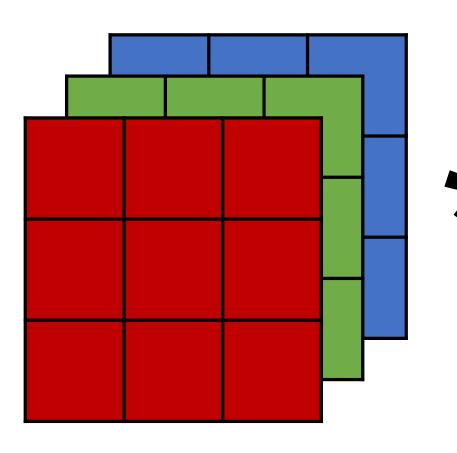


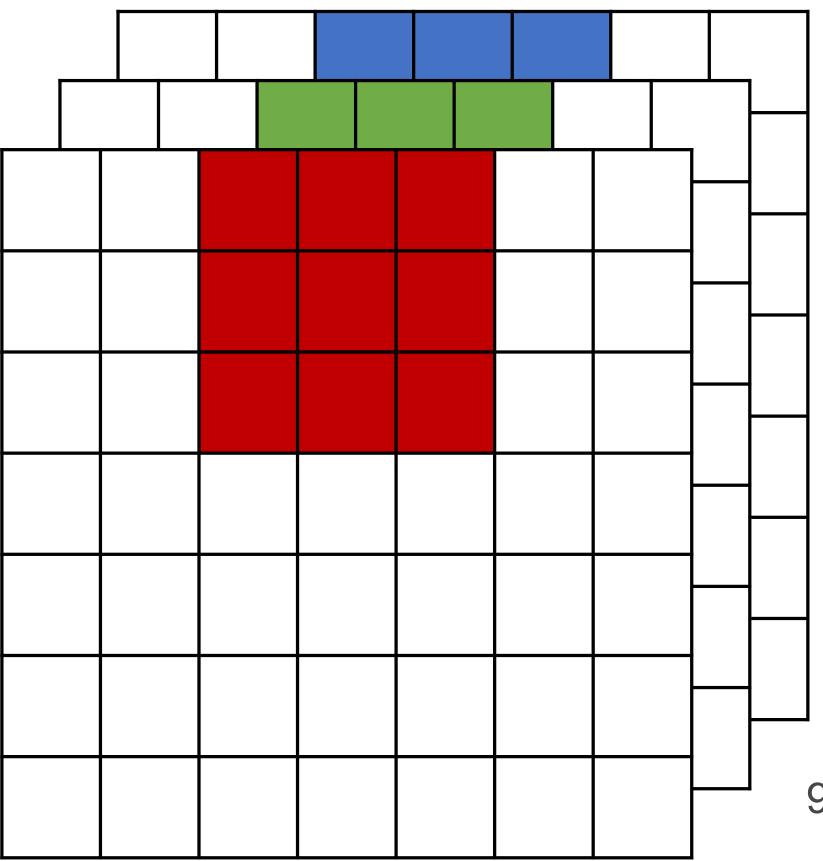
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels





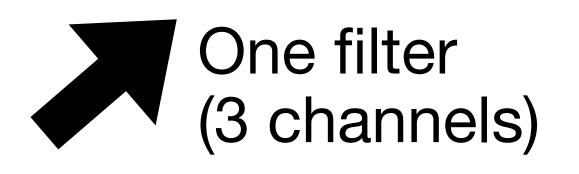
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels



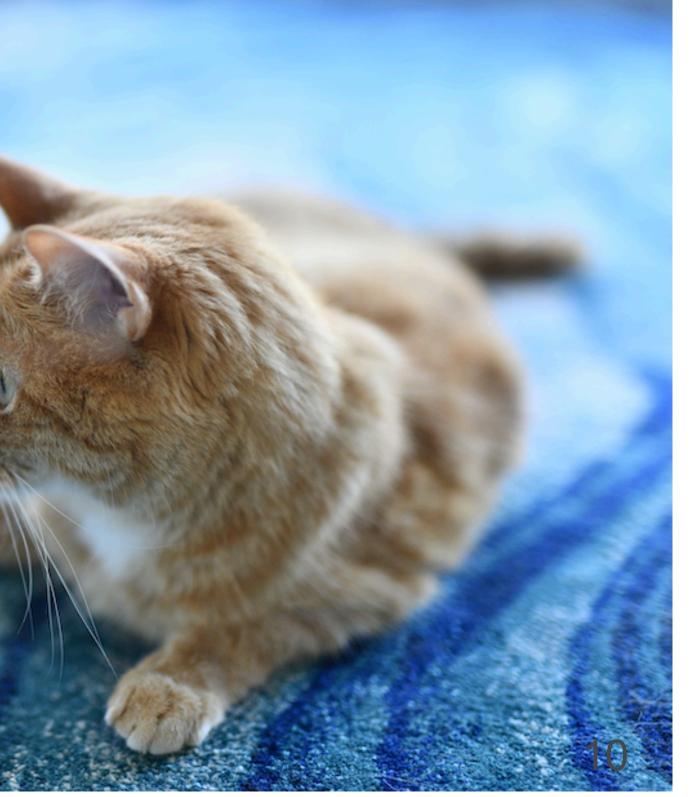


Multiple Input Channels

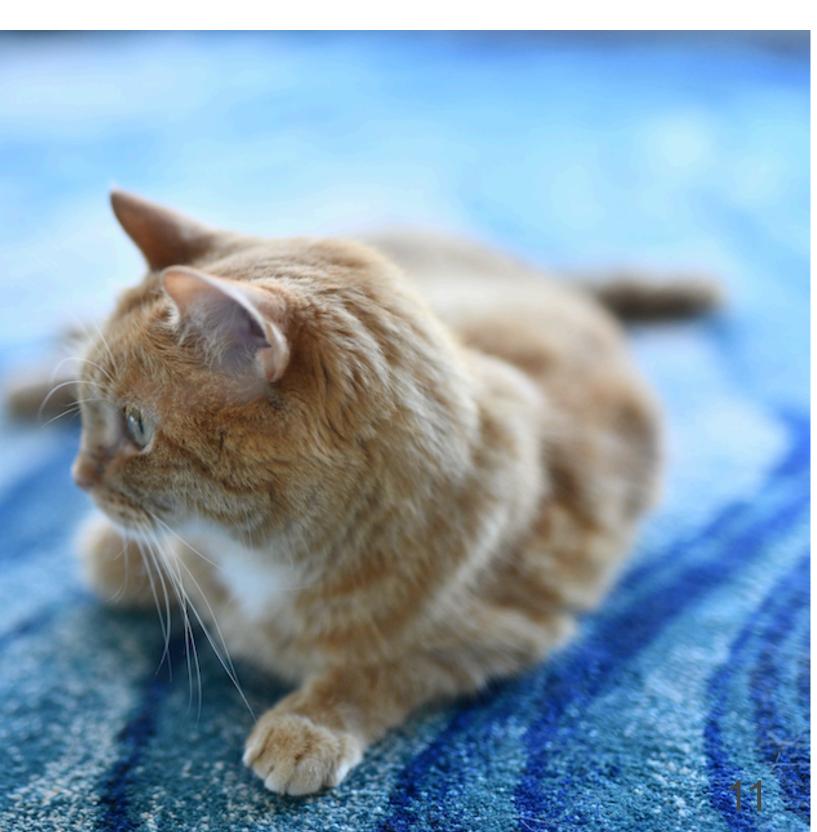
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- output channel (due to summation over channels)



Also call each 3D kernel a "filter", which produce only one

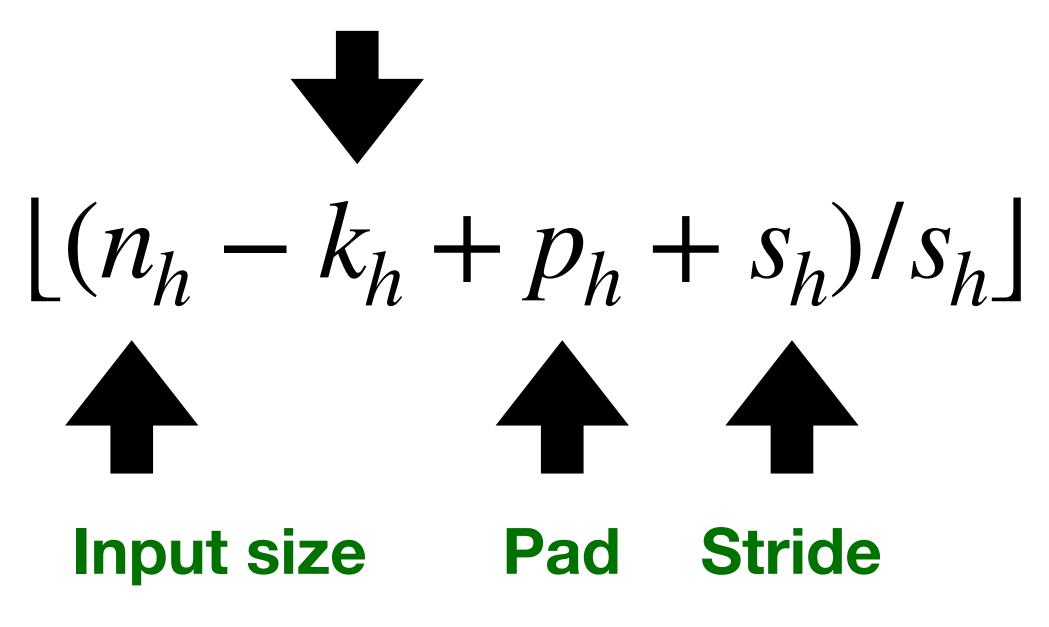


Multiple filters (in one layer) • Apply multiple filters on the input Each filter may learn different features about the input Each filter (3D kernel) produces one output channel



RGB (3 input channels)

Output shape



 $[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$

Consider a convolution layer with 16 filters. Each filter has a size of 11x11x3, a stride of 2x2. Given an input image of size 22x22x3, if we don't allow a filter to fall outside of the input, what is the output size?

