

CS 540 Introduction to Artificial Intelligence Search III: Advanced Search University of Wisconsin-Madison

Spring 2022

Outline

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations
- Simulated Annealing
 - Basic algorithm, temperature, tradeoffs
- Genetic Algorithms
 - Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state

Uninformed search, informed search

New setting: optimization

- States s have values f(s)
- Want: s with optimal value f(s) (i.e, optimize over states)
- Challenging setting: too many states for previous search approaches, but maybe not a differentiable function for SGD.

TuringFin

Examples: n Queens

A classic puzzle:

Place 8 queens on a 8 x 8 chessboard so that no two have

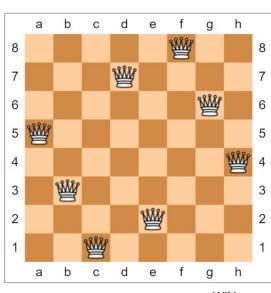
same row, column, or diagonal.

Can generalize to n x n chessboard.

What are states s? Values f(s)?

State: configuration of the board

- f(s): # of conflicting queens



Examples: TSP

Famous graph theory problem.

- Get a graph G = (V,E). **Goal**: a path that visits each node exactly once and returns to the initial node (a **tour**).
 - State: a particular tour (i.e., ordered list of nodes)
 - f(s): total weight of the tour(e.g., total miles traveled)



Examples: Satisfiability

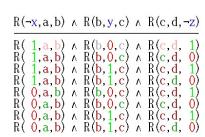
Boolean satisfiability (e.g., 3-SAT)

Recall our logic lecture. Conjunctive normal form

$$(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$$

- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- f(s): # satisfied clauses

R(x,a,d)	٨	R(y,b,d)	٨	R(a,b,e)	٨	R(c,d,f)	٨	R(z,c,0)
R(0,a,d) R(1,a,d)	٨	R(0,b,d) R(0,b,d) R(1,b,d) R(1,b,d) R(0,b,d) R(0,b,d) R(1,b,d) R(1,b,d)	٨	R(a,b,e) R(a,b,e)	٨	$R(\mathbf{c}, \mathbf{d}, \mathbf{f})$	٨	R(1,c,0) R(0,c,0)



Hill Climbing

One approach to such optimization problems.

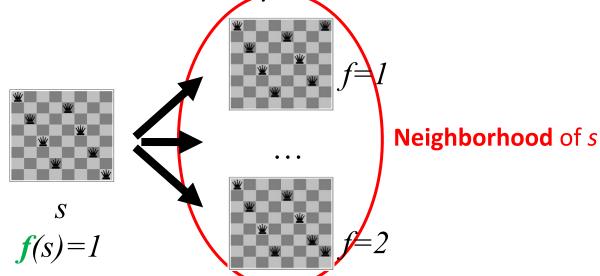
• Basic idea: move to a neighbor with a better f(s)

- Q: how do we define neighbor?
 - Not as obvious as our successors in search
 - Problem-specific
 - As we'll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

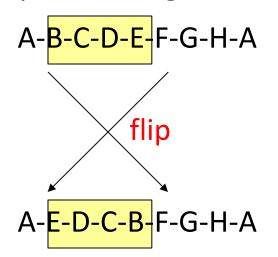
- Look at the most-conflicting column (ties? right-most one)
- Move queen in that column vertically to a different location

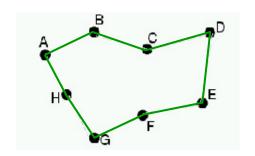


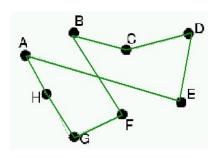
Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F







Defining Neighbors: SAT

For Boolean satisfiability,

Define neighbors by flipping one assignment of one variable
 Starting state: TFTTT

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition. For a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
 - Too small? Will get struck.
 - Too big? Not very efficient

- Q: how to pick a neighbor? Greedy
- Q: terminate? When no neighbor has bigger value

Hill Climbing Algorithm

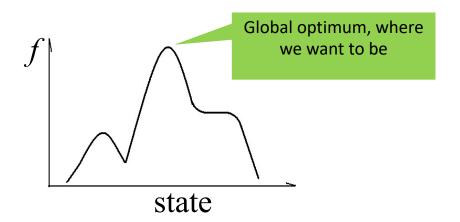
Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \le f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

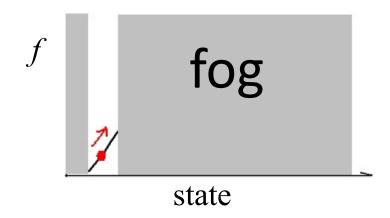
What could happen? Local optima!

