

## CS 540 Introduction to Artificial Intelligence Games II

## University of Wisconsin-Madison

Spring 2022

## Outline

- Sequential-move games
- Game trees, minimax, search approaches
- Speeding up sequential-move game search
- Pruning, heuristics


## Sequential-Move Games

More complex games with multiple moves

- Instead of normal form, extensive form
- Represent with a tree
- Rewards at leaves
- Find strategies: perform search over the tree
- Nash equilibrium still well-defined

- Backward induction


## II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.

- Each player takes one or more sticks from pile
- Take last stick: lose
- Two players: Max and Min
- If Max wins, its score is +1 ; otherwise -1
- Min's score is -Max's (two-player zero-sum)
- Use Max's as the score of the game


## Game Trajectory

(ii, ii)

## Game Trajectory

(ii, ii)
Max takes one stick from one pile
(i, ii)

## Game Trajectory

(ii, ii)
Max takes one stick from one pile
(i, ii)
Min takes two sticks from the other pile
(i,-)

## Game Trajectory

(ii, ii)
Max takes one stick from one pile
(i, ii)
Min takes two sticks from the other pile
(i,-)
Max takes the last stick

$$
(-,-)
$$

Max gets score -1

## Game tree for II-Nim

Two players:
Max and Min


Convention: score is w.r.t. the first player Max. Min's score $=-$ Max

Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


Max wants the largest score
Min wants the smallest score

## Game tree for II-Nim

Two players:
Max and Min


## Game tree for II-Nim

Two players:

## Max and Min



## Game tree for II-Nim

Two players:
Max and Min


## Game tree for II-Nim

Two players:
Max and Min


## Game tree for II-Nim



## Game tree for II-Nim

Two players:

## Max and Min



## Game tree for II-Nim

Two players:

## Max and Min

 second player plays optimally!


Max wants the largest score
Min wants the smallest score

## Break \& Quiz

Q 2.1: We are playing a game where Player $A$ goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination nodes (leaves)?

- A. 23
- B. 65
- C. 41
- D. 2


## Break \& Quiz

Q 2.1: We are playing a game where Player $A$ goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination nodes (leaves)?

- A. 23
- B. 65
- C. 41
- D. 2


## Break \& Quiz

Q 2.1: We are playing a game where Player $A$ goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.
How many nodes are there in the minimax tree, including termination nodes (leaves)?

- A. 23
- B. $65\left(1+4+4^{*} 3+4 * 3 * 2+4^{*} 3^{*} 2=65\right.$. Note the root and leaf nodes.)
- C. 41
- D. 2


## Break \& Quiz

Q 2.2: During minimax tree search, must we examine every node?

- A. Always
- B. Sometimes
- C. Never


## Break \& Quiz

Q 2.2: During minimax tree search, must we examine every node?

- A. Always
- B. Sometimes
- C. Never


## Break \& Quiz

Q 2.2: During minimax tree search, must we examine every node?

- A. Always (No: consider layer $k$, where we take the max of all the mins of its children at layer $k+1$. If the current value of a min node at $k+1$ already smaller than the current max, we don't need to continue the minimization.)
- B. Sometimes
- C. Never (No: the event above may simply not happen).


## Our Approach So Far

## We find the minimax value/strategy bottom up

- Minimax value: score of terminal node when both players play optimally
- Max's turn, take max of children
- Min's turn, take min of children
- Can implement this as depth-first search: minimax algorithm


## Minimax Algorithm

function Max-Value(s)
inputs:
s: current state in game, Max about to play output: best-score (for Max) available from s
if ( $s$ is a terminal state )
then return (terminal value of $s$ )
else

$$
\begin{aligned}
& \alpha:=- \text { infinity } \\
& \text { for each } s^{\prime} \text { in Succ(s) } \\
& \quad \alpha:=\max (\alpha, \text { Min-value(s')) }
\end{aligned}
$$

return $\alpha$
function Min-Value(s)
output: best-score (for Min) available from s
if ( $s$ is a terminal state )
then return ( terminal value of $s$ )
else

$$
\begin{aligned}
& \beta:=\text { infinity } \\
& \text { for each } s^{\prime} \text { in } \operatorname{Succs}(s) \\
& \quad \beta:=\min (\beta, \operatorname{Max}-\text { value(s')) }
\end{aligned}
$$

return $\beta$

## Time complexity?

- $\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$

Space complexity?