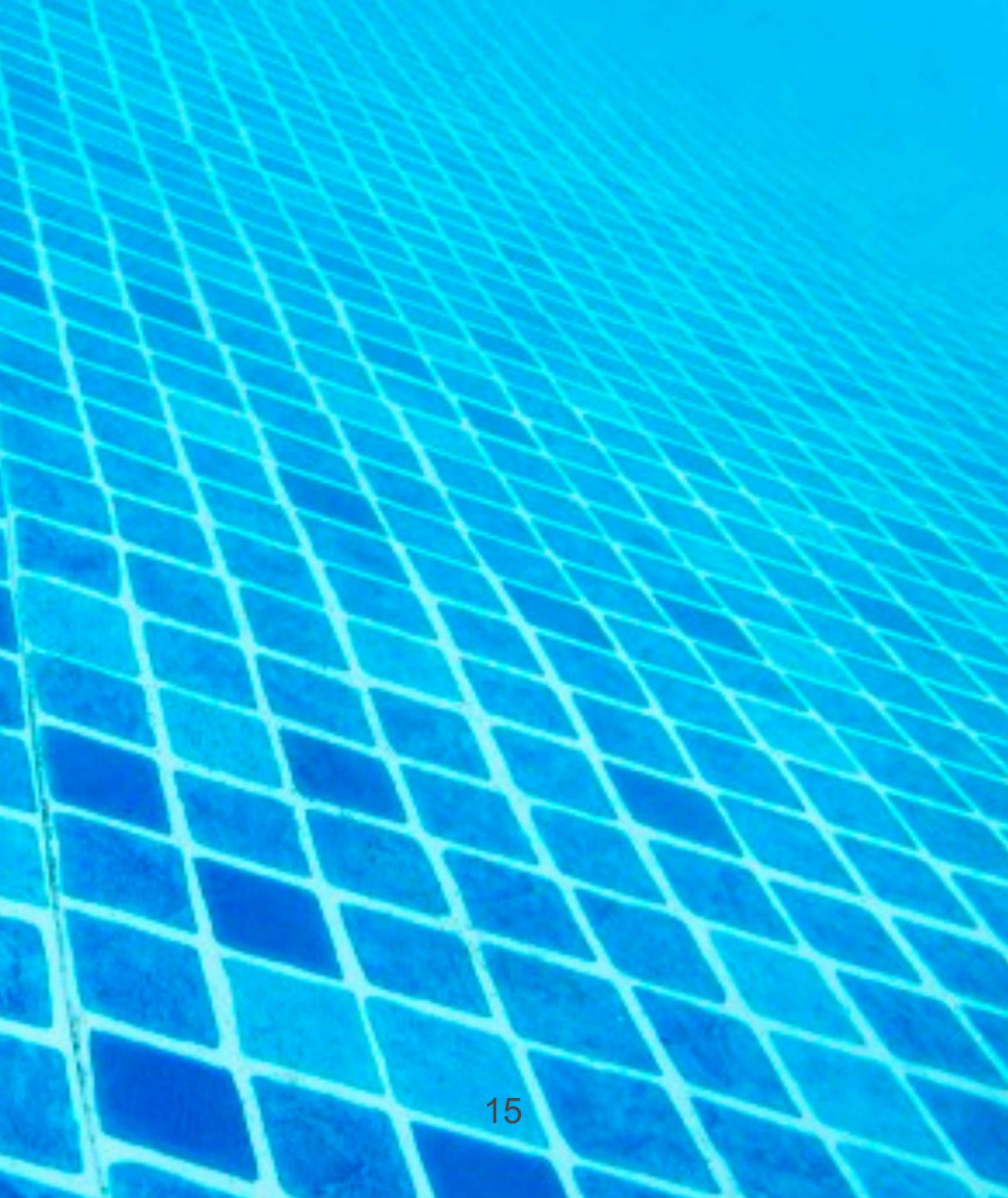
- 11x11x16
- 6x6x16
- 7x7x16
- 5x5x16

Consider a convolution layer with 16 filters. Each filter has a size of 11x11x3, a stride of 2x2. Given an input image of size 22x22x3, if we don't allow a filter to fall outside of the input, what is the output size?

- 11x11x16
- 6x6x16
- 7x7x16
- 5x5x16

 $\left\lfloor (n_h - k_h + p_h + s_h)/s_h \right\rfloor \times \left\lfloor (n_w - k_w + p_w + s_w)/s_w \right\rfloor$

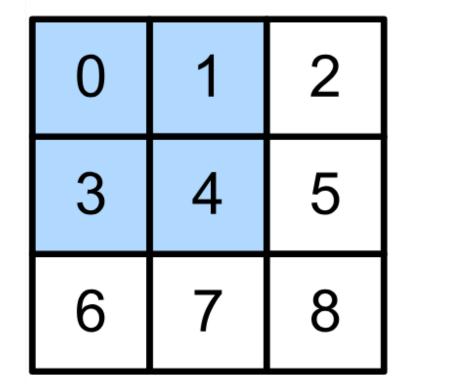
Pooling Layer



2-D Max Pooling

 Returns the maximal value in the sliding window

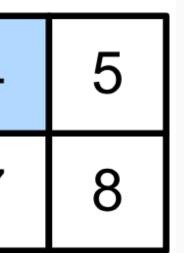
Input

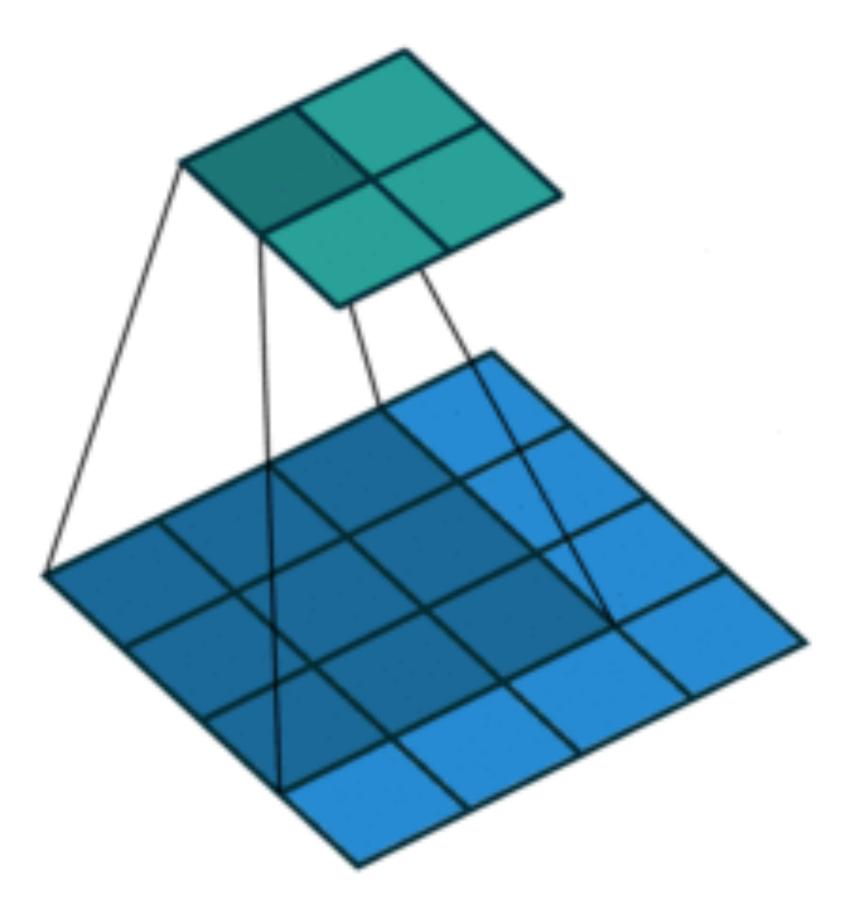


	4
	7

max(0,1,3,4) = 4

Output

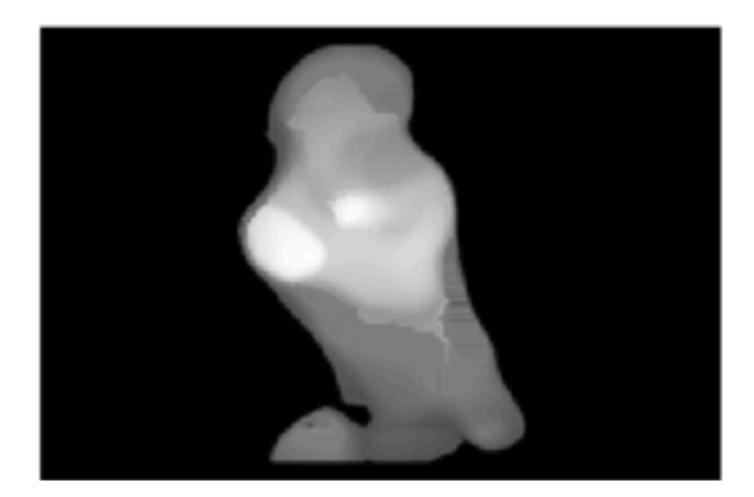




Average Pooling

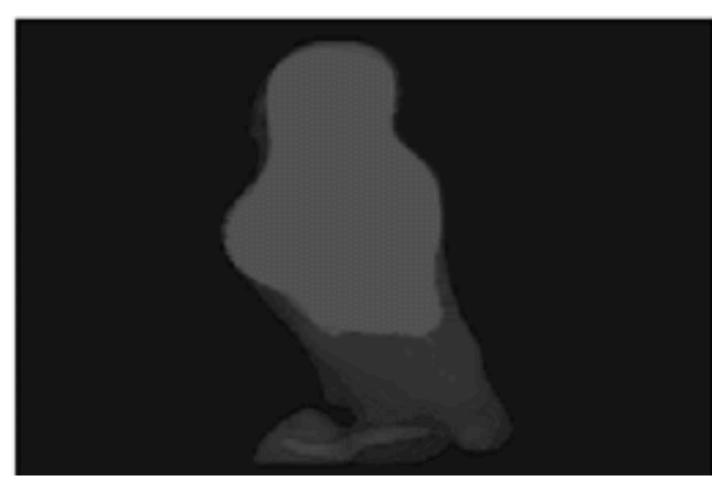
- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling



pattern signal in a window ax with mean in max pooling gth in a window

Average pooling



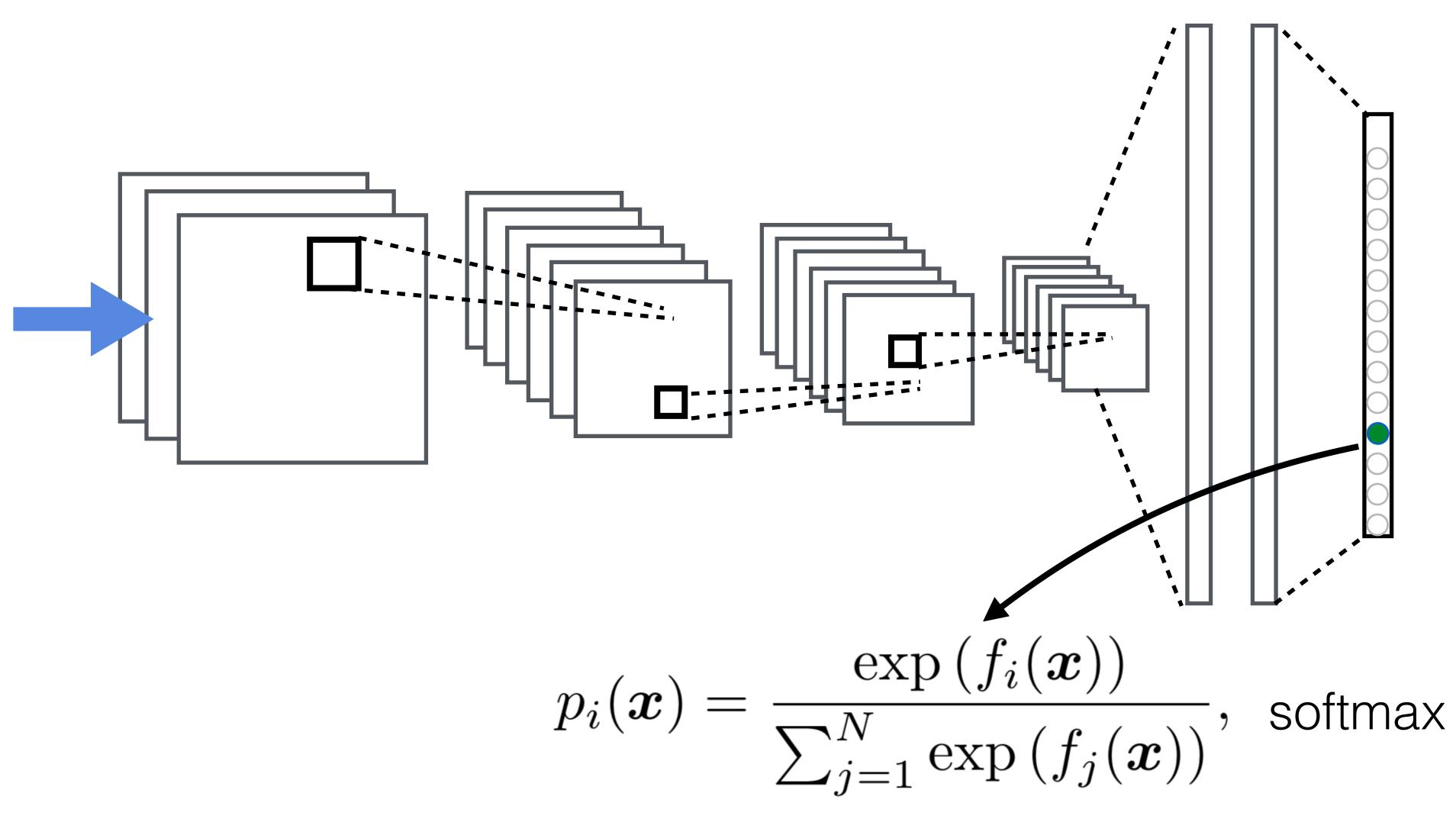
How to train a neural network? **Loss function:** $\frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_{i}, y_{i})$ Input Hidden layer **Per-sample loss:** 100 neurons $\ell(\mathbf{x}, y) = \sum_{i=1}^{n} -y_i \log p_i$ *j*=1 Also known as cross-entropy loss

