

# CS 540 Introduction to Artificial Intelligence Games I

## University of Wisconsin-Madison

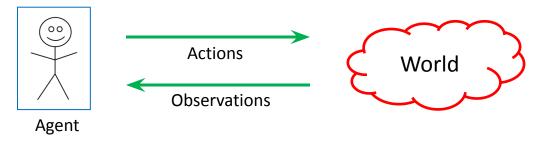
Spring 2022

# Outline

- Introduction to game theory
  - Properties of games, mathematical formulation
- Simultaneous-Move Games
  - Normal form, strategies, dominance, Nash equilibrium

## More General Model

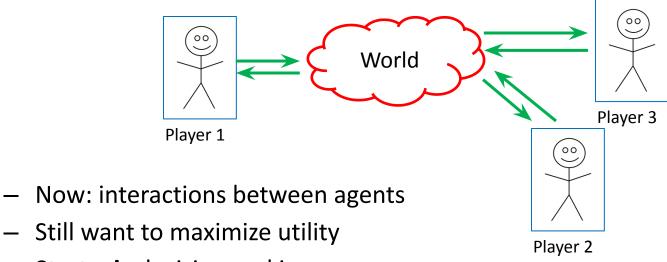
### Suppose we have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
  - Goal: maximize reward / utility (\$\$\$)
  - Note: now data consists of actions & observations
  - Setup for decision theory, reinforcement learning, planning

## Games: Multiple Agents

### Games setup: multiple agents



- Strategic decision making.

# Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves



# Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in  $\geq$  2 players
- Typically a finite number of players





## **Property 2: Action Space**

### Finite or infinite

- Rock-paper-scissors
- Tennis

# Property 3: Deterministic or Random

- Is there **chance** in the game?
  - Poker
  - Scrabble
  - Chess



# Property 4: Sum of payoff

- Zero sum: one player's win is the other's loss
  - Pure competition. E.g. rock-paper-scissors

- General sum
  - Example: prisoner's dilemma

### Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the same time
- Sequential: take turns (but payoff only revealed at end of game)

## Normal Form Game

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player *i* strategy *a*<sub>*i*</sub> from *A*<sub>*i*</sub>.
- Strategy profile:  $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards  $u_i(a)$ 
  - Note: reward depends on other players!
- We consider the simple case where all reward functions are common knowledge.

## Example of Normal Form Game

### Ex: Prisoner's Dilemma

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

## Strictly Dominant Strategies

Let's analyze such games. Some strategies are better

- Strictly dominant strategy: if a<sub>i</sub> strictly better than a<sub>i</sub>' regardless of what other players do, a<sub>i</sub> is strictly dominant
- I.e.,  $u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$

All of the other entries of *a* excluding *i* 

• Doesn't always exist!

## Strictly Dominant Strategies Example

### Back to Prisoner's Dilemma

• Examine all the entries: betray strictly dominates

• Check:

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             | ,      |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

## Dominant Strategy Equilibrium

 $a^*$  is a (strictly) dominant strategy equilibrium, if all players have a strictly dominant strategy  $a_i^*$ 

• Rational players will play at DSE, if one exists.

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

### **Dominant Strategy: Absolute Best Responses**

Player i's best response to  $a_{-i}$ :  $BR(a_{-i}) = \arg \max_a u_i(a, a_{-i})$ 

BR(player2=silent)=betray BR(player2=betray)=betray

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

 $a_i^*$  is the dominant strategy for player i, if  $a_i^* = BR(a_{-i}), \forall a_{-i}$ 

### **Dominant Strategy Equilibrium**

DSE does not always exist.

| Player 2 | L    | R    |
|----------|------|------|
| Player 1 |      |      |
| Т        | 2, 1 | 0, 0 |
| В        | 0, 0 | 1, 2 |

## Nash Equilibrium

*a*\* is a Nash equilibrium if no player has an incentive to **unilaterally deviate** 

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$



### Nash Equilibrium : Best Response to Each Other

*a*\* is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:  $a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$
- Compared to DSE (a DES is a NE, the other way is generally not true):

$$a_i^* = BR(a_{-i}), \forall a_{-i}$$

# Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best response, underscore it.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

# Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best response, upper-score it.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

# Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are pure NEs.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

## Pure Nash Equilibrium may not exist

# So far, pure strategy: each player picks a deterministic strategy. But:

| Player 2 | rock  | naper | scissors     |
|----------|-------|-------|--------------|
| Player 1 | TOCK  | paper | 30133013     |
| rock     | 0, 0  | -1, 1 | <u>1, -1</u> |
| paper    | 1, -1 | 0, 0  | -1, 1        |
| scissors | -1, 1 | 1, -1 | 0, 0         |

