CS 540 Introduction to Artificial Intelligence
Reinforcement Learning Il / Summary

University of Wisconsin-Madison

April 26, 2022

Outline

* Review of reinforcement learning

— MDPs, value functions, value iteration
* Q-learning
— Q function, deep Q-learning

e Search + RL Review

— Uninformed/informed search, optimization, RL

Building The Theoretical Model

Basic setup: (=) >
Actions
* Set of states, S < m
Observations

e Set of actions A Agent

* |nteraction:
— At time t, observe state s, € S.
— Agent makes choice g, € A.
— Gets reward r;, state changes to s;,; continue

Goal: find a policy from states to actions to maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model M = (S, A,P, 7, u,y):
* State set S. Initial state s, Action set A

* Reward function: r(s,, a,)

* State transition model: P(s;11|s:, ;)

— Markov assumption: transition probability only depends on s, and a,,
and not earlier history (older actions or states.

— More generally: P(1¢, S¢41|Se, at)

* Policy: 1(s): S — A act|on to take at a partlcular state.
S0 H S1 % S92 %

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 — — — +1 s
5 f f -~ 0.1 0.1
) f —— — —~—
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Defining the Optimal Policy

For policy m, the value starting from s, produced by
following that policy:

VT (sg) = z P(sequence)U(sequence)

sequences (St,a¢,I't,St+1) W

starting from s

Called the value function (for =, s;)

Discounted Rewards
One issue: these are infinite series. Convergence?

* Solution
U(sequence) =1y + yry + y%ry, + -+ = 2 yir,

t=0

* Discount factory € (0,1)
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

Bellman Equation

Let’s walk over one step for the value function:

V*(s) = max r(s,a) + yz P(s'|s,a) V*(s")

T \ ’ }

immediate Discounted expected
reward future rewards

1o "l

* Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>

From Value to Policy

Now that V™ (s,) is defined what a should we take?
* Optimal policy m* € argmax, V™ (sy)

* At any state s, we should take action a = ©*(s)
 Define V*(s) = VT (s)

e |f we know I/'*, we can extract T™:

m*(s) = argmaxaz P(s'|s,a)V*(s")
S/

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. What is the optimal policy r(A)
and m(B)? What are V*(4), V*(B)?

* A. Stay, Stay, 1/(1-y), 1

e B. Stay, Move, 1/(1-y), 1/(1-y)
 C. Move, Move, 1/(1-y), 1

e D. Stay, Move, 1/(1-y), y/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. What is the optimal policy r(A)
and (B)? What are V*(4), V*(B)?

* A. Stay, Stay, 1/(1-y), 1

e B. Stay, Move, 1/(1-y), 1/(1-y)
 C. Move, Move, 1/(1-y), 1

* D. Stay, Move, 1/(1-y), y/(1-y)

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state
and “move” to other state. Let r be the reward function such that r(A) =1, r(B) =
0. Let y be the discounting factor. What is the optimal policy m(A) and m(B)?
What are V*(4), V*(B)?

e A. Stay, Stay, 1/(1-y), 1
e B. Stay, Move, 1/(1-y), 1/(1-y)
 C.Move, Move, 1/(1-y), 1

* D. Stay, Move, 1/(1-y), y/(1-y) Note: want to stay at A, if at B, move
to A. Starting at A, sequence A,A/A,... rewards 1, y, v2,.... Start at B,
sequence B,A,A,... rewards 0, y, ¥2,.... Sums to 1/(1-y), v/(1-y).

Q-Learning

Our first reinforcement learning algorithm

e Don’t know the whole r and P. But can see interaction
trajectory (s¢, a¢, 1t Sg+1)

* Q-learning: get an action-utility function Q*(s,a) that tells us
the value of doing a in state s

* Note: V*(s) = max, Q*(s,a)
* Now, we can just do m*(s) = arg max,Q"(s, a)
— But need to estimate Q*!

The Q*(s,a) function

e Starting from state s, perform (perhaps
suboptimal) action a. THEN follow the
optimal policy

G =rsa+y Y Pilsa)V(s)

* Equivalent to ’

O =r(sa+y Y P(s'ls,a)maxQ(s',b)

Q-Learning

Estimate Q*(s,a) from data {(s;, a;, 1, S¢+1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)

1. Except terminal states Q(Serminats-)=0

2. lterate over data until Q(.,.) converges:

Q(se,ar) « (1 —a)Q(sg, ar) + a(ry + Yy max Q(St+1, b))