or softmax loss

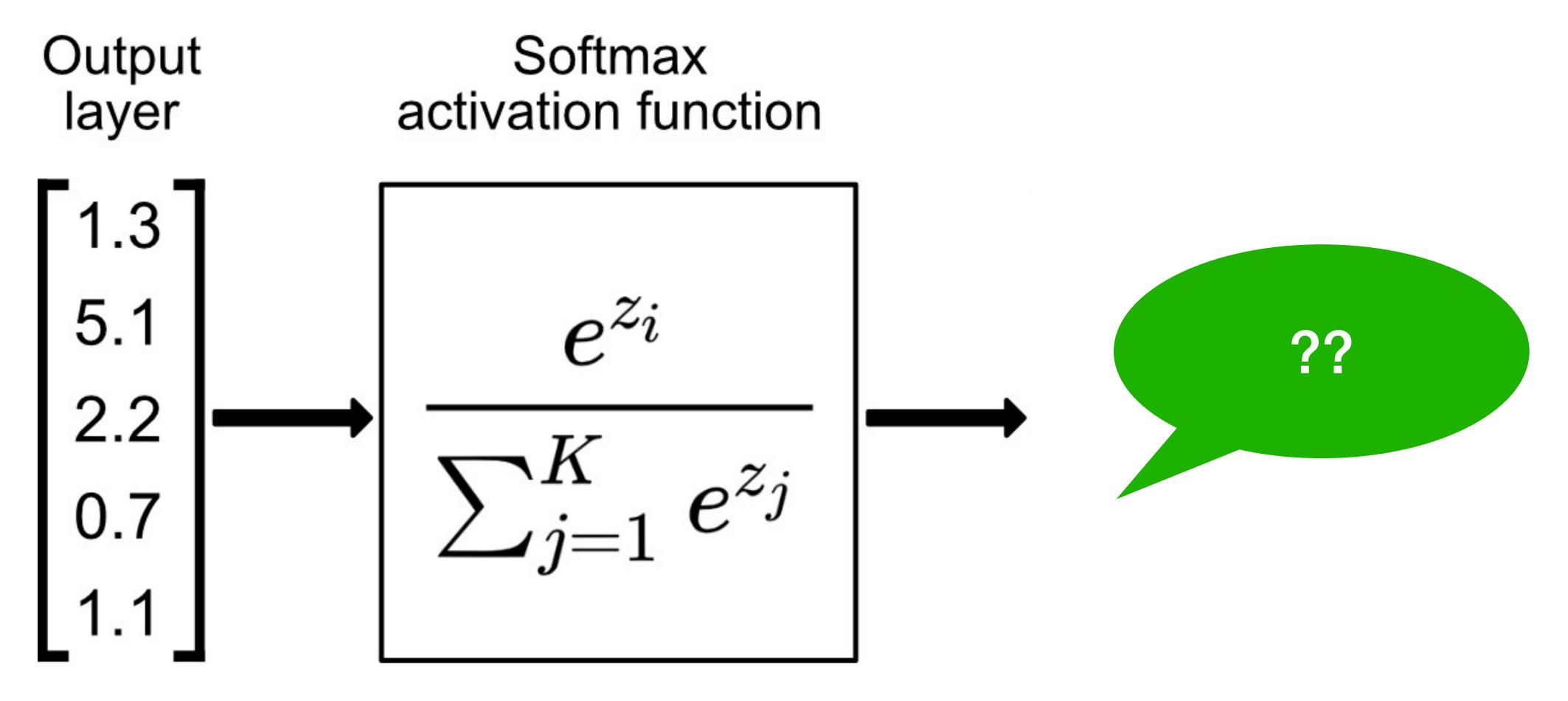
Output

How to train a convolutional neural network?

Input

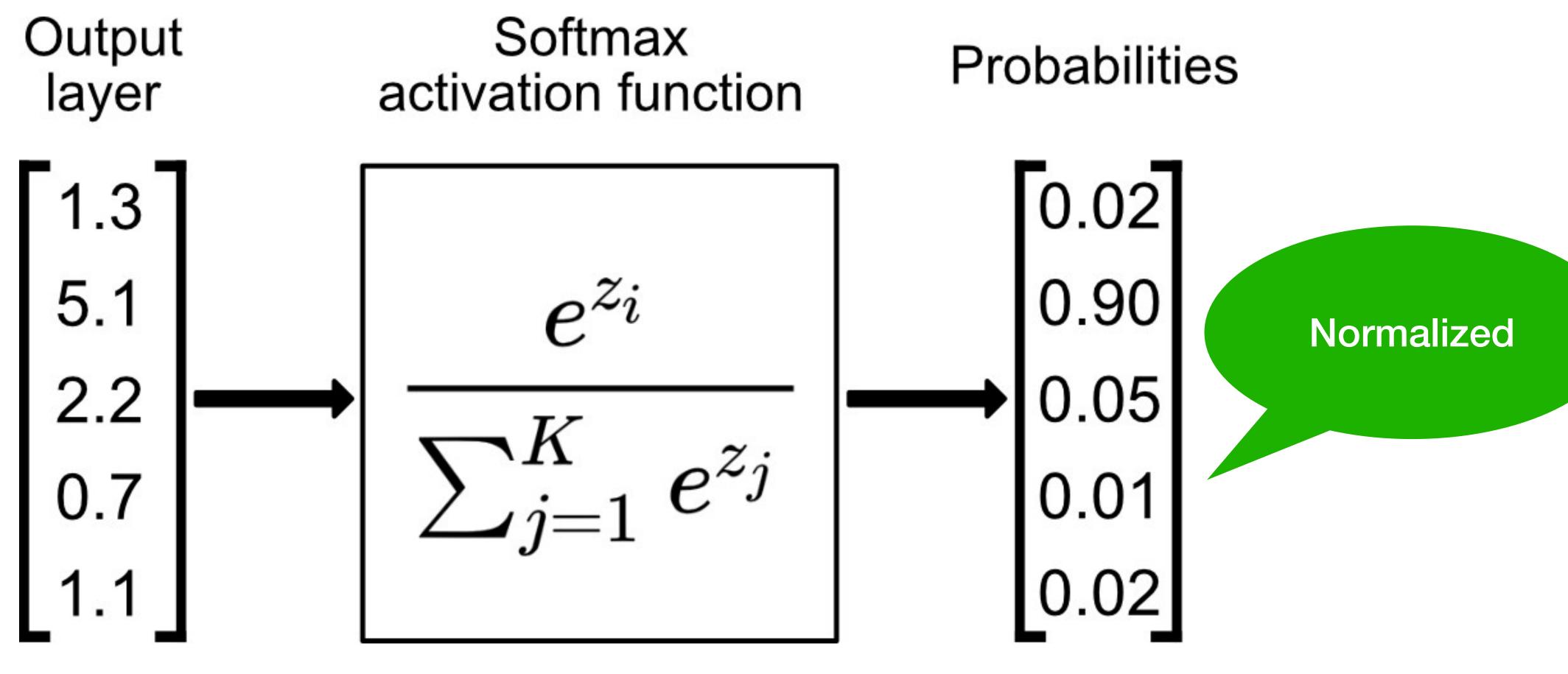


Recall Softmax



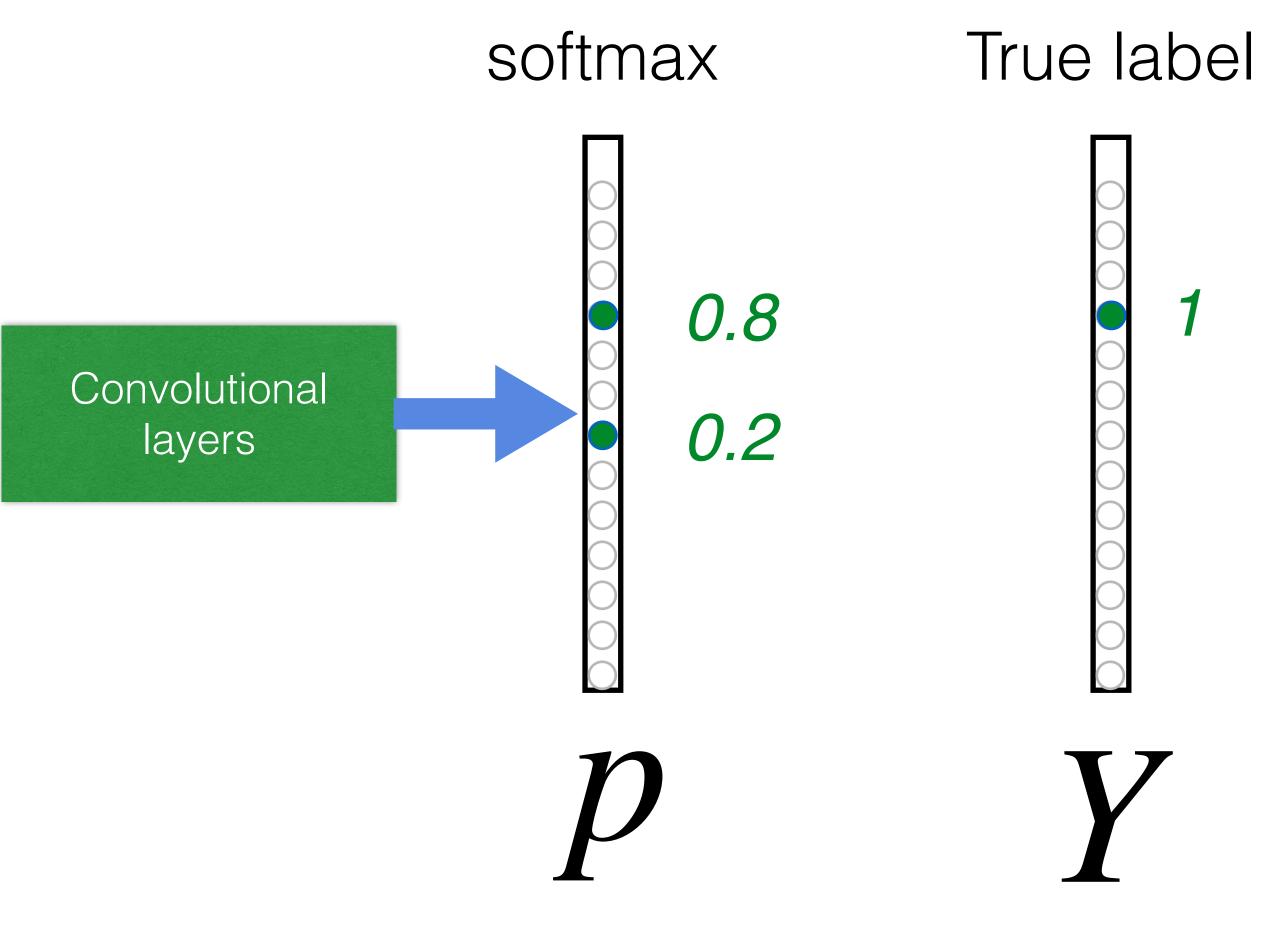
Turns outputs f into probabilities (sum up to 1 across k classes)

