

CS 540 Introduction to Artificial Intelligence **Probability** University of Wisconsin-Madison

Spring 2022

Probability: What is it good for?

• Language to express **uncertainty**

In AI/ML Context

• Quantify predictions

[p(lion), p(tiger)] = [0.98, 0.02]

[p(lion), p(tiger)] = [0.01, 0.99]

[p(lion), p(tiger)] = [0.43, 0.57]

Model Data Generation

• Model complex distributions

StyleGAN2 (Kerras et al '20)

Win At Poker

Wisconsin Ph.D. student Ye Yuan 5th in WSOP
 Not unusual: probability began
 as study of gambling techniques

Cardano

Liber de ludo aleae Book on Games of Chance 1564!

pokernews.com

Outline

• Basics: definitions, axioms, RVs, joint distributions

• Independence, conditional probability, chain rule

• Bayes' Rule and Inference

Basics: Outcomes & Events

- Outcomes: possible results of an **experiment**
- Events: subsets of outcomes we're interested in

Ex:
$$\Omega = \{\underbrace{1, 2, 3, 4, 5, 6}_{\text{outcomes}}$$

 $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}$
events

Basics: Outcomes & Events

• Event space can be smaller:

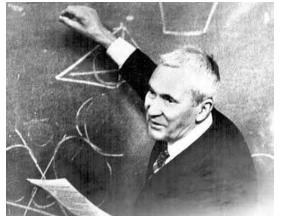
$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

• Two components always in it!

Advanced: Sigma Fields

• Won't be using this. Extra context: \mathcal{F} is a ``sigma algebra'', follows rules: Closed under complements & countable unions

- Part of axiomatic development of probability
- Long process: 17th century to 1930s



A. N. Kolmogorov

Basics: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}, P(E) \in [0, 1]$

Back to our example: $\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$ $P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$

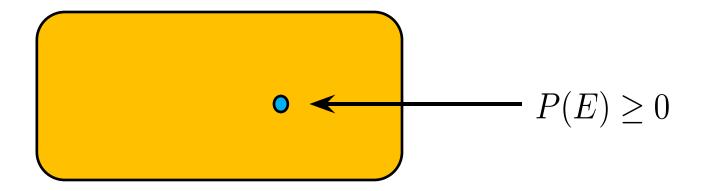
Basics: Axioms

- Rules for probability:
 - For all events $E \in \mathcal{F}, P(E) \ge 0$
 - Always, $P(\emptyset) = 0, P(\Omega) = 1$
 - For disjoint events, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$
- Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

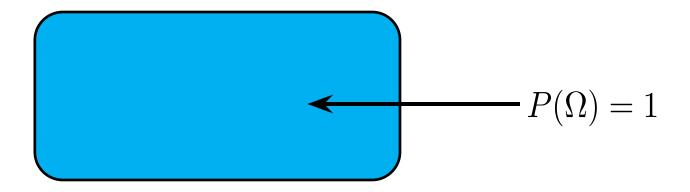
Visualizing the Axioms: I

• Axiom 1: $E \in \mathcal{F}, P(E) \ge 0$



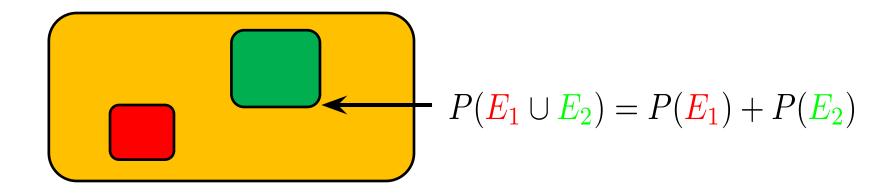
Visualizing the Axioms: II

• Axiom 2: $P(\emptyset) = 0, P(\Omega) = 1$



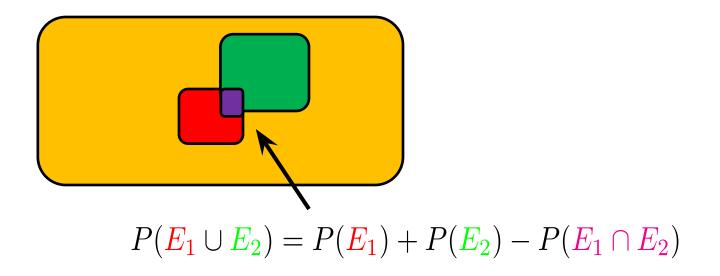
Visualizing the Axioms: III

• Axiom 3: disjoint $P(E_1 \cup E_2) = P(E_1) + P(E_2)$



Visualizing the Axioms

• Also, other laws:



- Q 1.1: We toss a biased coin. If P(heads) = 0.7, then P(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- Q 1.1: We toss a biased coin. If P(heads) = 0.7, then P(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

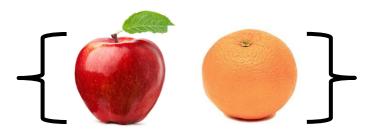
- **Q 1.3**: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

- **Q 1.3**: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

Basics: Random Variables

- Really, functions
- Map outcomes to real values $X: \Omega \to \mathbb{R}$

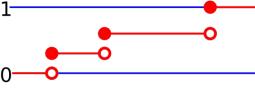
- Why?
 - So far, everything is a set.
 - Hard to work with!
 - Real values are easy to work with



Basics: CDF & PDF

• Can still work with probabilities:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$



• Cumulative Distribution Func. (CDF)

$$F_X(x) := P(X \le x)$$

• Density / mass function $p_X(x)$



Wiki CDF

Basics: Expectation & Variance

- Another advantage of RVs are ``summaries''
- **Expectation:** $E[X] = \sum_{a} a \times P(x = a)$
 - The "average"
- Variance: $Var[X] = E[(X E[X])^2]$
 - A measure of spread
- Higher moments: other parametrizations

