CS 540 Introduction to Artificial Intelligence
Deep Learning Il

University of Wisconsin-Madison

March 29, 2022

Outline

* CNNs with more layers: ResNets

— Layer problems, residual connections, identity maps
* Data Augmentation & Regularization
— Expanding the dataset, avoiding overfitting

* More Signal From our Data

— Graph-structured data, graph neural networks

Last Time: CNNs

We talked about CNN components & architectures

 Components: convolutional layers, pooling layers (recall
kernels, channels, strides, padding)

* Architectures: LeNet, AlexNet, VGG

* Trend: bigger, deeper.

Credit: Mathworks

Evolution of CNNs

ImageNet competition (error rate)

30 282
152 layers
25
A
20
16.4
15
11.7 |19 Iayers| |22 Iayers|
10
7.3 6.7
5 I l -3.6
2010 2011 2012 2013 2014 2014 2015
Linetal Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet)

Credit: Stanford CS 231n

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers... sufficient?
* No! Some problems:

— i) Vanishing gradients: more layers => more likely
— ii) Instability: deeper models are harder to optimize

\/\\/\\\M

20-layer

Reflected in training error:

56-layer

training error (%)
test error (%)

20-layer

> 3 i 5 3 o i P 3 s
iter. (1e4) iter. (le4)

He et al: “Deep Residual Learning for Image Recognition”

Depth Issues & Learning ldentity

Why would more layers result in worse performance?

* Same architecture, etc.
 Ifthe Acanlearnf, then

Q: can we
so can B, as long as top Network B learn identity
: . N
layers learn identity - here?

Network A {

Idea: if layers can learn identity, can’t get worse.

Residual Connections

Idea: Identity might be hard to learn, but zero is easy!

 Make all the weights tiny, produces zero for output

e (Can easily transform learning identity to learning zero:

flx)

x>

flx) + x

flx)

%

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now
need to learn f(x) = 0 = easier

Full ResNet Architecture
[He et al. 2015]

o Stack residual blocks

f(x) 1
 Every residual block hastwo 3x3 ————~T1-~~~~-7

conv layers

« Periodically, double # of filters
and downsample spatially using
stride of 2 (/2 in each dimension)

T

Activation function

Weight layer
)

I
I
I
I
I
Activation function |
I
I
I
I
I

3
Weight layer

A

(Figure from Stanford CS231n)

ResNet Architecture

Idea: Residual (skip) connections help make learning easier

* Example architecture:

* Note: residual connections
— Every two layers for ResNet34

e Vastly better performance
— No additional parameters!
— Records on many benchmarks

VGG-19 34-layer plain 34-layer residual
image image image
o 3x3 conv, 64
3x3 conv, 64
-0
utpu
e 112 313 conv, 128
[33conv,128 | [n7conv,64,2 | [m7conv, 64,2 |
v v
pool, /2 pool, /2
4 \ 4
% [36om26 | [3aconver | [
v 12
[33conv,256 | [3x3conv, 64| [
2 L 2
333 conv, 256 | [T33conver | [
¥ ¥
33 conv,25% | [3!3c¢;\v.6¢] [
[3x3 conv, 64 [
¥
l 3x3 conv, 64 [
f
sutput poo*l, 2 [33conv, 128,72 | |
V
s2e:28 M 33 cony,512 | [33com,128 | [
i

He et al: “Deep Residual Learning for Image Recognition”