Recall Softmax



Turns outputs f into probabilities (sum up to 1 across k classes)

Cross-Entropy Loss

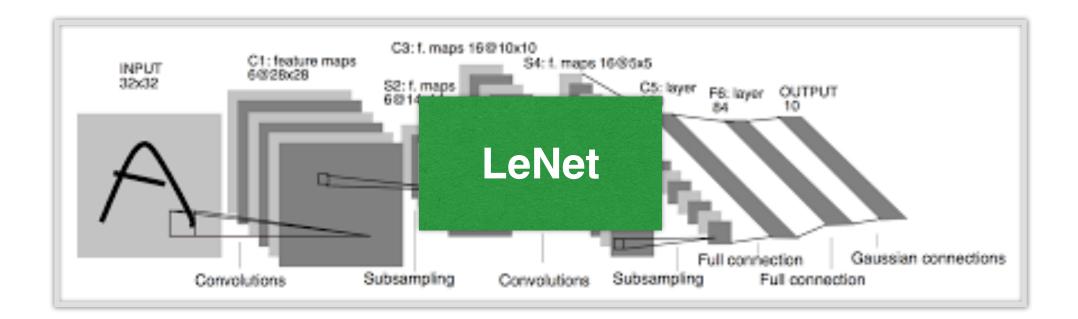


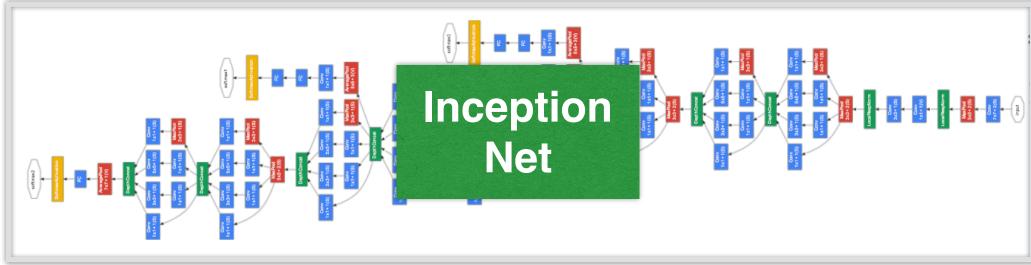
$L_{CE} = \sum - Y_i \log(p_i)$ $= -\log(0.8)$

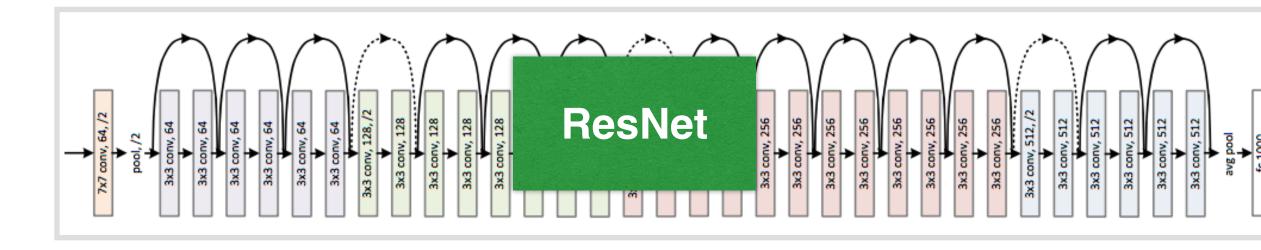
Goal: push **p** and **Y** to be identical

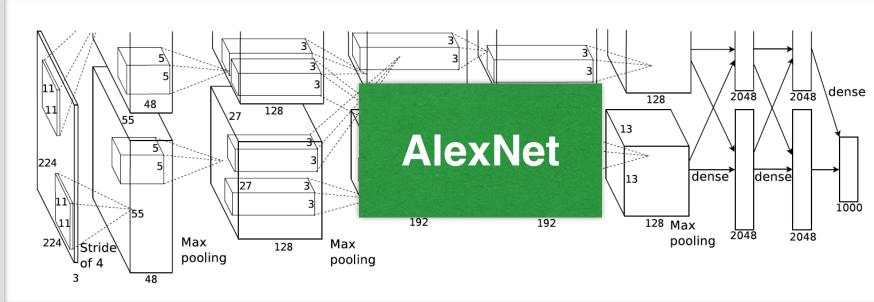
Convolutional Neural Networks

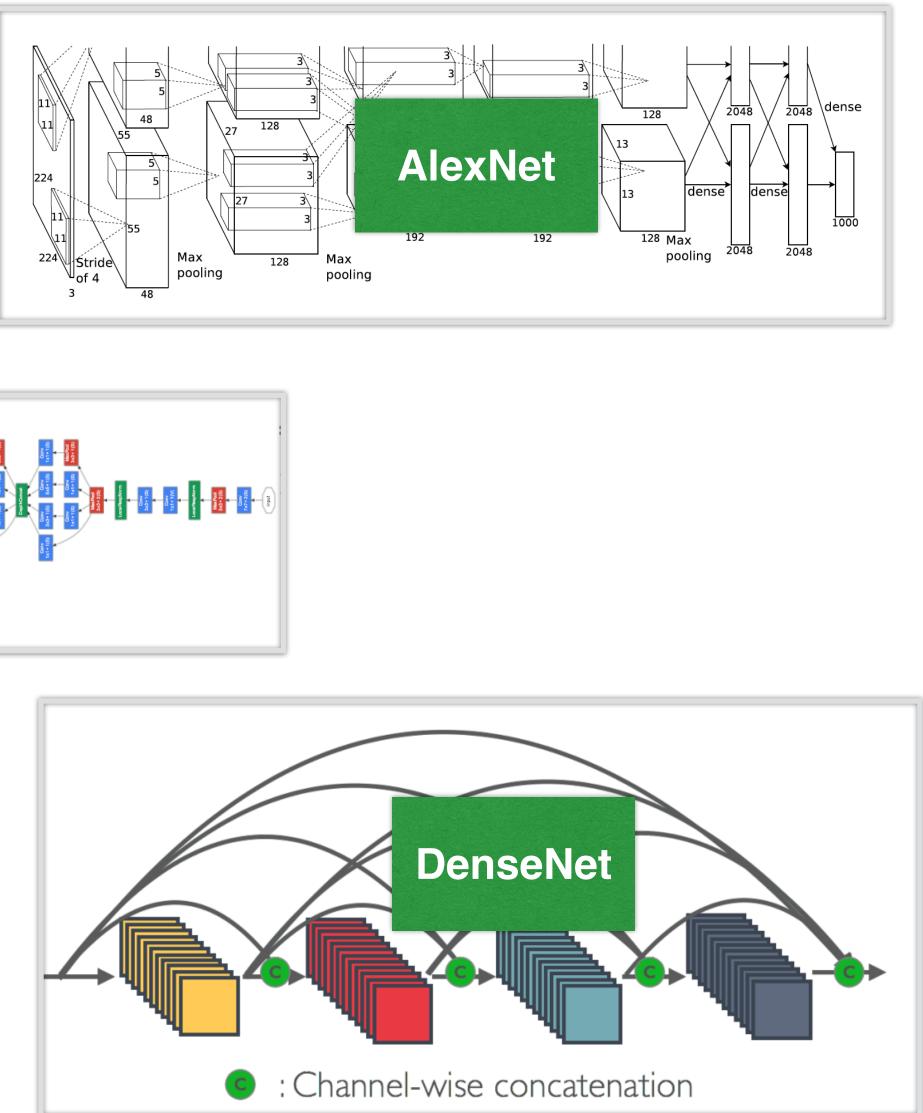
Evolution of neural net architectures



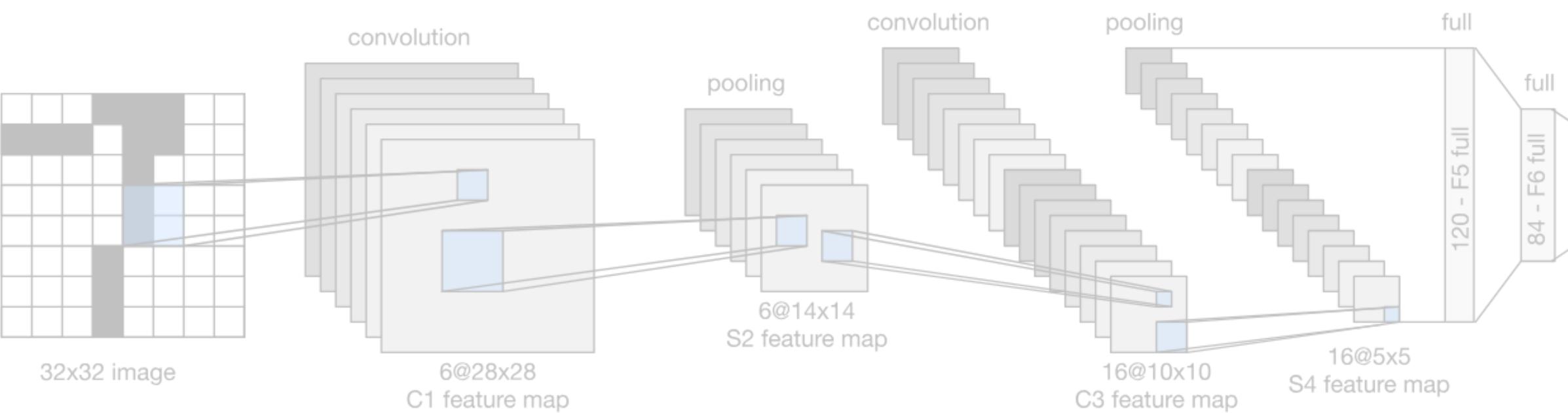








LeNet Architecture (first conv nets)



25 Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

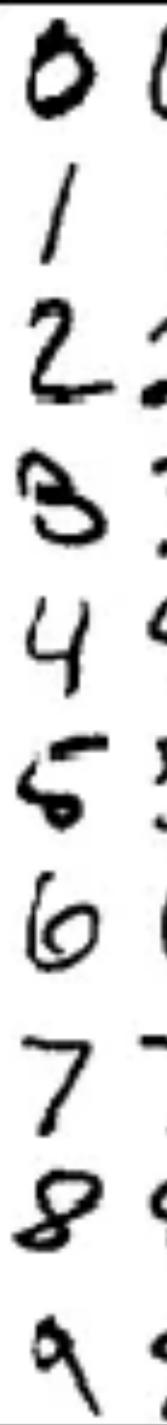
Gauss Out \bigcirc

Handwritten Digit Recognition

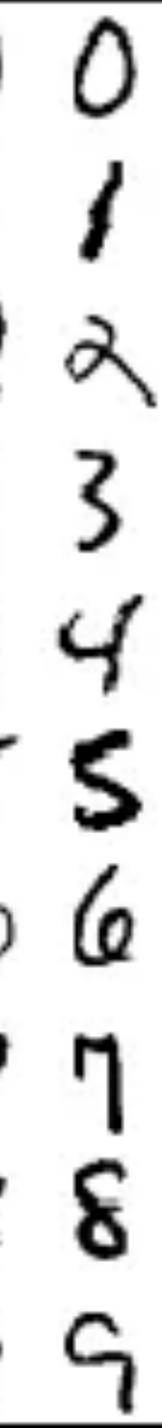
Philip Marlow PORTLAND OR 970 638 Hollywood Blia # 615 Los Angeles, CA 15479 2019 EM3 L Dave Fennice vletter, in 509 lasiade Ave, Suite H Hood River, OR 97031 alleligen and and and and any first of a state of the sta 9703i206080 **CARROLL O'CONNOR BUSINESS ACCOUNT** % NANAS, STERN, BIERS AND CO. march 10 19 9454 WILSHIRE BLVD., STE. 405 273-2501 BEVERLY HILLS, CALIF. 90212 PAY TO THE WILSHIRE-DOHENY OFFICE WELLS FARGO BANK 9101 WILSHIRE BOULEVARD BEVERLY HILLS, CALIFORNIA 90211 06356 ,000050000. 1875 In the state of th DELUTE CHECK PRINTERS - 1H

