

CS 540 Introduction to Artificial Intelligence Probability

University of Wisconsin-Madison

Spring 2022

Probability: What is it good for?

- Language to express uncertainty

In AI/ML Context

- Quantify predictions

$[p($ lion $), p($ tiger $)]=[0.01,0.99]$

[0.43, 0.57]

Model Data Generation

- Model complex distributions

StyleGAN2 (Kerras et al '20)

Win At Poker

- Wisconsin Ph.D. student Ye Yuan $5^{\text {th }}$ in WSOP Not unusual: probability began as study of gambling techniques

Cardano

Liber de ludo aleae
Book on Games of Chance 1564!

Outline

- Basics: definitions, axioms, RVs, joint distributions
- Independence, conditional probability, chain rule
- Bayes' Rule and Inference

Basics: Outcomes \& Events

- Outcomes: possible results of an experiment
- Events: subsets of outcomes we're interested in

$$
\text { Ex: } \begin{aligned}
\Omega & =\underbrace{\{1,2,3,4,5,6\}}_{\text {outcomes }} \\
\mathcal{F} & =\underbrace{\{\emptyset,\{1\},\{2\}, \ldots,\{1,2\}, \ldots, \Omega\}}_{\text {events }}
\end{aligned}
$$

Basics: Outcomes \& Events

- Event space can be smaller:

$$
\mathcal{F}=\underbrace{\{\emptyset,\{1,3,5\},\{2,4,6\}, \Omega\}}_{\text {events }}
$$

- Two components always in it!

$$
\emptyset, \Omega
$$

Advanced: Sigma Fields

- Won't be using this. Extra context:
\mathcal{F} is a "sigma algebra", follows rules:
Closed under complements \& countable unions
- Part of axiomatic development of probability
- Long process: $17^{\text {th }}$ century to 1930 s

Basics: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}, P(E) \in[0,1]$

Back to our example:

$$
\mathcal{F}=\underbrace{\{\emptyset,\{1,3,5\},\{2,4,6\}, \Omega\}}_{\text {events }}
$$

$$
P(\{1,3,5\})=0.2, P(\{2,4,6\})=0.8
$$

Basics: Axioms

- Rules for probability:
- For all events $E \in \mathcal{F}, P(E) \geq 0$
- Always, $\quad P(\emptyset)=0, P(\Omega)=1$
- For disjoint events, $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$
- Easy to derive other laws. Ex: non-disjoint events

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Visualizing the Axioms: I

- Axiom 1: $E \in \mathcal{F}, P(E) \geq 0$

Visualizing the Axioms: II

- Axiom 2: $P(\emptyset)=0, P(\Omega)=1$

Visualizing the Axioms: III

- Axiom 3: disjoint $\quad P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$

Visualizing the Axioms

- Also, other laws:

Break \& Quiz

- Q 1.1: We toss a biased coin. If $P($ heads $)=0.7$, then P (tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

Break \& Quiz

- Q 1.1: We toss a biased coin. If $P($ heads $)=0.7$, then P (tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

Break \& Quiz

- Q 1.2: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

Break \& Quiz

- Q 1.2: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

Break \& Quiz

- Q 1.3: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. $26 / 52$
- B. $4 / 52$
- C. $30 / 52$
- D. 28/52

Break \& Quiz

- Q 1.3: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. $26 / 52$
- B. $4 / 52$
- C. 30/52
- D. 28/52

Basics: Random Variables

- Really, functions
- Map outcomes to real values $X: \Omega \rightarrow \mathbb{R}$
- Why?
- So far, everything is a set.

- Hard to work with!
- Real values are easy to work with

Basics: CDF \& PDF

- Can still work with probabilities:

$$
P(X=3):=P(\{\omega: X(\omega)=3\})
$$

- Cumulative Distribution Func. (CDF)

$$
F_{X}(x):=P(X \leq x)
$$

- Density / mass function $p_{X}(x)$

Basics: Expectation \& Variance

- Another advantage of RVs are "summaries"
- Expectation: $E[X]=\sum_{a} a \times P(x=a)$
- The "average"
- Variance: $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- A measure of spread
- Higher moments: other parametrizations

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: $P(X=a, Y=b)$
- Why? Work with multiple types of uncertainty

Basics: Marginal Probability

- Given a joint distribution $P(X=a, Y=b)$
- Get the distribution in just one variable:

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

- This is the "marginal" distribution.

Basics: Marginal Probability

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

$$
[P(\text { hot }), P(\text { cold })]=\left[\frac{195}{365}, \frac{170}{365}\right]
$$

Probability Tables

- Write our distributions as tables
- \# of entries? 6.