ResNet Architecture
Various depth

layer name | output size 18-layer 34-layer 50-layer [101-layer 152-layer
convl 112x112 | 7x7, 64, stride 2
33 max pool, stride 2
1x1, 64 1x1,64] 1x1,64]
2 56x56 8 ’ 8
convax x { gig’gj]xz [gigg x3 3x3,64 |x3 3x3,64 |x3 3x3,64 |x3
? ’ 1x1, 256 1x1,256 | 1x1,256 |
- - - . 1x1, 128 1x1, 128] 1x1,128]
conv3x | 28x28 g:g i;g x2 g:g gg x4 | | 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
L y J L d J 1x1,512 1x1,512 | 1x1,512 |
- . = 1 1x1, 256 1x1,256] 1x1,256 |
convdx | 14x14 iii ggg x2 giggg x6 | | 3x3,256 |x6 || 3x3,256 |x23 || 3x3,256 |x36
L ’ J L ’ J 1x1,1024 1x1,1024 | 1x1, 1024 |
" y = B 1x1,512 1x1,512 1x1,512
conv5_x Tx7 giggg x2 giggg x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
L d J L ? J 1x1,2048 1x1,2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x10° 3.8x10° | 7.6x10° 11.3x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet Architecture

Various depth

layer name | output size 18-layer ’ 34-layer | 50-layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3x3 max pool, stride 2 |
1x1, 64 1x1,64] 1x1,64]
conv2.x | 56x36 [g:; gi]xZ [gigg }x3 3x3,64 |x3 3x3,64 |x3 3x3,64 | x3
’ ’ 1x1,256 1x1,256 | 1x1,256 |
- - - . 1x1, 128 1x1,128] 1x1,128]
conv3_x 28 %28 gi;’ i;g X2 gig’ gg x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
L ’ J L ’ J 1x1, 512 1x1,512 | 1x1,512 |
- . - q 1x1, 256 1x1,256]| 1x1,256]
convdx | 14x14 g)’zg ;gg x2 gzg igg x6 | | 3x3,256 |x6 || 3x3,256 |[x23 || 3x3,256 |x36
L ’ . . ’ J 1x1, 1024 1x1,1024 | 1x1,1024 |
- . - . 1x1,512 1x1,512 1x1,512
comw5x | 7x7 giggg x2 giggg x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
L ’ J s ’ J 1x1,2048 1x1,2048 1x1, 2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° | 36x10° | 3.8x10° | 7.6x10° | 11.3x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet Architecture
Various depth

layer name | output size 18-layer ’ 34-layer | 50-layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
33 max pool, stride 2
1x1, 64 1x1,64] 1x1,64]
2 56x56 . ’ 1
convax x { gig’gj]xz [;zgg]x3 3x3,64 |x3 3x3,64 |x3 3x3,64 |x3
: ’ 1x1, 256 1x1,256 | 1x1,256 |
- ; - ; 1x1,128 1x1,128 1x1,128]
conv3x | 28x28 g:g gg x2 g:g iig x4 | | 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
. e L PR 1x1,512 1x1,512 | 1x1,512 |
- 1 - . 1x1,256 1x1,256 1x1,256
convd x | 14x14 gz; ;ig X2 giggg X6 3x3,256 | x6 3x3,256 |x23 3x3,256 |x36
L » e L e 1x1, 1024 1x1,1024 | 1x1, 1024 |
- i - i 1x1,512 1x1,512 1x1,512
convSx | 7x7 g:ggg x2 gzggg x3 || 3x3,512 [x3 3x3,512 |[x3 3x3,512 [x3
. e . e 1x1,2048 1x1,2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° [3.6x10° | 3.8x10° | 7.6x10° \ 11.3x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet Architecture

Various depth

layer name | output size 18-layer ’ 34-layer | 50%layer 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3 (3 max pool, stride 2
I 1x1, 64 1x1,64] 1x1,64]
conv2.x | 56x36 [gzg’gj]xz gigg }x3 3x3,64 |x3 3x3,64 |x3 3x3,64 | x3
’ ’ 1x1,256 1x1,256 | 1x1,256 |
- - - I 1x1, 128 1x1,128] 1x1,128]
conv3_x 28 %28 gi;’ i;g X2 gig’ gg x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
L ’ J L ’ J 1x1,512 1x1,512 | 1x1,512 |
- . - 3 1x1, 256 1x1,256]| 1x1,256]
convdx | 14x14 gig ;gg x2 gzg igg %6 | | 3x3,256 |x6 || 3x3,256 |x23 || 3x3,256 |x36
L ’ J . ’ J 1x1, 1024 1x1,1024 | 1x1, 1024 |
- . -] 1x1,512 1x1,512 1x1,512
comw5x | 7x7 iiiiii x2 gzggg %3 || 3x3,512 | x3 3x3,512 | x3 3x3,512 | x3
L ’ J s ’ J 1x1,2048 1x1,2048 1x1, 2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° | 36x10° | 3.8x10° | 7.6x10° | 11.3x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-

sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet Training Curves on ImageNet
[He et al., 2015]