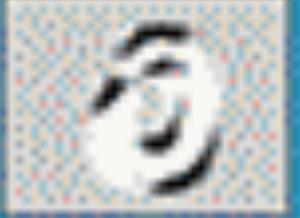
MNIST

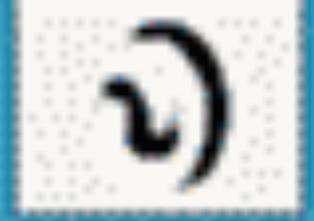
- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes



000000000000 1 222222222222 3333333333 66666666666 777777777 8888888888888 999999999999999999



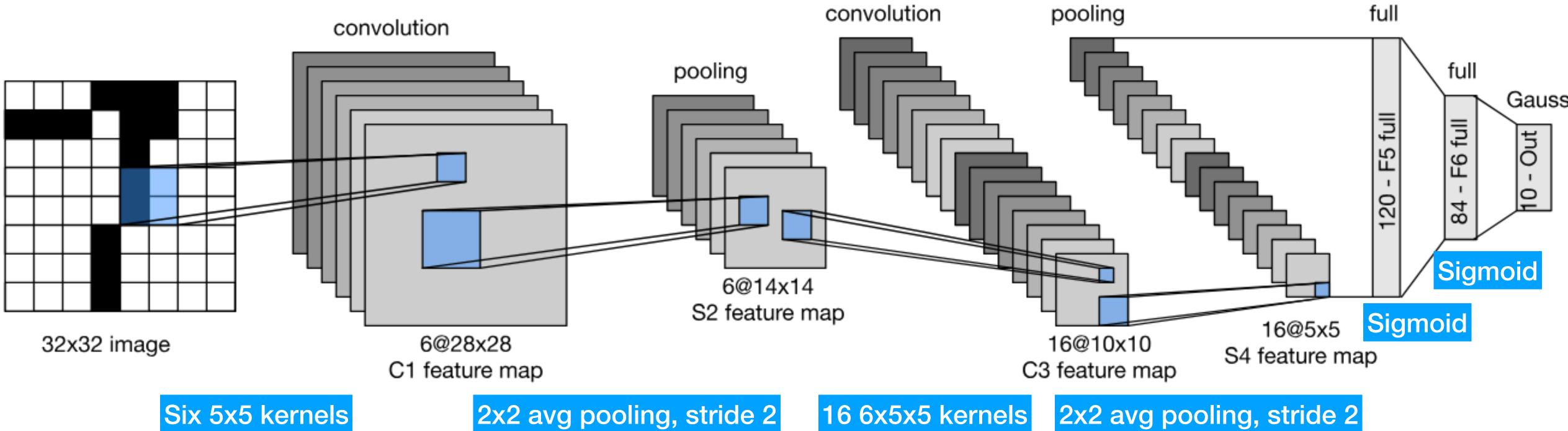




LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

LeNet Architecture



29 Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

LeNet in Pytorch

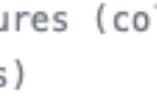
```
def ___init__(self):
super(LeNet5, self).__init__()
# Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
# Convolution
# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
# Fully connected layer
self.fc2 = torch.nn.Linear(120, 84)
self.fc3 = torch.nn.Linear(84, 10)
```

https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py

self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)

self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)

self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (col # convert matrix with 120 features to a matrix of 84 features (columns) # convert matrix with 84 features to a matrix of 10 features (columns)



def forward(self, x):

- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv1(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_1(x)$
- # convolve, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.conv2(x))
- # max-pooling with 2x2 grid
- $x = self.max_pool_2(x)$
- # first flatten 'max_pool_2_out' to contain 16*5*5 columns
- # read through https://stackoverflow.com/a/42482819/7551231
- x = x.view(-1, 16*5*5)
- # FC-1, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc1(x))
- # FC-2, then perform ReLU non-linearity
- x = torch.nn.functional.relu(self.fc2(x))
- # FC-3
- x = self.fc3(x)