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

- If we have n variables with k values, we get k^{n} entries
- Big! For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
- No way of writing down all terms

Independence

- (requires domain knowledge) Independence between RVs:

$$
P(X, Y)=P(X) P(Y)
$$

- Why useful? Go from k^{n} entries in a table to $\sim k n$
- Collapses joint into product of marginals

Conditional Probability

- For when we know something,

$$
P(X=a \mid Y=b)=\frac{P(X=a, Y=b)}{P(Y=b)}
$$

- (require domain knowledge) conditional independence

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Chain Rule

- Apply repeatedly,

$$
\begin{aligned}
& P\left(A_{1}, A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
\end{aligned}
$$

- Note: still big!
- If some conditional independence, can factor!
- Leads to probabilistic graphical models

Break \& Quiz

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

What is the probability the temperature is hot given the weather is cloudy?
A. $40 / 365$
B. $2 / 5$
C. $3 / 5$
D. $195 / 365$

Break \& Quiz

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

What is the probability the temperature is hot given the weather is cloudy?
A. 40/365
B. $2 / 5$
C. $3 / 5$
D. $195 / 365$

Break \& Quiz

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?
A. 0.3
B. 0.06
C. 0.24
D. 0.2

Break \& Quiz

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?
A. 0.3
B. 0.06
C. 0.24
D. 0.2

Reasoning With Conditional Distributions

- Evaluating probabilities:
- Wake up with a sore throat.
- Do I have the flu?

- Logic approach: $S \rightarrow F$
- Too strong.
- Inference: compute probability given evidence $P(F \mid S)$
- Can be much more complex!

Using Bayes' Rule

- Want: $P(F \mid S)$
- Bayes' Rule: $P(F \mid S)=\frac{P(F, S)}{P(S)}=\frac{P(S \mid F) P(F)}{P(S)}$
- Parts:
$\begin{array}{ccl}\text { - } & P(S)=0.1 & \text { Sore throat rate } \\ \text { - } & P(F)=0.01 & \text { Flu rate } \\ \text { - } & P(S \mid F)=0.9 & \text { Sore throat rate among flu sufferers }\end{array}$
So: $P(F \mid S)=0.09$

Using Bayes' Rule

- Interpretation $P(F \mid S)=0.09$
- Much higher chance of flu than normal rate (0.01).
- Very different from $P(S \mid F)=0.9$
- 90% of folks with flu have a sore throat
- But, only 9% of folks with a sore throat have flu
- Idea: update probabilities from

Bayesian Inference

- Fancy name for what we just did. Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

- H is the hypothesis
- E is the evidence

Bayesian Inference

- Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)} \longleftarrow \text { Prior }
$$

- Prior: estimate of the probability without evidence

Bayesian Inference

- Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

- Likelihood: probability of evidence given a hypothesis.

Bayesian Inference

- Terminology:

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{\substack{\uparrow \\ \text { Posterior }}}
$$

- Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
$-E_{1}$ has two black balls, E_{2} has one black, one red
- The red one is worth $\$ 100$. Others, zero
- Open an envelope, see one ball. Then, can switch (or not).
- You see a black ball. Switch?

Two Envelopes Solution

- Let's solve it.

$$
P\left(E_{1} \mid \text { Black ball }\right)=\frac{P\left(\text { Black ball } \mid E_{1}\right) P\left(E_{1}\right)}{P(\text { Black ball })}
$$

- Now plug in:

$$
\begin{aligned}
P\left(E_{1} \mid \text { Black ball }\right) & =\frac{1 \times \frac{1}{2}}{P(\text { Black ball })} \\
P\left(E_{2} \mid \text { Black ball }\right) & =\frac{\frac{1}{2} \times \frac{1}{2}}{P(\text { Black ball })}
\end{aligned}
$$

So switch!

Naïve Bayes

- Conditional Prob. \& Bayes:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- If we further make the conditional independence assumption (a.k.a. Naïve Bayes)

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Naïve Bayes

- Expression
$P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}$
- H: some class we'd like to infer from evidence
- We know prior $P(H)$
- Estimate $P\left(E_{i} \mid H\right)$ from data! ("training")
- Very similar to envelopes problem.

Break \& Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. $5 / 104$
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. 5/104
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail
A. $1 / 8$
B. $2 / 8$
C. $3 / 8$
D. $5 / 8$

Break \& Quiz

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail
A. $1 / 8$
B. $2 / 8$
C. $3 / 8$
D. $5 / 8$

Readings

- Vast literature on intro probability and statistics.
- Local classes: Math/Stat 431
- Suggested reading:

Probability and Statistics: The Science of Uncertainty,
Michael J. Evans and Jeff S. Rosenthal
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
(Chapters 1-3, excluding "advanced" sections)