\ 34-layer
LONAANA A
o ——-——-——-—-—-———-———-———-—-°-- I
plain-18 ResNet-18 AN A A~
—plain-34 —ResNet-34 34-layer
20, 10 20 30 20 50 20 10 20 30 40 50

iter. (1e4) iter. (1e4)

A Bit More on ResNets

Idea: Residual (skip) connections help make learning easier
* Note: Can also analyze from backpropagation p.o.v
— Residual connections add paths to computation graph

* Also uses batch normalization
— Normalize the features at each layer to have same mean/variance

— Common deep learning trick

* Highway networks: learn weights for residual connections

loffe and Szegedy: “Batch Normalization: Accelerating Deep Network
Training b y Reducing Internal Covariate Shift”

Break & Quiz

Q 1.1: Which of the following is not true?

A. Adding more layers can improve the performance of a neural
network.

* B. Residual connections help deal with vanishing gradients.

* C.CNN architectures use no more than ~20 layers to avoid problems
such as vanishing gradients.

* D. Itis usually easier to learn a zero mapping than the identity
mapping.

Break & Quiz

Q 1.1: Which of the following is not true?

A. Adding more layers can improve the performance of a neural
network.

* B. Residual connections help deal with vanishing gradients.

* C.CNN architectures use no more than ~20 layers to avoid problems
such as vanishing gradients.

* D. Itis usually easier to learn a zero mapping than the identity
mapping.

Break & Quiz

Q 1.1: Which of the following is not true?

A. Adding more layers can improve the performance of a neural
network. (Yes, as long as we’re careful, e.g., ResNets.)

» B. Residual connections help deal with vanishing gradients. (Yes, this
is an explicit consideration for residual connections.)

* C.CNN architectures use no more than ~20 layers to avoid problems
such as vanishing gradients. (No, much deeper networks.)

* D. Itis usually easier to learn a zero mapping than the identity
mapping. (Yes: simple way to learn zero is to make weights zero)

Data Concerns

What if we don’t have a lot of data?
* We risk overfitting
* Avoiding overfitting: regularization methods

* Data augmentation: a classic way to regularize

‘ ’ ,
i SN
Ly’ CUoR

7 X
: ¥
A /i

Data Augmentation

Augmentation: transform + add new samples to dataset
* Transformations: based on domain
* |dea: build invariances into the model

— Ex: if all images have same alignment, model learns to use it
* Keep the label the same! |

Transformations

Examples of transformations for images

* Crop (and zoom)
* Color (change contrast/brightness)
* Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at test time?

 A:transform, test, average

Combining & Automating Transformations

‘_ ,L -
Y
-
> Y.
|
R

One way to automate the process:
* Apply every transformation and combinations

 Downside: most don’t help...

Want a good policy, ie, 2 =2 = = =
* Active area of research: search for good policies

1. Ratner et al: “Learning to Compose Domain-Specific
Transformations for Data Augmentation”

2. Cubuk et al: “AutoAugment: Learning Augmentation Strategies
from Data”

Other Domains

Not just for image data. For example, on text:
e Substitution

— E.g., “Itis a great day” = “It is a wonderful day”
— Use a thesaurus for particular words
— Or, use a model. Pre-trained word embeddings, language models

e Back-translation

— “Given the low budget and production limitations, this movie is very good.”

=> “There are few budget items and production limitations to make this film a
really good one”

Xie et al: “Unsupervised Data Augmentation for Consistency Training”

Importance of Augmentation

Data augmentation is critical for top performance!
* You should use it!
* AlexNet: used (many papers re-used as well)

— Random crops, rotations, flips.