## **Mixed Strategies**

Can also randomize actions: "mixed"

• Player i assigns probabilities x, to each action

$$x_i(a_i)$$
, where  $\sum x_i(a_i) = 1, x_i(a_i) \ge 0$ 

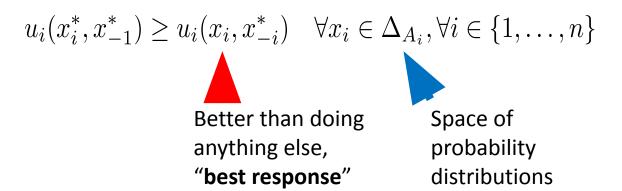
• Now consider **expected** rewards

$$u_{i}(x_{i}, x_{-i}) = E_{a_{i} \sim x_{i}, a_{-i} \sim x_{-i}} u_{i}(a_{i}, a_{-i})$$
$$= \sum_{a_{i}} \sum_{a_{-i}} x_{i}(a_{i}) x_{-i}(a_{-i}) u_{i}(a_{i}, a_{-i})$$

### Mixed Strategy Nash Equilibrium

Consider the mixed strategy  $x^* = (x_1^*, \dots, x_n^*)$ 

• This is a Nash equilibrium if



• Intuition: nobody can **increase expected reward** by changing only their own strategy.

# Mixed Strategy Nash Equilibrium

Example: 
$$x_1(.) = x_{2(.)} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

| Player 2 | rock  | paper | scissors |
|----------|-------|-------|----------|
| Player 1 | TOCK  | рарсі | 36/330/3 |
| rock     | 0, 0  | -1, 1 | 1, -1    |
| paper    | 1, -1 | 0, 0  | -1, 1    |
| scissors | -1, 1 | 1, -1 | 0, 0     |

### Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

| odd<br>even | f1    | f2    |
|-------------|-------|-------|
| f1          | 2, -2 | -3, 3 |
| f2          | -3, 3 | 4, -4 |

### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

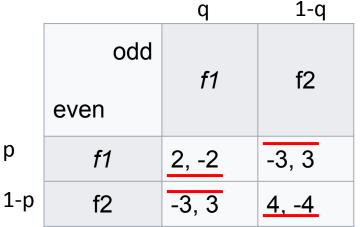
Two Finger Morra. Two-player zero-sum game. No pure NE:

| odd | f1    | f2    |
|-----|-------|-------|
| f1  | 2, -2 | -3, 3 |
| f2  | -3, 3 | 4, -4 |

### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q:  $u_1(p,q) \ge u_1(p',q) \forall p'$ .

But 
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
  
Average is no greater than components  
 $\Rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$ 



### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$u_{1}(f_{1},q) = u_{1}(f_{2},q)$$

$$2q + (-3)(1-q) = (-3)q + 4(1-q)$$

$$q = \frac{7}{12}$$
Similarly,  $u_{2}(p, f_{1}) = u_{2}(p, f_{2})$ 

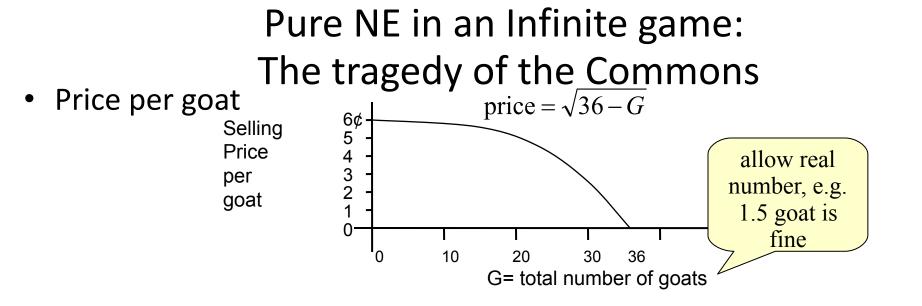
$$p = \frac{7}{12}$$
At this NE, even gets -1/12, odd gets 1/12. p
$$1-p$$

$$f_{1} = \frac{2, -2}{-3, 3} = \frac{-3, 3}{-4, -4}$$

## Properties of Nash Equilibrium

### Major result: (Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
  - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.
  - Exception: two-player zero-sum games (linear program).



- How many goats should one (out of n) rational farmer graze?
- How much would the farmer earn?