- O(bm)

Minimax algorithm in execution


Minimax algorithm in execution

$\min$

## Minimax algorithm in execution



Minimax algorithm in execution

$\min$

Minimax algorithm in execution

min

Minimax algorithm in execution


Minimax algorithm in execution


Minimax algorithm in execution

min

Minimax algorithm in execution

$\min$

## Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning

- Goal: want the same minimax value, but faster
- We can get rid of bad branches
- Same principle as quiz question



## Alpha-beta pruning

```
function Max-Value ( \(s, \alpha, \beta\) )
inputs:
    s: current state in game, Max about to play
    \(\alpha\) : best score (highest) for Max along path to \(s\)
    \(\beta\) : best score (lowest) for Min along path to \(s\)
output: \(\min (\beta\), best-score (for Max) available from s)
    if ( \(s\) is a terminal state )
    then return (terminal value of \(s\) )
    else for each s' in Succ(s)
        \(\alpha:=\max \left(\alpha\right.\), Min-value \(\left.\left(s^{\prime}, \alpha, \beta\right)\right)\)
        if ( \(\alpha \geq \beta\) ) then return \(\beta\) /* alpha pruning */
    return \(\alpha\)
function Min-Value(s, \(\alpha, \beta\) )
output: max( \(\alpha\), best-score (for Min) available from s )
    if ( \(s\) is a terminal state )
    then return ( terminal value of \(s\) )
    else for each s' in Succs(s)
        \(\beta:=\min \left(\beta\right.\), Max-value \(\left.\left(s^{\prime}, \alpha, \beta\right)\right)\)
    if \((\alpha \geq \beta)\) then return \(\alpha\) /* beta pruning */
    return \(\beta\)
```


## Alpha-Beta Pruning

## How effective is alpha-beta pruning?

- Depends on the order of successors!
- Best case, the \#of nodes to search is $\mathrm{O}\left(b^{m / 2}\right)$

- Happens when each player's best move is the leftmost child.
- The worst case is no pruning at all.
- In DeepBlue, the average branching factor was about 6 with alpha-beta instead of 35-40 without.


## Minimax With Heuristics

## Note that long games may require huge computation

- To deal with this: limit d for the search depth
- $\mathbf{Q}$ : What to do at depth $d$, but no termination yet?
- A: Use a heuristic evaluation function $e(x)$

```
function Minimax(x,d) returns an estimate of x's utility value
    inputs: x, current state in game
    d, an upper bound on the search depth
    if }x\mathrm{ is a terminal state then return Max's payoff at }
    else if d=0 then return e(x)
    else if it is Max's move at }x\mathrm{ then
        return max{ {InImax (y,d-1): y is a child of }x
    else return min{\operatorname{Minimax}(y,d-1):y\mathrm{ is a child of }x}
```


## Heuristic Evaluation Functions

- $e(x)$ can be any computable function of $x$; e.g. a weighted sum of features (like our linear models)

$$
e(x)=w_{1} f_{1}(x)+w_{2} f_{2}(x)+\ldots+w_{n} f_{n}(x)
$$

- Chess example: $f_{i}(x)=$ difference between number of white and black, with $i$ ranging over piece types.
- Set weights according to piece importance
- E.g., 1(\# white pawns - \# black pawns) + 3(\#white knights - \# black knights)


## Going Further

- Monte Carlo tree search (MCTS)
- Uses random sampling of the search space
- Choose some children (heuristics to figure out \#)
- Record results, use for future play
- Self-play
- AlphaGo and other big results!


