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Outline

* Introduction to reinforcement learning

— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration

* Q-learning



Back to Our General Model

We have an agent interacting with the world
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Actions
<Z :
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9)

— Note: data consists of actions & observations
* Compare to unsupervised learning and supervised learning



Examples: Gameplay Agents

AlphaZero:
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https://deepmind.com/research/alphago/
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Examples: Video Game Agents

Pong, Atari
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Mnih et al, “Human-level control through deep reinforcement learning”
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https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!
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Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"



Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

k-

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "



Building The Theoretical Model

Basic setup: ) >
Actions
* Set of states, S <
Observations

e Set of actions A Agent

* |nteraction:
— At time t, observe state s, €S.

— Agent makes choice a, € A.
— Gets reward r,, state changes to s, continue

Goal: find a policy from states to actions to maximize rewards.



Markov Decision Process (MDP)

Phe formal mathematical model M = (5,4,P,r, u,y):

State set S. Initial state s, Action set A
Reward function: r(s,, a,)

State transition model: P(s;.1|s¢, a)

— Markov assumption: transition probability only depends on s, and a,,
and not earlier history (older actions or states.

— More generally: P(1¢, S¢+1|St, at)

Policy: m(s): S — A actlon to take at a partlcular state.
S0 H S1 % S9 %



Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein



Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s¢+1) = —0.04 for every
non-terminal state s;;

Shorthand for perfectly correlated p (73, S¢+1|S¢, at)



Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast
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Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast
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Back to MDP Setup

The formal mathematical model:
e State set S. Initial state S, Action set A

* State transition model: P(s; s, a;)

— Markov assumption: transition probability only depends on's and a,,
and not previous actions or states.

* Reward function: r(s, at)ﬂ/ HOV\'IOdo welfing
* Policy: m(s): S — A actioirto take at a partic&r‘a?' s’%sttepo ey

ao ai az
Sop —>S1 —=> 89 —> ...



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value
B. The policy maps states to actions

C. The probability of next state can depend on current and
previous states

 D. The solution of MDP is to find a policy that maximizes the
cumulative rewards



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value

B. The policy maps states to actions

* C. The probability of next state can depend on current and
previous states

D. The solution of MDP is to find a policy that maximizes the
cumulative rewards



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value (True: need to
be able to compare)

* B. The policy maps states to actions (True: a policy tells you what
action to take for each state).

* C. The probability of next state can depend on current and
previous states (False: Markov assumption).

* D. The solution of MDP is to find a policy that maximizes the
cumulative rewards (True: want to maximize rewards overall).



Defining the Optimal Policy

for policy &, the value starting from s, produced by
following that policy:

VT (sg) = Z P (sequence)U(sequence)

sequences (St,at,I't,St+1)
starting from s,

Called the value function (for =, s3)




Discounted Rewards
@ne issue: these are infinite series. Convergence?

e Solution

U(sequence) =1y + yry + y%r, + - = Zytrt

t=20

* Discount factory € (0,1)
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence



From Value to Policy

Now that V™ (sy) is defined what a should we take?
* Optimal policy ®* € argmax, V™ (sy)

e At any state s, we should take action a = *(s)
 Define V*(s) = V™ (s)

e |f we know VV*, we can extract T*:

n*(s) = argmax, Z P(s'|s,a)V*(s")
S/



Bellman Equation

Let’s walk over one step for the value function:

V*(s) = max r(s,a) + yz P(s'|s,a) V*(s")

* \ Y }

immediate Discounted expected lmwr = l
i l'i"'! - "!5”"
Sabiid. . voasolll

reward future rewards

o

* Bellman: inventor of dynamic programming




Value lteration

Q: how do we find V*(s)?
* Why do we want it? Can use it to get the best policy

* Assume we know: reward r(.), transition probability P(s’|s,a)
— Knowing r and P is the “planning” problem

— In reality r and P must be estimated from interactions with the MDP
environment: “reinforcement learning”

e Also know V*(s) satisfies Bellman equation (recursion above)

A: fixed point iteration



Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let 11: T1(A) = T1(B) = move (i.e., an
“always move” policy). What is the value function V*(A)?

+ A0

* B.1/(1-p)
- C.1/(1-y9
*+ D.1
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Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ybe the discounting factor. Let 1T: TT(A) = T1(B) = move (i.e., an
“always move” policy). What is the value function V*(A)?

« A.O
* B.1/(1-y)

e C.1/(1-y?) (States: A,B,A,B,... rewards 1,0, 12,0, *,0)
* D.1



Q-Learning

@ur first reinforcement learning algorithm

 Don’t know the whole r and P. But can see interaction
trajectory (S¢, Q¢, 1, Sg41)
* Q-learning: get an action-utility function Q*(s,a) that tells us
the value of doing a in state s
* Note: V*(s) = max, Q*(s,a)
* Now, we can just do *(s) = arg max,Q* (s, a)
— But need to estimate Q*!




The Q*(s,a) function

e Starting from state s, perform (perhaps
suboptimal) action a. THEN follow the optimal

policy
@) =rsa+y ) PElsa) V()
* Equivalent to ’
0'(s@) =1, +y ) P(s'ls,a)maxQ*(s', b)



Q-Learning

Bstimate Q*(s,a) from data {(s¢, as, 1%, St +1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)
1. Except terminal states Q(Serminat-)=0

2. Iterate over data until Q(.,.) converges:

Q(spar) « 1 —a)Q(spar) +a(ry+vy ml?x Q(St+1, b))

ol

Learning rate



Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might prevent you from discovering the true optimal strategy



Q-Learning: £-Greedy Behavior Policy

Getting data with both exploration and exploitation

* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise
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The Q-learning algorithm

put: step size a, greedy parameter €
Q(.,.)=0
for each episode
draw initial state s~u
while (s not terminal)
perform a = e-greedy(Q), receiver, s’

Q(s,a) =1 —-a)Q(s,a) + a(r+ ymgle (s, b))
s« s’
endwhile

endfor Note: step 5 can use any other
behavior policies



The Q-learning algorithm

., Step 5 can use any other behavior policies to choose action
a, as long as all actions are chosen frequently enough

 The cumulative rewards during Q-learning may not be the
highest

But after Q-learning converges, can extract an optimal
policy:

n*(s) € argmax,Q(s, a)
V*(s) = max Q*(s,a)



Deep Q-Learning

How do we get Q(s,a)?
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Mnih et al, "Human-level control through deep reinforcement learning"



Summary

Reinforcement learning setup
Mathematica formulation: MDP

Value functions & the Bellman equation
Q-learning