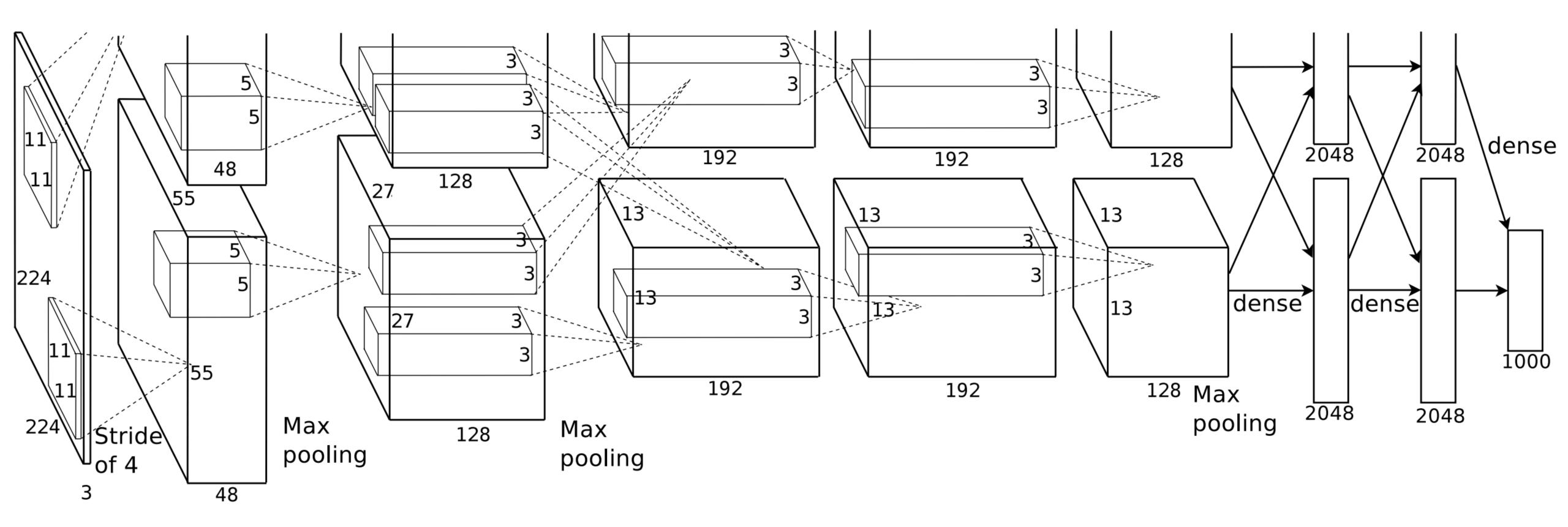
return x

LeNet in Pytorch

Let's walk through an example using PyTorch

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

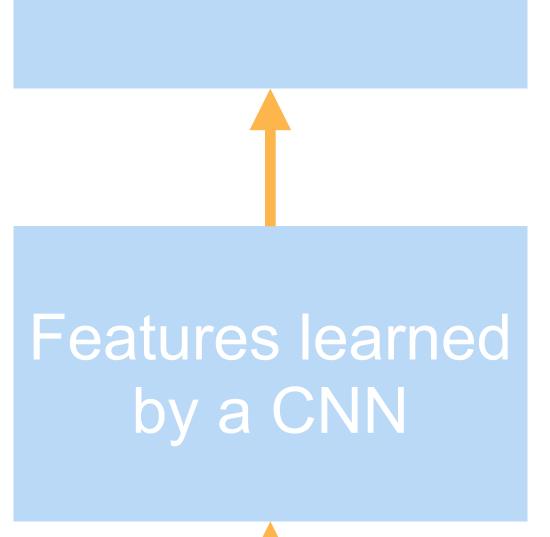
AlexNet



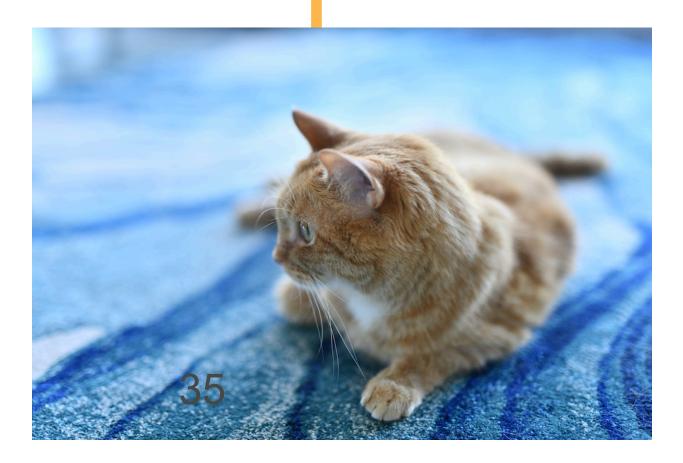
Deng et al. 2009

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

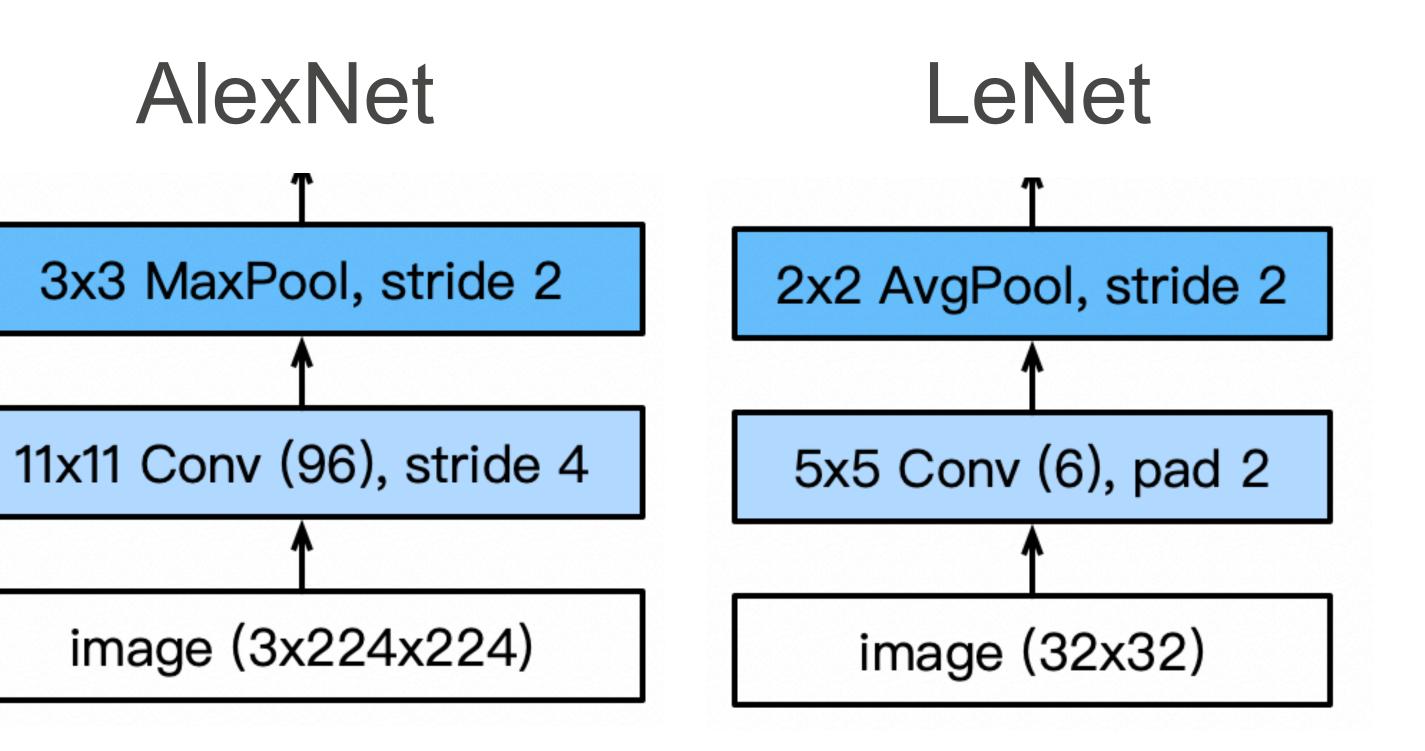


Softmax

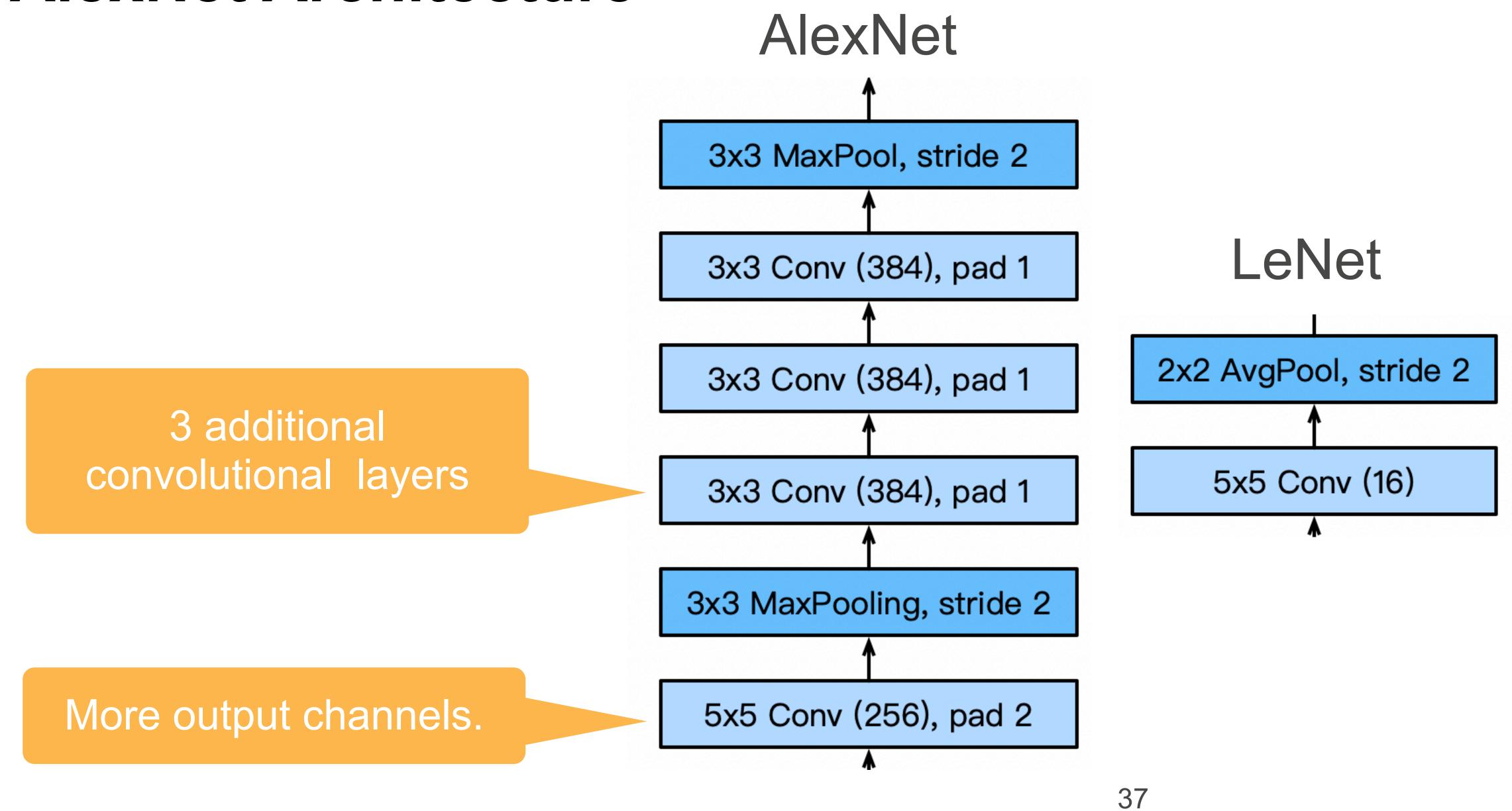


AlexNet Architecture

Larger kernel size, stride because of the increased image size, and more output channels.



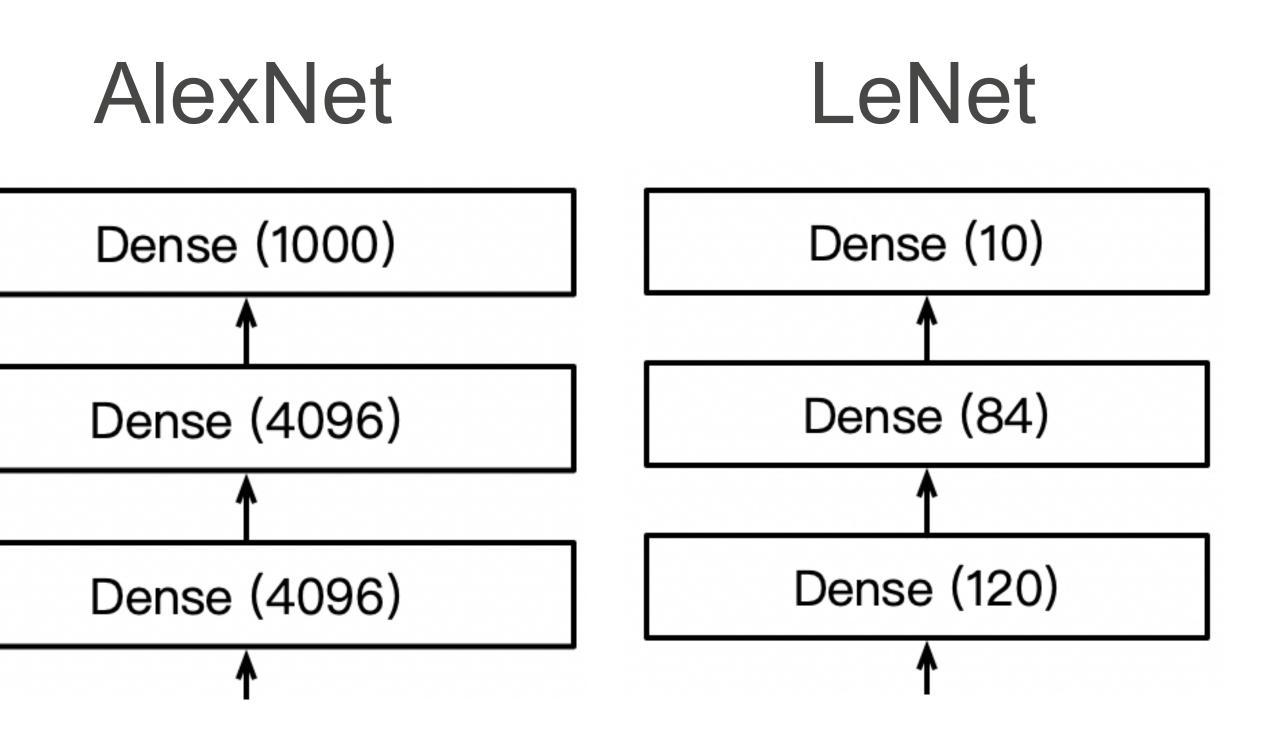
AlexNet Architecture



AlexNet Architecture

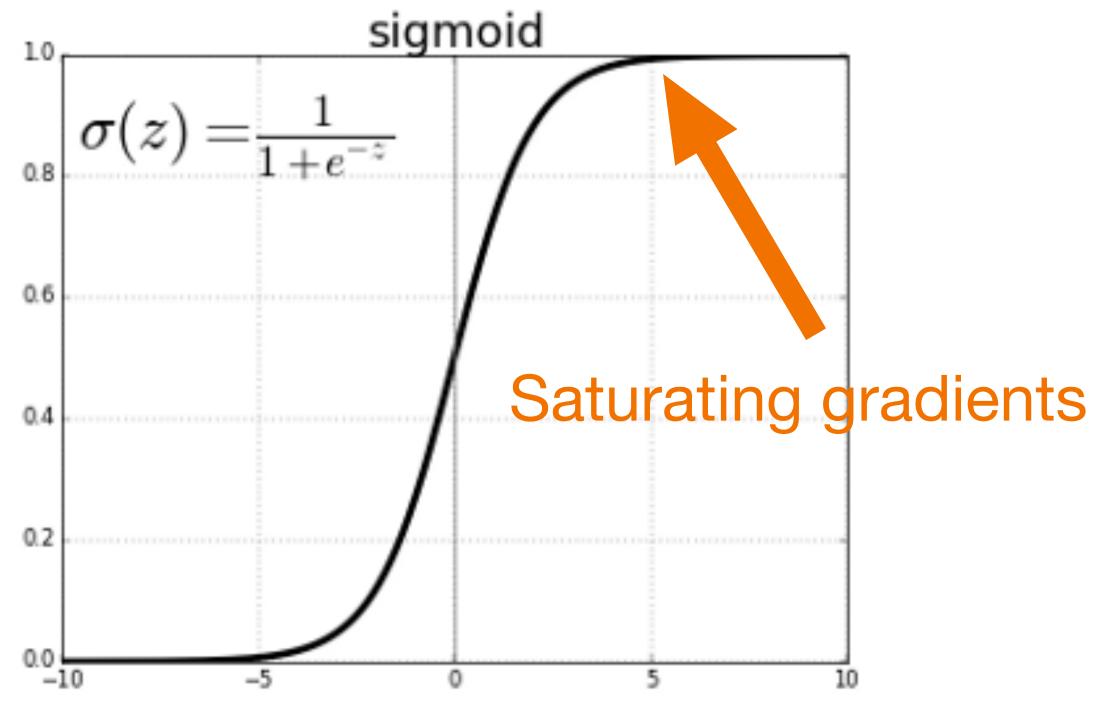
1000 classes output

Increase hidden size from 120 to 4096



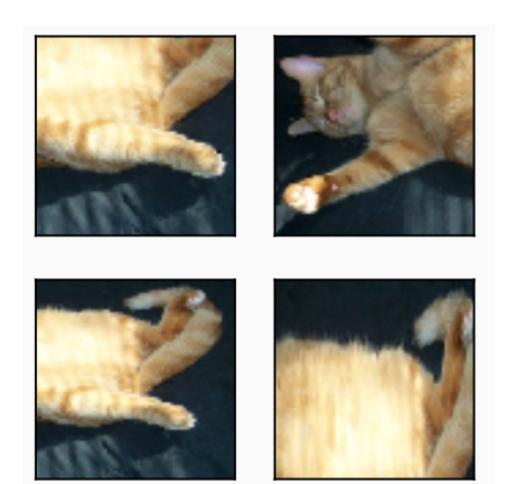
More Differences...