/

Learning rate

0 1 2 3
Up: -4.10 Up: -3.44 Up: -2.71 Up: -1.90
Right: -3.44 | Right: -2.71| Right: -190| Right: -1.90
Down: -3.44 | Down: -2.71| Down: -1.90 | Down: -1.00
Left: -4.10 Left: -4.10 Left: -3.44 Left: -2.71
Up: -4.10 Up: -3.44 Up: -2.71 Up: -1.90
Right: -2.71| Right: -1.90| Right: -1.00| Right: -1.00
Down: -4.10| Down: -100.00| Down: -100.00| Down: 0.00
Left: -3.44 Left: -3.44 Left: -2.71 Left: -1.90
Up: -3.44 Up: 0.00
Right: -100.00 Right: 0.00
Down: -4.10 Down: 0.00
Left: -4.10 Left: 0.00
START END

Possible States {(Row, Column)

Q-TABLE
Possible Actions

Up Right Down Left
0,0 -4.10 -3.44 -3.44 -4.10
0,1 -3.44 -2.71 -2.71 -4.10
0,2 2.71 -1.90 -1.90 -3.44
0,3 -1.90 -1.90 -1.00 -2.71
1,0 -4.10 -2.71 -4.10 -3.44
. -3.44 -1.90 -100.00 -3.44
2 2.71 -1.00 -100.00 -2.71
4.3 -1.90 -1.00 0.00 -1.90
2,0 -3.44 -100.00 -4.10 -4.10
2.1 0.00 0.00 0.00 0.00
R 2 0.00 0.00 0.00 0.00
2.3 0.00 0.00 0.00 0.00

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences
— Pros:

e Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might prevent you from discovering the true optimal strategy

Q-Learning: e-Greedy Behavior Policy

Getting data with both exploration and exploitation

* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

1
2
3
4.
5.
6
7
3
9

The Q-learning algorithm

Input: step size a, greedy parameter €

Qf.,.)=0
for each episode
draw initial state s~u
while (s not terminal)
perform a = e-greedy(Q), receiver, s’

Q(s,a) =(1—a)Q(s,a) + a(r + ymlgaxQ(s’, b))

s« s’
endwhile
endfor

Note: step 5 can use any other
behavior policies

The Q-learning algorithm

e Step 5 can use any other behavior policies to choose action
a, as long as all actions are chosen frequently enough

 The cumulative rewards during Q-learning may not be the
highest
* But after Q-learning converges, can extract an optimal
policy:
m*(s) € argmax,Q(s,a)
V*(s) = maxQ*(s,a)
a

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
%, w v

-n
c
=
8
‘3
=
@
Q
g

=

oo |
B e

oo |

oo |

B EEEE
a
e
CEELEEERE 1]
OJOJOJOJOJO OO g

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A.Visit every state and try every action

 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.
* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action

 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.
* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

A. Visit every state and try every action

B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

* (. Re-start with different random initial table values. (No: this is not
necessary in general).

* D. Prioritize exploitation over exploration. (No: insufficient
exploration means potentially unupdated state action pairs).

Search and RL Review

e Search

— Uninformed vs Informed
— Optimization
* Games

— Minimax search

* Reinforcement Learning
— MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

* Successors. @
anuun®® .goal
gls) .

Informed search. Know:
* All uninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

(»)@h” oG

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
e Search like BFS, fringe like DFS,
* Properties: |
— Complete
— Optimal (if edge cost 1)
— Time O(b9)
— Space O(bd)

A good option!

Fractalsaco

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
 Demand that h(s) < h*(s)

* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates

e Still need h(s) >0

— Negative heuristics can lead to strange behavior

V. Batocdanin

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization s

Uninformed search, informed search

TuringFin

States s have values f{(s)
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm
Pseudocode:

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s «— t. goto 2.

h W

What could happen? Local optimal

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

\ \ Where do | go?

state state

Simulated Annealing

A more sophisticated optimization approach.

* ldea: move quickly at first, then slow down
 Pseudocode:

Pick initial state s
For k = 0 through k;.,:
T & temperature((k+1)/Kmax)
_ o Pick a random neighbour, t & neighbor(s)
The interesting bit

\Iff(s) <f(t), thens & t
Else, with prob. P(f(s), f(t), T) then s & t
Output: the final state s

Games Setup

Games setup: multiple agents

et

Player 3
Player 1 @
— Now: interactions between agents %
— Still want to maximize utility Player 2

— Strategic decision making.

Minimax Search

Note that long games are yield huge computation

* To deal with this: limit d for the search depth
* Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

function MINIMAX(z, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if = is a terminal state then return Max’s payoff at =
else if ¢ = (then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{ MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

Building The Theoretical Model

Basic setup:) >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

