

CS 540 Introduction to Artificial Intelligence Reinforcement Learning I University of Wisconsin-Madison

Spring 2022

Outline

- Introduction to reinforcement learning
 - Basic concepts, mathematical formulation, MDPs, policies
- Valuing policies
 - Value functions, Bellman equation, value iteration
- Q-learning

Back to Our General Model

We have an agent interacting with the world

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, "Human-level control through deep reinforcement learning"

A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A

- Interaction:
 - At time t, observe state s_t ∈ S.
 - Agent makes choice a_t ∈ A.
 - Gets reward r_t , state changes to s_{t+1} , continue

Goal: find a policy from states to actions to maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model $M = (S, A, P, r, \mu, \gamma)$:

- State set S. Initial state s₀. Action set A
- Reward function: $r(s_t, a_t)$
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not earlier history (older actions or states.
 - More generally: $P(r_t, s_{t+1}|s_t, a_t)$
- Policy: $\pi(s): S \to A$ action to take at a particular state. $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

 $r(s_{t+1}) = -0.04$ for every non-terminal state s_{t+1}

Shorthand for perfectly correlated $p(r_t, s_{t+1}|s_t, a_t)$

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

Back to MDP Setup

The formal mathematical model:

- State set S. Initial state s₀ Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.

How do we find

- Reward function: $r(s_t, a_t)$
- Policy: $\pi(s):S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value (True: need to be able to compare)
- B. The policy maps states to actions (True: a policy tells you what action to take for each state).
- C. The probability of next state can depend on current and previous states (False: Markov assumption).
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

For policy π , the value starting from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum_{i=1}^{n} P(\text{sequence})U(\text{sequence})$$

sequences (s_t, a_t, r_t, s_{t+1}) starting from s_0

Called the **value function** (for π , s_0)

Discounted Rewards

One issue: these are infinite series. Convergence?

Solution

$$U(sequence) = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots = \sum_{t>0} \gamma^t r_t$$

- Discount factor $\gamma \in (0,1)$
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what α should we take?

- Optimal policy $\pi^* \in argmax_{\pi}V^{\pi}(s_0)$
- At any state s, we should take action $a = \pi^*(s)$
- Define $V^*(s) = V^{\pi^*}(s)$
- If we know V^* , we can extract π^* :

$$\pi^*(s) = argmax_a \sum_{s'} P(s'|s,a)V^*(s')$$

Bellman Equation

Let's walk over one step for the value function:

Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Assume we know: reward r(.), transition probability P(s'|s,a)
 - Knowing r and P is the "planning" problem
 - In reality r and P must be estimated from interactions with the MDP environment: "reinforcement learning"
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: fixed point iteration

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let \mathbf{r} be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1 / (1γ)
- C. 1 / $(1 \gamma^2)$
- D. 1

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let \mathbf{r} be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. $1/(1-\gamma)$
- C. $1/(1-\gamma^2)$
- D. 1

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let \mathbf{r} be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. $1/(1-\gamma)$
- C. $1/(1-\gamma^2)$ (States: A,B,A,B,... rewards 1,0, γ^2 ,0, γ^4 ,0)
- D. 1

Q-Learning

Our first reinforcement learning algorithm

- Don't know the whole r and P. But can see interaction trajectory (s_t, a_t, r_t, s_{t+1})
- Q-learning: get an action-utility function Q*(s,a) that tells us the value of doing a in state s
- Note: $V^*(s) = \max_a Q^*(s,a)$
- Now, we can just do $\pi^*(s) = \arg \max_{a} Q^*(s, a)$
 - But need to estimate Q*!

The Q*(s,a) function

 Starting from state s, perform (perhaps suboptimal) action a. THEN follow the optimal policy

$$Q^*(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

Equivalent to

$$Q^{*}(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{b} Q^{*}(s',b)$$

Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate

Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far

Cons:

- When exploring, not maximizing your utility
- Something bad might happen
- Exploitation: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε , take a random action; else the action with the highest (current) Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{\mathbf{a} \in A} Q(\mathbf{s}, \mathbf{a}) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} \mathbf{a} \in A & \text{otherwise} \end{cases}$$

The Q-learning algorithm

```
Input: step size \alpha, greedy parameter \epsilon
```

- 1. Q(.,.)=0
- 2. for each episode
- 3. draw initial state $s \sim \mu$
- while (s not terminal)
- 5. perform $a = \epsilon$ -greedy(Q), receive r, s'
- 6. $Q(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{b} Q(s',b))$
- 7. $s \leftarrow s'$
- 8. endwhile
- 9. endfor

Note: step 5 can use any other behavior policies

The Q-learning algorithm

- Step 5 can use any other behavior policies to choose action a, as long as all actions are chosen frequently enough
- The cumulative rewards during Q-learning may not be the highest
- But after Q-learning converges, can extract an optimal policy:

$$\pi^*(s) \in \operatorname{argmax}_a Q(s, a)$$

 $V^*(s) = \max_a Q^*(s, a)$

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary

- Reinforcement learning setup
- Mathematica formulation: MDP
- Value functions & the Bellman equation
- Q-learning