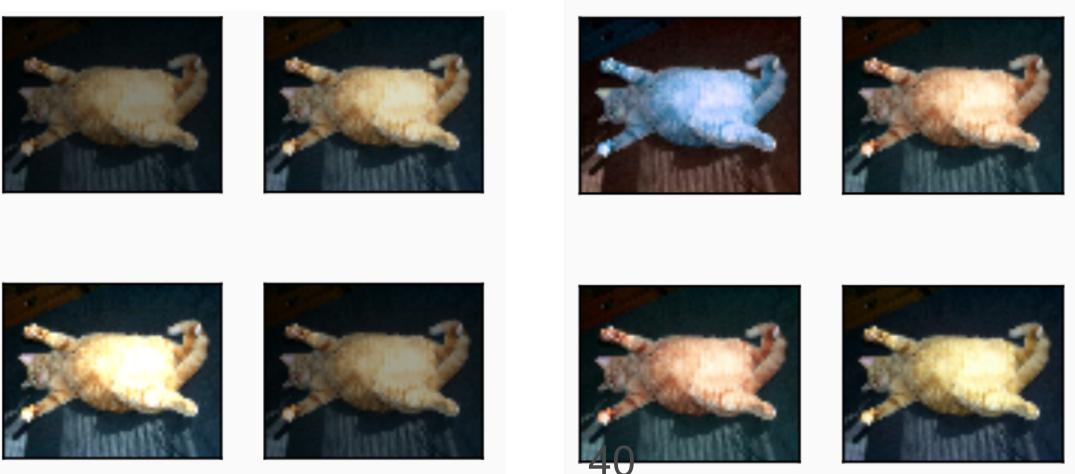
 Change activation function from sigmoid to ReLu (no more vanishing gradient)



More Differences...

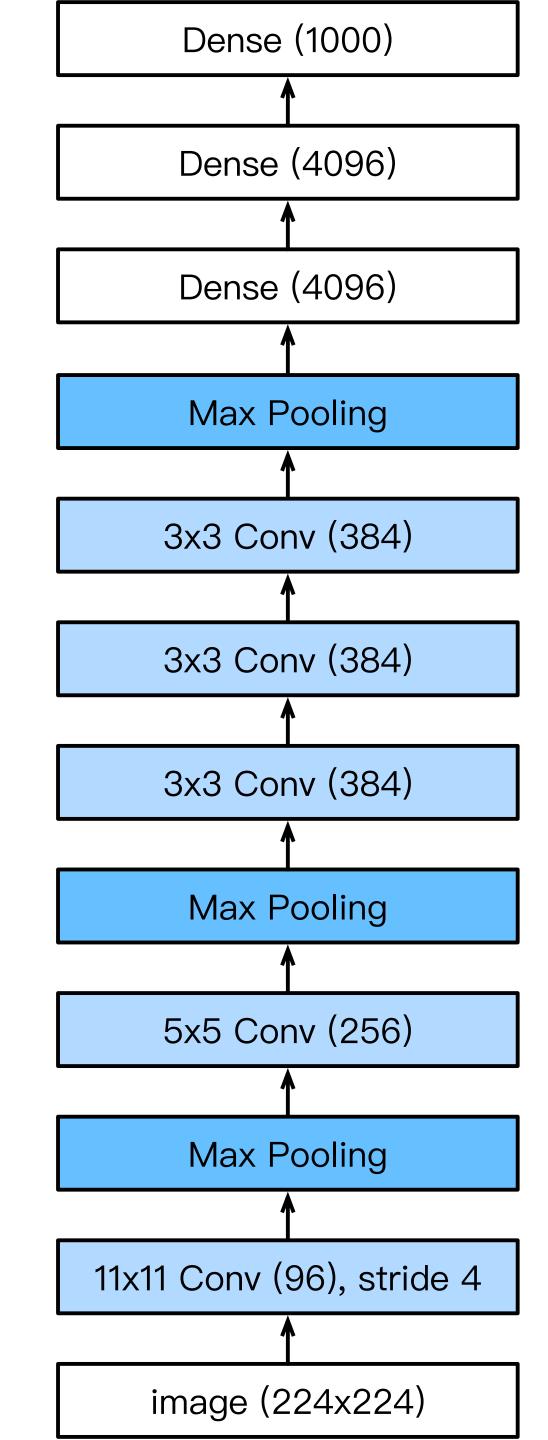
- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation





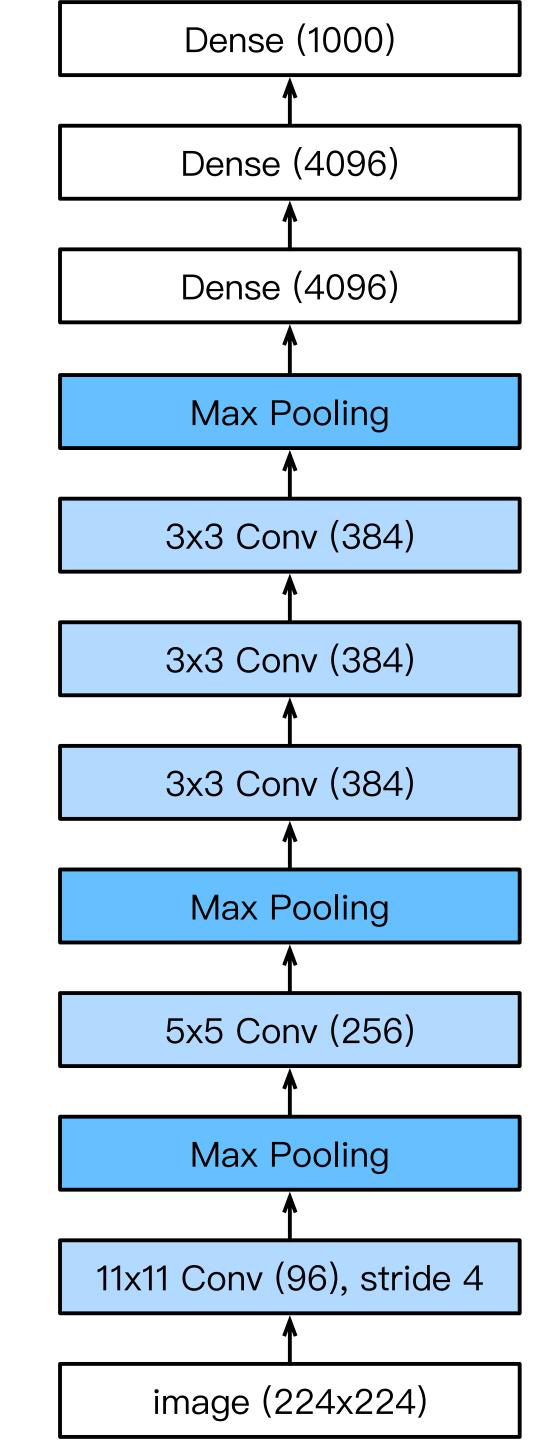
Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M

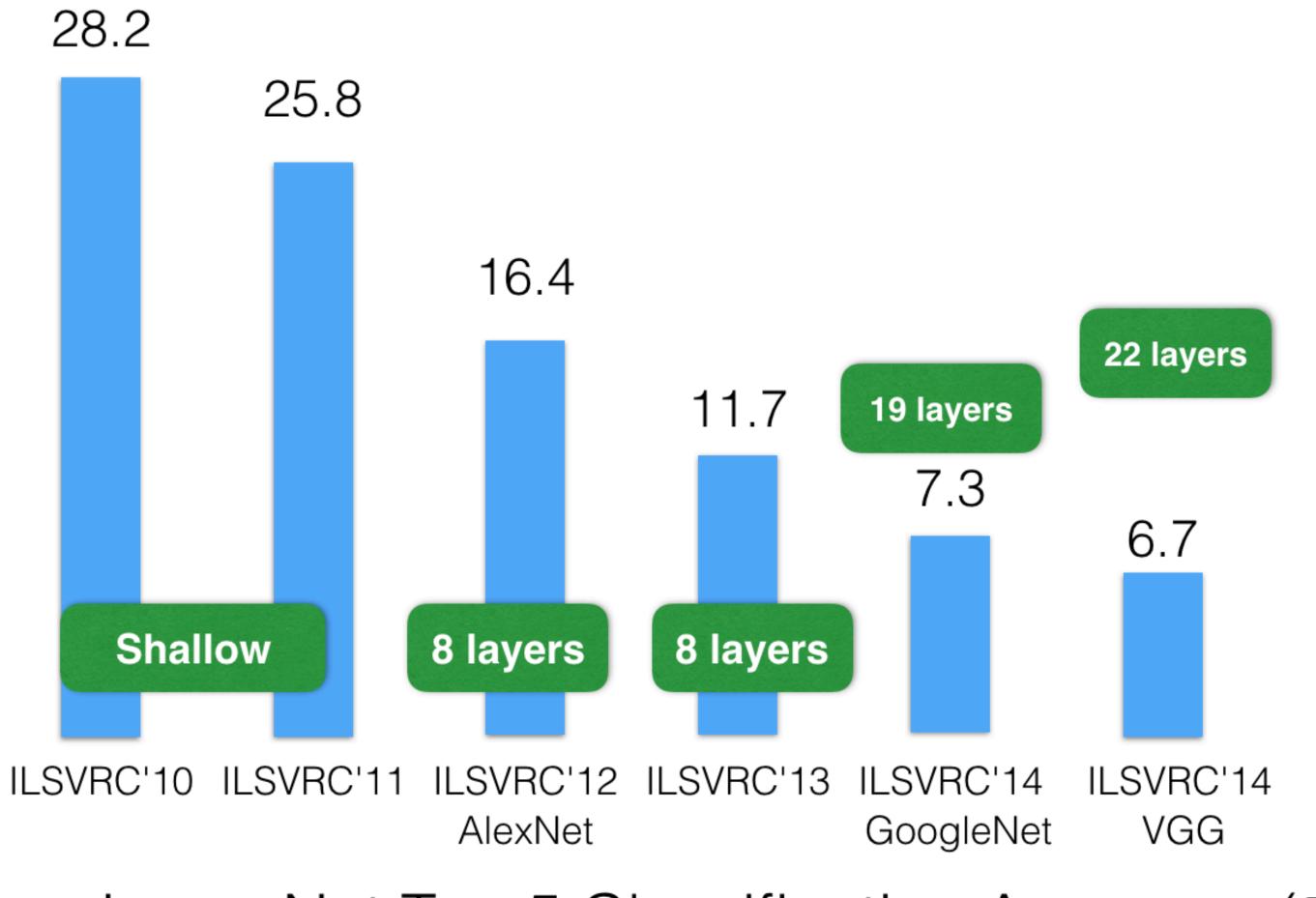


Complexity

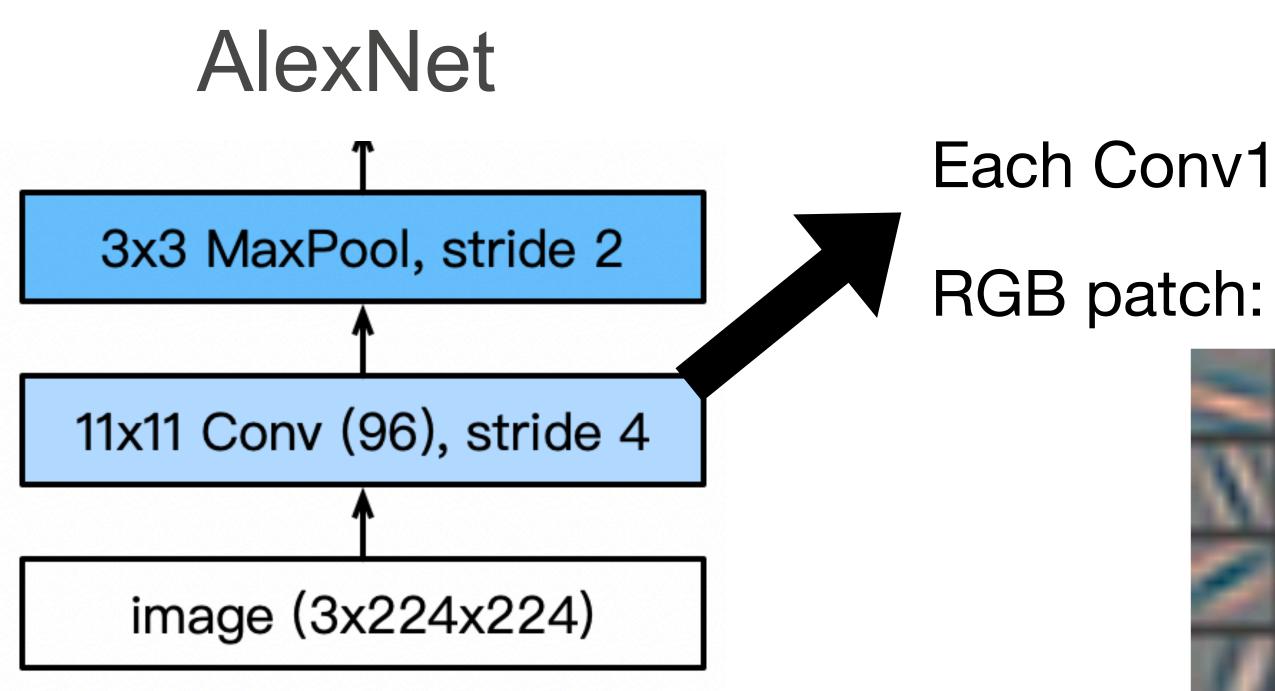
	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M