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: P(X = a, Y = b)
 - Why? Work with **multiple** types of uncertainty

Basics: Marginal Probability

• Given a joint distribution P(X = a, Y = b)

- Get the distribution in just one variable:

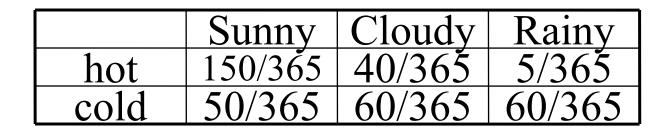
$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

- This is the "marginal" distribution.

	atrice the						
1632	Cating Se						1
Ocri I	Ginger Beer					hr .	0
2	L'Brace of Grouse and		16	" 2			
	Packing Velle	*	3			19	
Dec " //	Sumer sh Club-			200	4	2	6,
	Coffice				1.		6
12	Breakfast _			1	**	1	6.i
	Breakfast -					1	6
"	Sea						6.
14	Breakfast						
							6.
1833	Breakfast						
	Sea at him club			33			6
	Breaklast						6 5
	South & to						
						/	
	Joda Water -					"	
2.3	Granged						6.
	3w Julubes 8			S.		/	
100 A	Bundle of asparagus				"	"	10
	Breakfast		1				
	Waiter			6	"	2	
14	See 2.						
June /	Sees				,,	1	"
				£	1	19	11
			-			1	

Basics: Marginal Probability

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$



$$[P(hot), P(cold)] = [\frac{195}{365}, \frac{170}{365}]$$

Probability Tables

• Write our distributions as tables

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

- # of entries? 6.
 - If we have n variables with k values, we get k^n entries
 - Big! For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
 - No way of writing down all terms

Independence

• (requires domain knowledge) Independence between RVs:

$$P(X,Y) = P(X)P(Y)$$

- Why useful? Go from k^n entries in a table to $\sim kn$
- Collapses joint into **product** of marginals

Conditional Probability

• For when we know something,

$$P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

• (require domain knowledge) conditional independence

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

Chain Rule

• Apply repeatedly,

 $P(A_1, A_2, \ldots, A_n)$

 $= P(A_1)P(A_2|A_1)P(A_3|A_2,A_1)\dots P(A_n|A_{n-1},\dots,A_1)$

- Note: still big!
 - If some conditional independence, can factor!
 - Leads to probabilistic graphical models

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- B. 2/5
- C. 3/5
- D. 195/365

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- **B.** 2/5
- C. 3/5
- D. 195/365

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24
- D. 0.2

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24

D. 0.2

Reasoning With Conditional Distributions

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?
- Logic approach: $S \to F$
 - Too strong.
- Inference: compute probability given evidence P(F|S)
 - Can be much more complex!

Using Bayes' Rule

- Want: P(F|S)
- **Bayes' Rule:** $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
 - P(S) = 0.1 Sore throat rate
 - P(F) = 0.01 Flu rate
 - P(S|F) = 0.9 Sore throat rate among flu sufferers
 - **So:** P(F|S) = 0.09

Using Bayes' Rule

- Interpretation P(F|S) = 0.09
 - Much higher chance of flu than normal rate (0.01).
 - Very different from P(S|F) = 0.9
 - 90% of folks with flu have a sore throat
 - But, only 9% of folks with a sore throat have flu
- Idea: **update** probabilities from

evidence

• Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- *E* is the evidence

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

• Prior: estimate of the probability without evidence

• Terminology: Likelihood $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$

• Likelihood: probability of evidence **given a hypothesis**.

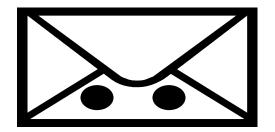
• Terminology:

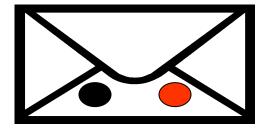
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
Posterior

• Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
 - E_1 has two black balls, E_2 has one black, one red
 - The **red** one is worth \$100. Others, zero
 - Open an envelope, see one ball. Then, can switch (or not).
 - You see a black ball. Switch?





Two Envelopes Solution

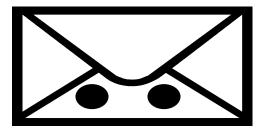
• Let's solve it. $P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball}|E_1)P(E_1)}$

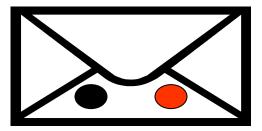
• Now plug in:

ack ball) =
$$\frac{P(E1acH \text{ ball}|E1)P(E1)}{P(Black \text{ ball})}$$

 $P(E_1|Black \text{ ball}) = \frac{1 \times \frac{1}{2}}{P(Black \text{ ball})}$
 $P(E_2|Black \text{ ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(Black \text{ ball})}$

So switch!





Naïve Bayes

• Conditional Prob. & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

 If we further make the conditional independence assumption (a.k.a. Naïve Bayes)

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Naïve Bayes

• Expression

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- *H*: some class we'd like to infer from evidence
 - We know prior P(H)
 - Estimate $P(E_i|H)$ from data! ("training")
 - Very similar to envelopes problem.

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. 5/104
- B. 95/100
- C. 1/100
- D. 1/2

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. 5/104
- B. 95/100
- C. 1/100
- D. 1/2

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A. 1/8
- B. 2/8
- C. 3/8
- D. 5/8

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A. 1/8
- B. 2/8
- **C.** 3/8
- D. 5/8

Readings

- Vast literature on intro probability and statistics.
- Local classes: Math/Stat 431
- Suggested reading:

Probability and Statistics: The Science of Uncertainty, Michael J. Evans and Jeff S. Rosenthal

http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding "advanced" sections)