Hill Climbing: Local Optima

Q: Why is it called hill climbing?



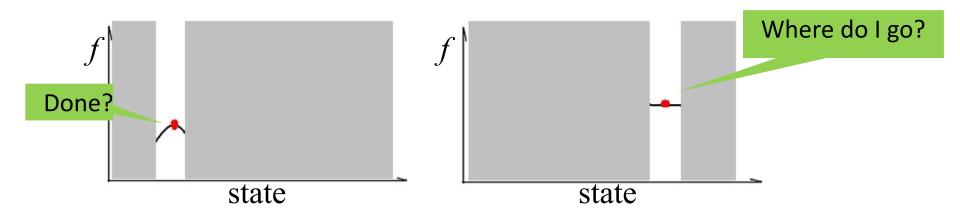
L: What's actually going on.



R: What we get to see.

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?



Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do *k* times, return best of the *k*.

Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors
- Probability proportional to the value of neighbors

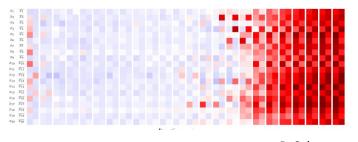
Hill Climbing: Variations

Q: neighborhood too large?

 Generate random neighbors, one at a time. Take the better one.

Q: relax requirement to always go up?

- Often useful for harder problems
- 3SAT algorithm: Walk-SAT



- **Q 1.1**: Hill climbing and SGD are related by
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

- **Q 1.1**: Hill climbing and SGD are related by
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

- **Q 1.1**: Hill climbing and SGD are related by
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem

- A. (i) (No: (iii) also true since convexity->local optima are global)
- B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
- C. (i), (iii)
- D. All of the above (No: (ii) false, as above.)

Simulated Annealing

A more sophisticated optimization approach.

- Idea: allow some downhill moves at first, then be pickier over time
- Pseudocode:

```
Pick initial state s; T=1

For k = 0 through K:

T \leftarrow T^*0.99 \ (cool\ down)

Pick a random neighbour t \leftarrow neighbor(s)

If f(s) \leq f(t), then s \leftarrow t

Else with prob. P(f(s), f(t), T) still do s \leftarrow t

Output: the final state s
```



wikihow.com

Simulated Annealing: Picking Probability

How do we pick probability P(f(s), f(t), Temp)?

- Decrease with temperature
- Decrease with gap f(s) f(t):

$$\exp\left(-\frac{|f(s) - f(t)|}{Temp}\right)$$

- Temperature cools over time.
 - So: high temperature, accept any t
 - But, low temperature, behaves like hill-climbing
 - Still, f(s) f(t) plays a role: if big, replacement probability low.

Simulated Annealing: Picking Parameters

- Have to balance the various parts., e.g., cooling schedule.
 - Too fast: becomes hill climbing, stuck in local optima
 - Too slow: takes too long.
- Combines with variations (e.g., with random restarts)
 - Probably should try hill-climbing first though.

- Inspired by cooling of metals
 - We'll see one more alg. inspired by nature



wikihow.com

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. $Temp_{t+1} = Temp_t * 1.25$
- B. $Temp_{t+1} = Temp_t$
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. $Temp_{t+1} = Temp_t * 0.0001$

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. $Temp_{t+1} = Temp_t * 1.25$
- B. $Temp_{t+1} = Temp_t$
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. $Temp_{t+1} = Temp_t * 0.0001$

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. $Temp_{t+1} = Temp_t^* 1.25$ (No, temperate is increasing)
- B. $Temp_{t+1} = Temp_t$ (No, temperature is constant)
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. $Temp_{t+1} = Temp_t^* 0.0001$ (Cools too fast---basically hill climbing)

Q 2.2: Which of the following would be better to solve with simulated annealing than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with simulated annealing than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with simulated annealing than A* search?

