Outline

• Uninformed vs Informed Search
 – Review of uninformed strategies, adding heuristics

• A* Search
 – Heuristic properties, stopping rules, analysis

• Extensions: Beyond A*
 – Iterative deepening, beam search
Breadth-First Search

Recall:

• Data structure: queue

• Properties:
 – Complete
 – Optimal (if edge cost 1)
 – Time $O(b^d)$
 – Space $O(b^d)$
Uniform Cost Search

Like BFS, but keeps track of cost

• Expand least cost node
• Data structure: priority queue

• Properties:
 – Complete
 – Optimal (if weight lower bounded by ϵ)
 – Time $O(b^{C*/\epsilon})$
 – Space $O(b^{C*/\epsilon})$
Depth-First Search

Recall:
- Data structure: stack
- Properties:
 - Incomplete (stuck in infinite tree...)
 - Suboptimal
 - Time $O(b^m)$
 - Space $O(bm)$
Iterative Deepening DFS

Repeated depth-limited DFS

• Search like BFS, fringe like DFS

• **Properties:**
 – Complete
 – Optimal (if edge cost 1)
 – Time $O(b^d)$
 – Space $O(bd)$

A good option!
Uninformed vs Informed Search

Uninformed search (all of what we saw). Knows:
• Path cost $g(s)$ from start to node s
• Successors.

Informed search. Knows:
• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal (recall game heuristic)
Informed Search

Informed search. Know:

• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal (recall game heuristic)

• Like in games, use information to **speed up search**.
Using the Heuristic

Back to uniform-cost search

• We had the priority queue
• Expand the node with the smallest $g(s)$
 – $g(s)$ “first-half-cost”

• Now let’s use the heuristic (“second-half-cost”)
 – Several possible approaches: let’s see what works
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand node with smallest $h(s)$
- This isn’t a good idea. Why?

Not optimal! Get $A \rightarrow C \rightarrow G$. **Want:** $A \rightarrow B \rightarrow C \rightarrow G$
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$ alone

- Specifically, expand node with smallest $g(s) + h(s)$
- Again, use a priority queue
- Called “A” search

• Still not optimal! (Does work for former example).
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

• Demand that $h(s) \leq h^*(s)$, for all s

• If heuristic has this property, “admissible”
 – Optimistic! Never over-estimates

• Still need $h(s) \geq 0$
 – Negative heuristics can lead to strange behavior

• This is A* search
Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960’s

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

One useful approach: relax constraints

- $h(s) = \text{number of tiles in wrong position}$
 - allows tiles to fly to destination in a single step
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)

(ii) \(h(s) = \max(2, h^*(s)) \) No: \(h(s) \) might be too big

(iii) \(h(s) = \min(2, h^*(s)) \)

(iv) \(h(s) = h^*(s) - 2 \) No: \(h(s) \) might be negative

(v) \(h(s) = \sqrt{h^*(s)} \) No: if \(h^*(s) < 1 \) then \(h(s) \) is bigger

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,

$$h_1(s) \leq h_2(s) \leq h^*(s)$$

• **Idea**: we want to be as close to h^* as possible
 – But not over!

• **Tradeoff**: being very close might require a very complex heuristic, expensive computation
 – Might be better off with cheaper heuristic & expand more nodes.
A* Termination

When should A* stop?

• One idea: as soon as we reach goal state?

• h admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!
A* Termination

When should A* stop?

- **Rule**: terminate *when a goal is popped* from queue.

• Note: taking $h = 0$ reduces to uniform cost search rule.
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller $g+h$
A* Full Algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n) = g(n) + h(n)$)
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
 1. If n' is not already on OPEN or CLOSED estimate $h(n')$, $g(n') = g(n) + c(n,n')$, $f(n') = g(n') + h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A* Analysis

Some properties:

• Terminates!
• A* can use **lots of memory**: $O(\# \text{ states})$.
• Will run out on large problems.
• Next, we will consider some alternatives to deal with this.
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. \(h_1 \) is the number of tiles in wrong position. \(h_2 \) is the \(l_1/\)Manhattan distance between the tiles and the goal location. How do \(h_1 \) and \(h_2 \) relate?

• A. \(h_2 \) dominates \(h_1 \)
• B. \(h_1 \) dominates \(h_2 \) (No: \(h_1 \) is a distance where each entry is at most 1, \(h_2 \) can be greater)
• C. Neither dominates the other
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

• Bound the memory in search.
• At each phase, don’t expand any node with \(g(s) + h(s) > k \),
 – Assuming integer costs, do this for \(k=0 \), then \(k=1 \), then \(k=2 \), and so on
• Complete + optimal, might be costly time-wise
 – Revisit many nodes
• Lower memory use than A*
IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min $g(s) + h(s)$ for non-expanded nodes
• Worst case: restarted for each state
Beam Search

General approach (beyond A* too)
- Priority queue with fixed size k; beyond k nodes, discard!
- **Upside**: good memory efficiency
- **Downside**: not complete or optimal

Variation:
- Priority queue with nodes that are at most ε worse than best node.
Recap and Examples

Example for A*:
Recap and Examples

Example for A*:

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S

Goal state
Initial state
Recap and Examples

Example for IDA*:
Threshold = 8

PREFIX
- OPEN
S S(0+8)
SA A(1+7)
SAH H(2+2) D(4+4)
SAHF D(4+4) F(6+1)
SAD D(4+4)

Graph:
- Initial state: S
- Goal state: H, I, J, K, L, D, E, G
- OPEN states: S, A, H, D, F
- Threshold = 8
- heuristic values:
 - S: 8
 - A: 7
 - H: 5
 - D: 4
 - F: 1
Recap and Examples

Example for IDA: Threshold = 9

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S(0+8)</td>
</tr>
<tr>
<td>S</td>
<td>A(1+7) B(5+4)</td>
</tr>
<tr>
<td>S A</td>
<td>B(5+4) H(2+2) D(4+4)</td>
</tr>
<tr>
<td>S A H</td>
<td>B(5+4) D(4+4) F(6+1)</td>
</tr>
<tr>
<td>S A H F</td>
<td>B(5+4) D(4+4)</td>
</tr>
<tr>
<td>S A D</td>
<td>B(5+4)</td>
</tr>
<tr>
<td>S B</td>
<td>G(9+0)</td>
</tr>
<tr>
<td>S B G</td>
<td></td>
</tr>
</tbody>
</table>
Recap and Examples

Example for Beam Search: \(k=2 \)

CURRENT
- S(0+8)
- A(1+7) B(5+4)
- H(2+2) D(4+4)
- D(4+4) F(6+1)
- D(4+4) G(10+0)
- G(10+0)

OPEN
- S(0+8)
- A(1+7) B(5+4)
- H(2+2) D(4+4)
- D(4+4) F(6+1)
- D(4+4) G(10+0)
- G(10+0)
Summary

• Informed search: introduce heuristics
 – Not all approaches work: best-first greedy is bad

• A* algorithm
 – Properties of A*, idea of admissible heuristics

• Beyond A*
 – IDA*, beam search. Ways to deal with space requirements.