CS 540 Introduction to Artificial Intelligence
Reinforcement Learning |

University of Wisconsin-Madison

Spring 2022

Outline

* Introduction to reinforcement learning

— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration

* Q-learning

Back to Our General Model

We have an agent interacting with the world

() _ >
Actions
<Z :
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9)

— Note: data consists of actions & observations
* Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

o0 o
§Q§ Google DeepMind {9’3 AlphaGo Policy network Value network
. Challenge Match

8-15 March 2016

pg,’p (a] S) Vg (S,)

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Input

f
‘J | Image convolutions
Vv
n

<5

Game controller action values -004 -002 000 002

Hidden layers
Timestep

Q-Values

—Action 0

— action)

w— Action 2
Acton 3

— Actond

Output

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions

TORCS
3D Minecraft
ViZDoom
DM Lab
ALE
2D

Montezuma's
Revenge

Single-agent

Quake III Ny
Arena CTF \:

StarCraft
Dota2

Number of

= agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

k-

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:) >
Actions
* Set of states, S <
Observations

e Set of actions A Agent

* |nteraction:
— At time t, observe state s, €S.

— Agent makes choice a, € A.
— Gets reward r,, state changes to s, continue

Goal: find a policy from states to actions to maximize rewards.

Markov Decision Process (MDP)

Phe formal mathematical model M = (5,4,P,r, u,y):

State set S. Initial state s, Action set A
Reward function: r(s,, a,)

State transition model: P(s;.1|s¢, a)

— Markov assumption: transition probability only depends on s, and a,,
and not earlier history (older actions or states.

— More generally: P(1¢, S¢+1|St, at)

Policy: m(s): S — A actlon to take at a partlcular state.
S0 H S1 % S9 %

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s¢+1) = —0.04 for every
non-terminal state s;;

Shorthand for perfectly correlated p (73, S¢+1|S¢, at)

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

3 + 1 0.8

0.1 0.1

1 START

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

0.8

= o.ﬁ@m

Back to MDP Setup

The formal mathematical model:
e State set S. Initial state S, Action set A

* State transition model: P(s; s, a;)

— Markov assumption: transition probability only depends on's and a,,
and not previous actions or states.

* Reward function: r(s, at)ﬂ/ HOV\'IOdo welfing
* Policy: m(s): S — A actioirto take at a partic&r‘a?' s’%sttepo ey

ao ai az
Sop —>S1 —=> 89 —> ...

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value
B. The policy maps states to actions

C. The probability of next state can depend on current and
previous states

 D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value

B. The policy maps states to actions

* C. The probability of next state can depend on current and
previous states

D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value (True: need to
be able to compare)

* B. The policy maps states to actions (True: a policy tells you what
action to take for each state).

* C. The probability of next state can depend on current and
previous states (False: Markov assumption).

* D. The solution of MDP is to find a policy that maximizes the
cumulative rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

for policy &, the value starting from s, produced by
following that policy:

VT (sg) = Z P (sequence)U(sequence)

sequences (St,at,I't,St+1)
starting from s,

Called the value function (for =, s3)

Discounted Rewards
@ne issue: these are infinite series. Convergence?

e Solution

U(sequence) =1y + yry + y%r, + - = Zytrt

t=20

* Discount factory € (0,1)
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (sy) is defined what a should we take?
* Optimal policy ®* € argmax, V™ (sy)

e At any state s, we should take action a = *(s)
 Define V*(s) = V™ (s)

e |f we know VV*, we can extract T*:

n*(s) = argmax, Z P(s'|s,a)V*(s")
S/

Bellman Equation

Let’s walk over one step for the value function:

V*(s) = max r(s,a) + yz P(s'|s,a) V*(s")

* \ Y }

immediate Discounted expected lmwr = l
i l'i"'! - "!5”"
Sabiid. . voasolll

reward future rewards

o

* Bellman: inventor of dynamic programming

Value lteration

Q: how do we find V*(s)?
* Why do we want it? Can use it to get the best policy

* Assume we know: reward r(.), transition probability P(s’|s,a)
— Knowing r and P is the “planning” problem

— In reality r and P must be estimated from interactions with the MDP
environment: “reinforcement learning”

e Also know V*(s) satisfies Bellman equation (recursion above)

A: fixed point iteration

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let 11: T1(A) = T1(B) = move (i.e., an
“always move” policy). What is the value function V*(A)?

+ A0

* B.1/(1-p)
- C.1/(1-y9
*+ D.1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ybe the discounting factor. Let 1T: TT(A) = T1(B) = move (i.e., an
“always move” policy). What is the value function V*(A)?

« A.O
* B.1/(1-y)

* C.1/(14)
. D.1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ybe the discounting factor. Let 1T: TT(A) = T1(B) = move (i.e., an
“always move” policy). What is the value function V*(A)?

« A.O
* B.1/(1-y)

e C.1/(1-y?) (States: A,B,A,B,... rewards 1,0, 12,0, *,0)
* D.1

Q-Learning

@ur first reinforcement learning algorithm

 Don’t know the whole r and P. But can see interaction
trajectory (S¢, Q¢, 1, Sg41)
* Q-learning: get an action-utility function Q*(s,a) that tells us
the value of doing a in state s
* Note: V*(s) = max, Q*(s,a)
* Now, we can just do *(s) = arg max,Q* (s, a)
— But need to estimate Q*!

The Q*(s,a) function

e Starting from state s, perform (perhaps
suboptimal) action a. THEN follow the optimal

policy
@) =rsa+y) PElsa) V()
* Equivalent to ’
0'(s@) =1, +y) P(s'ls,a)maxQ*(s', b)

Q-Learning

Bstimate Q*(s,a) from data {(s¢, as, 1%, St +1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)
1. Except terminal states Q(Serminat-)=0

2. Iterate over data until Q(.,.) converges:

Q(spar) « 1 —a)Q(spar) +a(ry+vy ml?x Q(St+1, b))

ol

Learning rate

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might prevent you from discovering the true optimal strategy

Q-Learning: £-Greedy Behavior Policy

Getting data with both exploration and exploitation

* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

=]

O ON Ok WNPR,

The Q-learning algorithm

put: step size a, greedy parameter €
Q(.,.)=0
for each episode
draw initial state s~u
while (s not terminal)
perform a = e-greedy(Q), receiver, s’

Q(s,a) =1 —-a)Q(s,a) + a(r+ ymgle (s, b))
s« s’
endwhile

endfor Note: step 5 can use any other
behavior policies

The Q-learning algorithm

., Step 5 can use any other behavior policies to choose action
a, as long as all actions are chosen frequently enough

 The cumulative rewards during Q-learning may not be the
highest

But after Q-learning converges, can extract an optimal
policy:

n*(s) € argmax,Q(s, a)
V*(s) = max Q*(s,a)

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
v 4 v

-n
S
=
8
‘:
3
@
O
g

=
g =
B e

E B E E A
(]
A
BBBERAEEEAARAREED:
OQ0 @] (¢} (©] [¢] (o] :

Mnih et al, "Human-level control through deep reinforcement learning"

Summary

Reinforcement learning setup
Mathematica formulation: MDP

Value functions & the Bellman equation
Q-learning