- i. Finding the smallest set of vertices in a complete graph (i.e., all nodes connected)
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze

- A. (i) (No, (ii) better: huge number of states, don't care about path)
- B. (ii) (No, (i) complete graph might have too many edges for A*)
- C. (i) and (ii)
- D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Genetic Algorithms

Another optimization approach based on nature

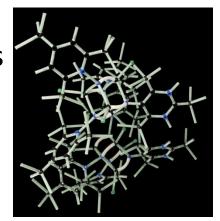
Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)

A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes
 - Mutation: rarer random process
 - Happens at individual level



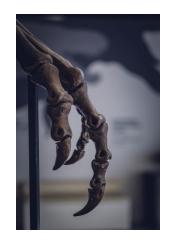
Natural Selection

Competition for resources

- Organisms better fit → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

- New terminology: state s 'individual'
- Value f(s) is now the 'fitness'

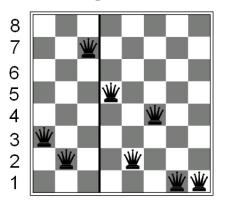


Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

- A bit like beam search
- Call this the population

For our n Queens game example, an individual:

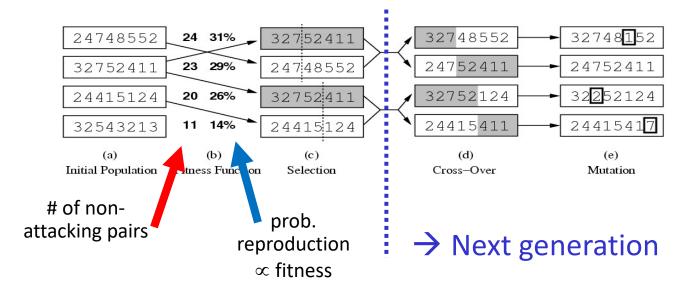


(32752411)

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

E.g., analogous to natural selection, cross-over, and mutation



Genetic Algorithms Pseudocode

Just one variant:

- 1. Let s_1 , ..., s_N be the current population
- 2. Let $p_i = f(s_i) / \sum_i f(s_i)$ be the reproduction probability
- 3. for k = 1; k < N; k + = 2
 - parent1 = sample with replacement according to p
 - parent2 = sample with replacement according to p
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- 4. for k = 1; k <= N; k++
 - Randomly mutate each position in t[k] with a small probability (mutation rate)
- 5. The new generation replaces the old: $\{s\} \leftarrow \{t\}$. Repeat

Reproduction: Proportional Selection

Reproduction probability: $p_i = f(s_i) / \Sigma_i f(s_i)$

- **Example**: $\Sigma_i f(s_i) = 5+20+11+8+6=50$
- $p_1 = 5/50 = 10\%$

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Let's run through an example:

- 5 courses: A,B,C,D,E
- 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
- Students wish to enroll in three courses
- Goal: maximize student enrollment

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Let's run through an example:

• State: course assignment to time slot

М	М	F	Т	М
Α	В	С	D	Е

- Here:
 - Courses A, B, E scheduled Mon/Wed
 - Course D scheduled Tue/Thu
 - Course C scheduled Fri/Sat

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Value of a state? Say MMFTM

Courses	Students	Can enroll?
АВС	2	No
ABD	7	No
ADE	3	No
BCD	4	Yes
BDE	10	No
CDE	5	Yes

Here 4+5=9 students can enroll in desired courses

First step:

Randomly initialize and evaluate states

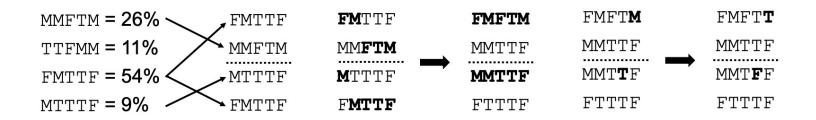
MMFTM = 9	MMFTM = 26%
TTFMM = 4	TTFMM = 11%
FMTTF = 19	FMTTF = 54 %
MTTTF = 3	MTTTF = 9 %

Calculate reproduction probabilities

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Next steps:

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children



Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

FMFTT = 11	FMFTT = 39%
MMTTF = 13	MMTTF = 46%
MMTFF = 4	MMTFF = 14%
FTTTF = 0	FTTTF = 0%

Courses	Students
АВС	2
ABD	7
ADE	3
BCD	4
BDE	10
CDE	5

Variations & Concerns

Many possibilities:

- Parents survive to next generation
- Use ranking instead of exact value of f(s) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- State encoding
- Lack of diversity: converge too soon
- Must pick a lot of parameters

Summary

- Challenging optimization problems
 - First, try hill climbing. Simplest solution
- Simulated annealing
 - More sophisticated approach; helps with local optima
- Genetic algorithms
 - Biology-inspired optimization routine