Krizhevsky et al: “ImageNet Classification with
Deep Convolutional Neural Networks”

Other Forms of Regularization

Regularization has many interpretations

* Goodfellow: “any modification... to a learning algorithm that is intended
to reduce its generalization error but not its training error.”

* A way of adding knowledge / side informatio

* Enforcing parsimony/simplicity

Salient Edge Map

S. Kumar

Other Forms of Regularization

Regularizer

Classic regularizations - ‘
1. Modify loss functions mein - Z U(fo(xi),ys) + AR(fo)
n

Ex: regularized least squares LR i=1 \
1 _
min — Z(@O + 270 — y;)% + \)0))2 ISc;czsndard Regularization
0 n P parameter

2. Modify architecture/training/data
a) Dropout, batch normalization, augmentation

Break & Quiz

Q 2.1: If we apply data augmentation blindly, we might
(i) Change the label of the data point

(ii) Produce a useless training point

* A. (i) but not (ii)

e B. (ii) but not (i)

* C. Neither

 D. Both

Break & Quiz

Q 2.1: If we apply data augmentation blindly, we might
(i) Change the label of the data point

(ii) Produce a useless training point

* A. (i) but not (ii)

e B. (ii) but not (i)

* C. Neither

* D.Both

Break & Quiz

Q 2.1: If we apply data augmentation blindly, we might
(i) Change the label of the data point

(ii) Produce a useless training point

* A. (i) but not (ii) (Can do (ii): imagine turning up the contrast till
the image is completely black and is unusable).

e B. (ii) but not (i) (Can change label: rotate a 6 into a 9).

* C. Neither (Can do either).

* D.Both

Break & Quiz

Q 2.2: What are some consequences of data augmentation?
(i) We have to store a much bigger dataset in memory

(ii)) For a fixed batch size, there will be more batches per epoch

* A. (i) but not (ii)
e B. (ii) but not (i)
* C. Neither

 D. Both

Relationships in Data

So far, all of our data consists of points

* Assume all are independent, “unrelated” in

a sense <X1, y1>, (XQ, y2>, cey <Xn7 yn>
* Pretty common to have relationships

between points

— Social networks: individuals related by friendship

— Biology/chemistry: bonds between compounds, a\ g
molecules > A
— Citation networks: Scientific papers cite each

other Wiki

Signal from Relationships

Suppose we are classifying scientific papers

* Features: title, abstract, authors. Labels: math/science/eng.
* Could build a reasonable classifier with the above data
* More signal from relationships

— Cite each other, more likely from the same field

— Note: citations are not features; they’re links
— Need a new type of network to handle

Leng

Graph Neural Networks

Have: (x1,41),(x2,42),-.., (Xn, 4n), G = (V. E) Parameters

How should our new architecture look? yon-Linearity
 Still want layers

— linear transformation + non-linearity

HHY = o(HOWWY)
Hidden Layer Representation ==
* Now want to integrate neighbors l
e Bottom: graph convolutional network
grap (E—I—l) AGH

K

Kipf and Welling: “Semi-Supervised Classification with Graph Convolutional Networks” Graph Mixing

Graph Convolutional Networks

Let’s examine the GCN architecture in more detail
 Difference: “graph mixing” component)

* At each layer, get representation at
each node

* Combine node’s representation with
neighboring nodes

 “Aggregate” and “Update” rules

Graph Convolutional Networks

Note the resemblance to CNNs:

* Pixels: arranged as a very regular graph
 Want: more general configurations (less regular)

Wu et al, A Comprehensive Survey on Graph Neural Networks
HKIXIXT
[XXX AR
s Ip® @

KRR 7o)

v

Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Summary

* Intro to deeper networks (resnets)

— Dealing with problems by adding skip connections

* Intro to regularization

— Data augmentation + other regularizers

* Basic graph neural networks

Acknowledgements: Inspired by materials by Fei-Fei Li,
Ranjay Krishna, Danfei Xu (Stanford CS231n)

