
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II / Summary

University of Wisconsin-Madison
April 26, 2022

Outline

• Review of reinforcement learning
– MDPs, value functions, value iteration

• Q-learning
– Q function, deep Q-learning

• Search + RL Review
– Uninformed/informed search, optimization, RL

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Interaction:

– At time t, observe state st ∈ S.
– Agent makes choice at ∈ A.
– Gets reward rt , state changes to st+1, continue

Goal: find a policy from states to actions to maximize rewards.

World

Agent

Actions

Observations

The formal mathematical model 𝑀 = (𝑆, 𝐴, 𝑃, 𝑟, 𝜇, 𝛾):
• State set S. Initial state s0. Action set A
• Reward function: r(st , at)
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not earlier history (older actions or states.

– More generally: 𝑃(𝑟!, 𝑠!"#|𝑠!, 𝑎!)
• Policy: action to take at a particular state.

Markov Decision Process (MDP)

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Defining the Optimal Policy

For policy p, the value starting from 𝑠* produced by
following that policy:

Called the value function (for p, 𝑠*)

𝑉! 𝑠" = +

#$%&$'($# (#!,+!,,!,#!"#)
#.+,./'0 1,23 4$

𝑃 sequence 𝑈(sequence)

Discounted Rewards
One issue: these are infinite series. Convergence?
• Solution

• Discount factor g ∈ (0,1)
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

𝑈 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑟! + 𝛾𝑟" + 𝛾#𝑟# +⋯ =A
$%!

𝛾$𝑟$

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Bellman Equation

Discounted expected
future rewards

immediate
reward

𝑉∗ 𝑠 = max
'

𝑟 𝑠, 𝑎 + 𝛾A
(!
𝑃 𝑠) 𝑠, 𝑎 𝑉∗(𝑠))

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Now that 𝑉+ 𝑠* is defined what a should we take?
• Optimal policy 𝜋∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥+𝑉+(𝑠*)
• At any state s, we should take action 𝑎 = 𝜋∗ 𝑠
• Define 𝑉∗ 𝑠 = 𝑉+∗ 𝑠
• If we know 𝑉∗, we can extract 𝜋∗:

𝜋∗ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥I+
4J

𝑃 𝑠J 𝑠, 𝑎 𝑉∗(𝑠J)

From Value to Policy

Break & Quiz
Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A)
and 𝜋(𝐵)? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

Break & Quiz
Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A)
and 𝜋(𝐵)? What are 𝑉*(𝐴), 𝑉*(B)?

• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾)

Break & Quiz
Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state
and “move” to other state. Let r be the reward function such that r(A) = 1, r(B) =
0. Let 𝛾 be the discounting factor. What is the optimal policy 𝜋(A) and 𝜋(𝐵)?
What are 𝑉*(𝐴), 𝑉*(B)?
• A. Stay, Stay, 1/(1-𝛾), 1
• B. Stay, Move, 1/(1-𝛾), 1/(1-𝛾)
• C. Move, Move, 1/(1-𝛾), 1
• D. Stay, Move, 1/(1-𝛾), 𝛾/(1-𝛾) Note: want to stay at A, if at B, move

to A. Starting at A, sequence A,A,A,… rewards 1, 𝛾, 𝛾2,…. Start at B,
sequence B,A,A,… rewards 0, 𝛾, 𝛾2,…. Sums to 1/(1-𝛾), 𝛾/(1-𝛾).

Q-Learning

Our first reinforcement learning algorithm
• Don’t know the whole r and P. But can see interaction

trajectory (𝑠K, 𝑎K, 𝑟K, 𝑠KLM)
• Q-learning: get an action-utility function Q*(s,a) that tells us

the value of doing a in state s
• Note: V*(s) = maxa Q*(s,a)
• Now, we can just do 𝜋∗ 𝑠 = arg maxI𝑄∗ 𝑠, 𝑎

– But need to estimate Q*!

The Q*(s,a) function
• Starting from state s, perform (perhaps

suboptimal) action a. THEN follow the
optimal policy

• Equivalent to
𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 A

(!
𝑃 𝑠) 𝑠, 𝑎) 𝑉∗(𝑠′)

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 A
(!
𝑃 𝑠) 𝑠, 𝑎)max

*
𝑄∗(𝑠), 𝑏)

Estimate Q*(s,a) from data { 𝑠2 , 𝑎2 , 𝑟2 , 𝑠234 }:
1. Initialize Q(.,.) arbitrarily (eg all zeros)

1. Except terminal states Q(sterminal,.)=0

2. Iterate over data until Q(.,.) converges:

Q-Learning

Learning rate

𝑄 𝑠$, 𝑎$ ← 1 − 𝛼 𝑄 𝑠$, 𝑎$ + 𝛼(𝑟$ + 𝛾max* 𝑄(𝑠$+", 𝑏))

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

The Q-learning algorithm
Input: step size 𝛼, greedy parameter 𝜖
1. Q(.,.)=0
2. for each episode
3. draw initial state 𝑠~𝜇
4. while (s not terminal)
5. perform 𝑎 = 𝜖-greedy(Q), receive r, s’
6. 𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max

$
𝑄 𝑠%, 𝑏)

7. 𝑠 ← 𝑠%
8. endwhile
9. endfor Note: step 5 can use any other

behavior policies

The Q-learning algorithm
• Step 5 can use any other behavior policies to choose action
𝑎, as long as all actions are chosen frequently enough

• The cumulative rewards during Q-learning may not be the
highest

• But after Q-learning converges, can extract an optimal
policy:

𝜋∗ 𝑠 ∈ argmax+Q(s, a)
𝑉∗ 𝑠 = max

I
𝑄∗(𝑠, 𝑎)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.

Break & Quiz
Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the

particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is not

necessary in general).
• D. Prioritize exploitation over exploration. (No: insufficient

exploration means potentially unupdated state action pairs).

Search and RL Review

• Search
– Uninformed vs Informed
– Optimization

• Games
– Minimax search

• Reinforcement Learning
– MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
• Demand that h(s) £ h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Minimax Search

Note that long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