# **Continuous Action Game**

- Each farmer has infinite number of strategies  $g_i \in [0,36]$
- The value for farmer *i*, when the *n* farmers play at  $(g_1, g_2, ..., g_n)$  is

$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_{j \in [n]} g_j}$$

- Assume a pure Nash equilibrium exists.
- Assume (by apparent symmetry) the NE is  $(g^*, g^*, ..., g^*)$ .

# Finding g\*

• 
$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_j g_j}$$

• g\* is the best response to others (g\*,..., g\*)

$$g^* = argmax_{h \in [0,36]} u_i(g^*, \dots, h, \dots, g^*)$$
  
=  $argmax_h h \sqrt{36 - (n-1)g^* - h}$  i-th argument

# Finding g\*

$$g^* = argmax_h h \sqrt{36 - (n-1)g^* - h}$$

• Taking derivative w.r.t. h of the RHS, setting to 0:

$$g^* = \frac{72 - 2(n-1)g^*}{3}$$

$$g^* = \frac{72}{2n+1}$$
 So what?

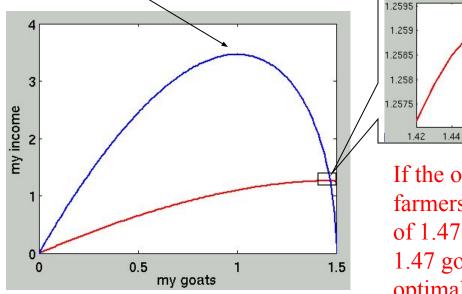
#### The tragedy of the Commons

• Say there are n=24 farmers. Each would rationally graze  $g_i^* = 72/(2*24+1) = 1.47$  goats • Each would get  $g_i \sqrt{36 - \sum_{j=1}^n g_j} = 1.25$ ¢

 But if they cooperate and each graze only 1 goat, each would get 3.46¢

### The tragedy of the Commons

If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal



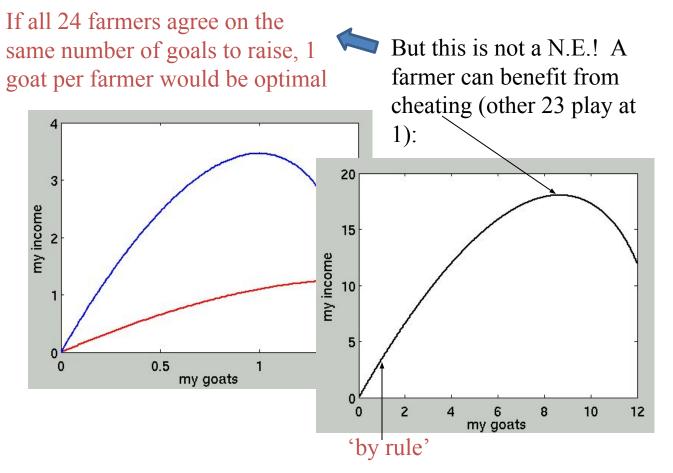
If the other 23 farmers play the N.E. of 1.47 goats each, 1.47 goats would be optimal

1.46

1.48

1.5

#### The tragedy of the Commons



### The tragedy

- Rational behaviors lead to sub-optimal solutions!
- Maximizing individual welfare not necessarily maximizes social welfare
- What went wrong?

Shouldn't have allowed free grazing?

# It's not just the real is the use of the atmosphere and the oceans for dumping of pollutants.

Mechanism design: designing the rules of a game

- **Q 2.1**: Which of the following is true
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
  - A. Neither
  - B. (i) but not (ii)
  - C. (ii) but not (i)
  - D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
  - A. Neither
  - B. (i) but not (ii)
  - C. (ii) but not (i)
  - D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
  - A. Neither (There is a mixed strategy Nash equilibrium)
  - B. (i) but not (ii)
  - C. (ii) but not (i) (i is indeed false: easy to check that there's no deterministic dominant strategy)
  - D. Both (Same as A)

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
  - A. Neither
  - B. (i) but not (ii)
  - C. (ii) but not (i)
  - D. Both

- **Q 2.2**: Which of the following is **true**
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
  - A. Neither
  - B. (i) but not (ii)
  - C. (ii) but not (i)
  - D. Both

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
  - A. Neither (See below)
  - B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
  - C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
  - D. **Both**

# Summary

• Intro to game theory

- Characterize games by various properties

- Mathematical formulation for simultaneous games
  - Normal form, dominance, Nash equilibria, mixed vs pure