The agent (Black) learns to capture walls and corners in the early game


The agent (Black) learns to force passes in the late game

## From Extensive Form back to Normal Form Game

- A pure strategy for a player is the mapping between all possible states the player can see, to the move the player would make.
- Player A has 4 pure strategies:

A's strategy $\mathrm{I}:(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{~L})$
A's strategy II: $(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{R})$
A's strategy III: $(1 \rightarrow R, 4 \rightarrow \mathrm{~L})$
A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$


- Player B has 3 pure strategies:

B's strategy I: $(2 \rightarrow \mathrm{~L}, 3 \rightarrow \mathrm{R})$ B's strategy II: $(2 \rightarrow M, 3 \rightarrow R)$ B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$

- How many pure strategies if each player can see $N$ states, and has $b$ moves at each state?


## Matrix Normal Form of games <br> (1)-

A's strategy I: $(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{~L})$
A's strategy II: $(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{R})$
A's strategy III: $(1 \rightarrow \mathrm{R}, 4 \rightarrow \mathrm{~L})$
A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$
B's strategy I: ( $2 \rightarrow \mathrm{~L}, 3 \rightarrow \mathrm{R}$ )
B's strategy II: $(2 \rightarrow \mathrm{M}, 3 \rightarrow \mathrm{R})$
B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$

The matrix normal form is the game value matrix indexed by each player's
 strategies.

|  | B-I | B-II | B-III |
| :--- | :--- | :--- | :--- |
| A-I | 7 | 3 | -1 |
| A-II | 7 | 3 | 4 |
| A-III | 5 | 5 | 5 |
| A-IV | 5 | 5 | 5 |

The matrix encodes every outcome of the game! The rules etc. are no longer needed.

## Another example of normal form



- How many pure strategies does $A$ have?
- How many does B have?
- What is the matrix form of this game?


## Matrix normal form example



- How many pure strategies does $A$ have? 4

$$
\text { A-I }(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{~L}) \text { A-II }(1 \rightarrow \mathrm{~L}, 4 \rightarrow \mathrm{R}) \text { A-III }(1 \rightarrow \mathrm{R}, 4 \rightarrow \mathrm{~L}) \text { A-IV }(1 \rightarrow \mathrm{R}, 4 \rightarrow \mathrm{R})
$$

- How many does $B$ have? 4

B-I $(2 \rightarrow L, 3 \rightarrow L) B-I I(2 \rightarrow L, 3 \rightarrow R) B-I I I(2 \rightarrow R, 3 \rightarrow L) B-I V(2 \rightarrow R, 3 \rightarrow R)$

- What is the matrix form of this game?


## Minimax in Matrix Normal Form

- Player A: for each strategy, consider all B's counter strategies (a row in the matrix), find the minimum value in that row. Pick the row with the maximum minimum value.
- Here maximin=5



## Minimax in Matrix Normal Form

- Player B: find the maximum value in each column. Pick the column with the minimum maximum value.
- Here $\operatorname{minimax}=5$


Fundamental game theory result (proved by

|  | B-I | B-II | B-III |
| :--- | :--- | :--- | :--- |
| A-I | 7 | 3 | -1 |
| A-II | 7 | 3 | 4 |
| A-III | 5 | 5 | 5 |
| A-IV | 5 | 5 | 5 |

## Minimax in Matrix Normal Form

- We can also check for mutual best responses



## Minimax in Matrix Normal Form

Interestingly, A can tell B in advance what strategy $A$ will use (the maximin), and this information will not help $B$ ! Similarly B can tell A what strategy B will use.
In fact A knows what B's strategy will be.
And B knows A's too. And $A$ knows that $B$ knows

The game is at an equilibrium
puाए stareyy Io
player.