11x11x3x96=35k

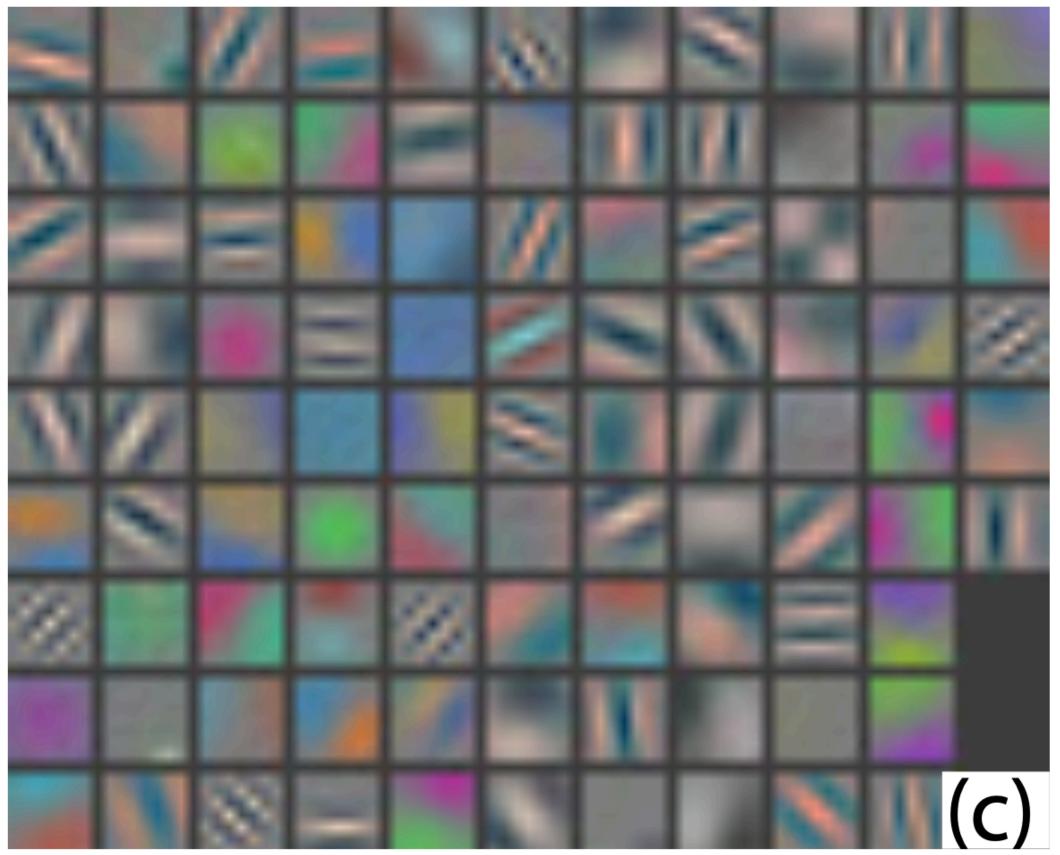


ImageNet Top-5 Classification Accuracy (%)



[Visualizing and Understanding Convolutional Networks. M Zeiler & R Fergus 2013]

Each Conv1 kernel is 3x11x11, can be visualized as an



Which of the following are true about AlexNet? Select all that apply.

A. AlexNet contains 8 conv/fc layers. The first five are convolutional layers. B.The last three layers are fully connected layers. C.some of the convolutional layers are followed by max-pooling (layers). D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105).

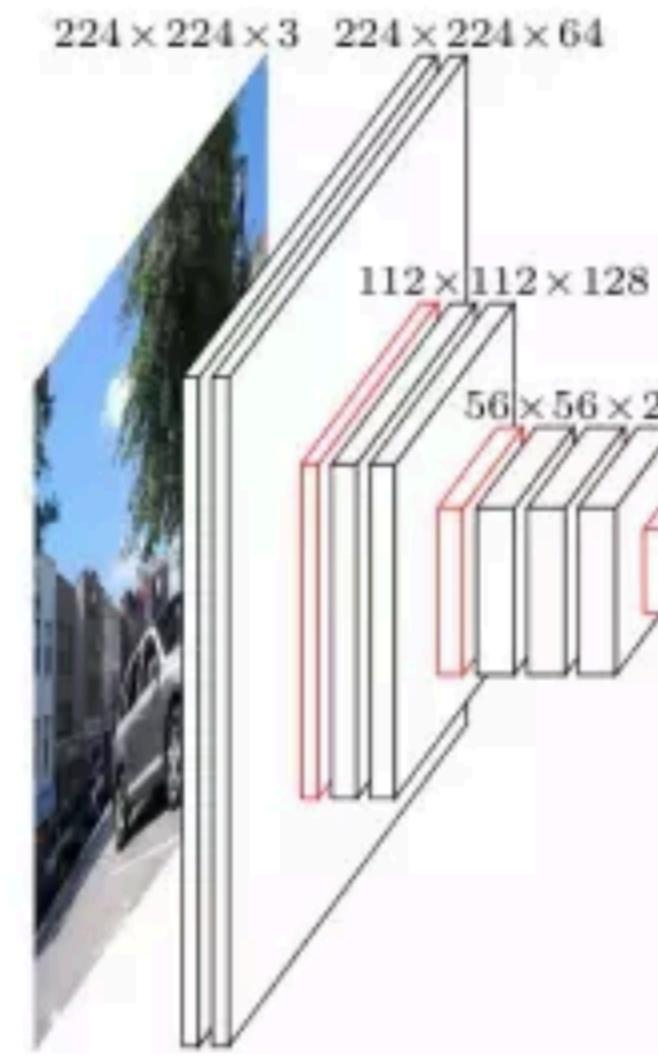
Which of the following are true about AlexNet? Select all that apply.

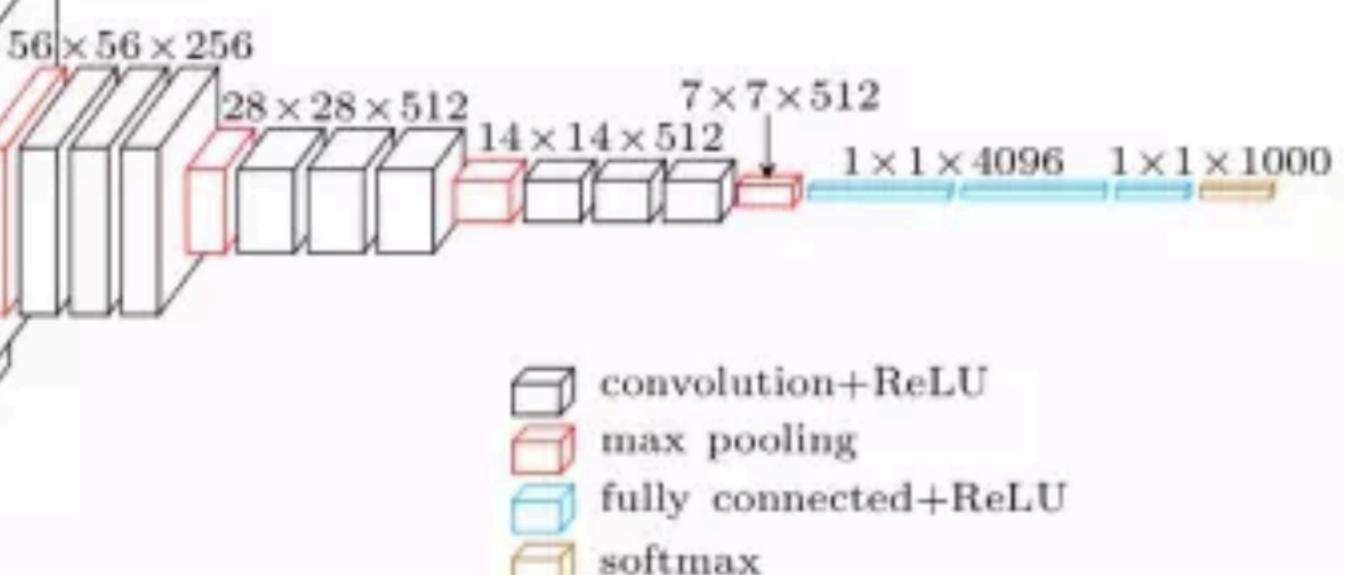
A. AlexNet contains 8 conv/fc layers. The first five are convolutional layers. B.The last three layers are fully connected layers. C.some of the convolutional layers are followed by max-pooling (layers). D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105).

All options are true!

VGG





- softmax

Progress

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

Which of the following statement is True for the success of deep models?

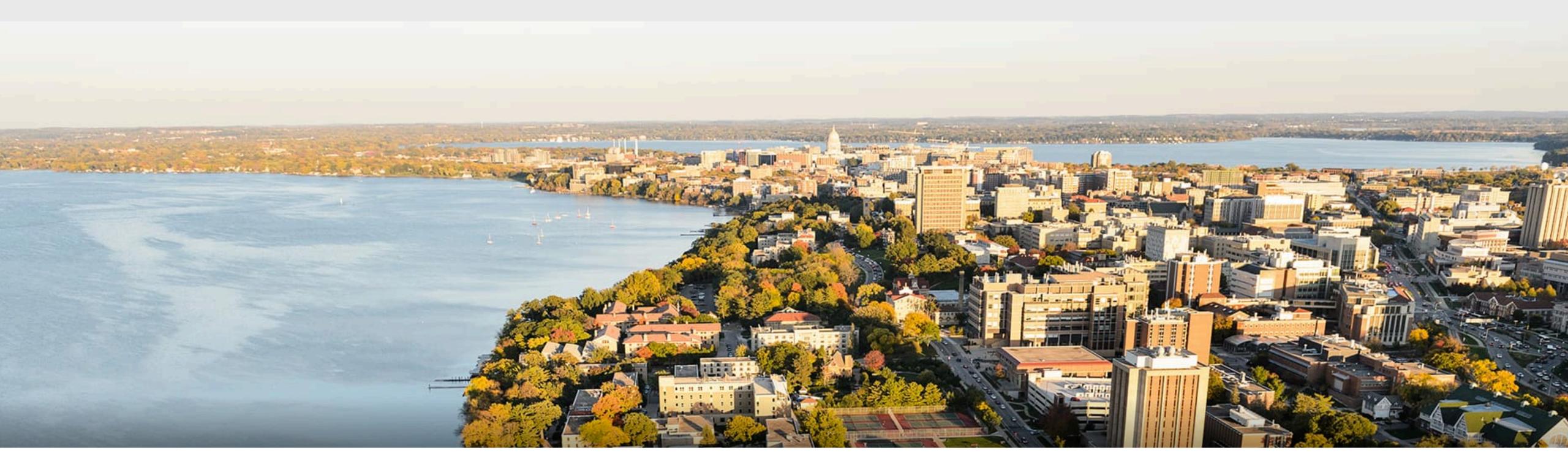
- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

Which of the following statement is True for the success of deep models?

- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet
- PyTorch demo



Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html

