

CS 540 Introduction to Artificial Intelligence **Reinforcement Learning II / Summary** University of Wisconsin-Madison

April 26, 2022

Outline

- Review of reinforcement learning
 - MDPs, value functions, value iteration
- Q-learning
 - Q function, deep Q-learning
- Search + RL Review
 - Uninformed/informed search, optimization, RL

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A
- Interaction:
 - At time *t*, observe state $s_t \in S$.
 - Agent makes choice $a_t \in A$.
 - Gets reward r_t , state changes to s_{t+1} , continue

Goal: find a policy from **states to actions** to maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model $M = (S, A, P, r, \mu, \gamma)$:

- State set S. Initial state s_{0.} Action set A
- Reward function: **r**(**s**_t, **a**_t)
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not earlier history (older actions or states.
 - More generally: $P(r_t, s_{t+1}|s_t, a_t)$
- **Policy**: $\pi(s) : S \to A$ action to take at a particular state. $s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Defining the Optimal Policy

For policy π , the value starting from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

sequences (s_t, a_t, r_t, s_{t+1}) starting from s_0

Called the value function (for π , s_0)

Discounted Rewards

One issue: these are infinite series. **Convergence**?

• Solution

$$U(sequence) = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots = \sum_{t \ge 0} \gamma^t r_t$$

- Discount factor $\gamma \in (0,1)$
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence

Bellman Equation

Let's walk over one step for the value function:

Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

- Optimal policy $\pi^* \in argmax_{\pi}V^{\pi}(s_0)$
- At any state s, we should take action $a = \pi^*(s)$
- Define $V^{*}(s) = V^{\pi^{*}}(s)$
- If we know V^* , we can extract π^* :

$$\pi^*(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) V^*(s')$$

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ)

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ)

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, $1/(1-\gamma)$, 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ) Note: want to stay at A, if at B, move to A. Starting at A, sequence A,A,A,... rewards 1, γ, γ²,.... Start at B, sequence B,A,A,... rewards 0, γ, γ²,.... Sums to 1/(1-γ), γ/(1-γ).

Q-Learning

Our first reinforcement learning algorithm

- Don't know the whole r and P. But can see interaction trajectory (s_t, a_t, r_t, s_{t+1})
- Q-learning: get an action-utility function Q*(s,a) that tells us the value of doing a in state s
- Note: V*(s) = max_a Q*(s,a)
- Now, we can just do $\pi^*(s) = \arg \max_a Q^*(s, a)$
 - But need to estimate Q*!

The Q*(s,a) function

 Starting from state s, perform (perhaps suboptimal) action a. THEN follow the optimal policy

$$Q^{*}(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{*}(s')$$

• Equivalent to

$$Q^*(s, a) = r(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{b} Q^*(s', b)$$

Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate

	0		1		2		3	
0	Up: Right: Down: Left:	-4.10 -3.44 -3.44 -4.10	Up: Right: Down: Left:		Up: Right: Down: Left:	-2.71 -1.90 -1.90 -3.44	Up: Right: Down: Left:	-1.90 -1.90 -1.00 -2.71
1	Up: Right: Down: Left:	-4.10 -2.71 -4.10 -3.44	Up: Right: Down: Left:	-3.44 -1.90 -100.00 -3.44	Up: Right: Down: Left:	-2.71 -1.00 -100.00 -2.71	Up: Right: Down: Left:	-1.90 -1.00 0.00 -1.90
2	Up: Right: Down: Left:	-3.44 -100.00 -4.10 -4.10	CLIFF			Up: Right: Down: Left:	0.00 0.00 0.00 0.00	
♦ START								ID .

Q-TABLE

Possible Actions

		Up	Right	Down	Left
Possible States (Row, Column)	0, 0	-4.10	-3.44	-3.44	-4.10
	0, 1	-3.44	-2.71	-2.71	-4.10
	0, 2	-2.71	-1.90	-1.90	-3.44
	0, 3	-1.90	-1.90	-1.00	-2.71
	1, 0	-4.10	-2.71	-4.10	-3.44
	1, 1	-3.44	-1.90	-100.00	-3.44
	1, 2	-2.71	-1.00	-100.00	-2.71
	1, 3	-1.90	-1.00	0.00	-1.90
	2,0	-3.44	-100.00	-4.10	-4.10
	2, 1	0.00	0.00	0.00	0.00
	2, 2	0.00	0.00	0.00	0.00
	2, 3	0.00	0.00	0.00	0.00

Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - Cons:
 - When exploring, not maximizing your utility
 - Something bad might happen
- Exploitation: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both **exploration and exploitation**

 With probability ε, take a random action; else the action with the highest (current) Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

The Q-learning algorithm

Input: step size α , greedy parameter ϵ

- 1. Q(.,.)=0
- 2. for each episode
- 3. draw initial state $s \sim \mu$
- 4. while (s not terminal)
- 5. perform $a = \epsilon$ -greedy(Q), receive r, s'
- 6. $Q(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{b}Q(s',b))$
- 7. $s \leftarrow s'$
- 8. endwhile
- 9. endfor

Note: step 5 can use any other behavior policies

The Q-learning algorithm

- Step 5 can use any other behavior policies to choose action *a*, as long as all actions are chosen frequently enough
- The cumulative rewards during Q-learning may not be the highest
- But after Q-learning converges, can extract an optimal policy:

$$\pi^*(s) \in \operatorname{argmax}_a Q(s, a)$$
$$V^*(s) = \max_a Q^*(s, a)$$

Deep Q-Learning

How do we get Q(*s*,*a*)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

- Reinforcement learning setup
- Mathematical formulation: MDP
- Value functions & the Bellman equation
- Value iteration
- Q-learning

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations. (No: this is dependent on the particular problem, not a general constant).
- C. Re-start with different random initial table values. (No: this is not necessary in general).
- D. Prioritize exploitation over exploration. (No: insufficient exploration means potentially unupdated state action pairs).

Search and RL Review

- Search
 - Uninformed vs Informed
 - Optimization
- Games
 - Minimax search
- Reinforcement Learning
 - MDPs, value iteration, Q-learning

Uninformed vs Informed Search

h(s

als

Uninformed search (all of what we saw). Know:

- Path cost *g*(*s*) from start to node *s*
- Successors. start s

goa

Informed search. Know:

• All uninformed search properties, plus

start

• Heuristic h(s) from s to goal (recall game heuristic)

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space O(bd)

A good option!

Informed Search: A* Search

- A*: Expand best *g(s)* + *h(s)*, with one requirement
- Demand that *h*(*s*) ≤ *h**(*s*)

- If heuristic has this property, "admissible"
 - Optimistic! Never over-estimates

- Still need $h(s) \ge 0$
 - Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States *s* have values *f*(*s*)

- $\begin{array}{c} \mathsf{ICH} \\ & & \\ &$
- Want: *s* with optimal value *f*(*s*) (i.e, optimize over states)
- Challenging setting: **too many states** for previous search approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \leq f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?

Simulated Annealing

A more sophisticated optimization approach.

- Idea: move quickly at first, then slow down
- Pseudocode:

Pick initial state s For k = 0 through k_{max} : $T \leftarrow temperature((k+1)/k_{max})$ Pick a random neighbour, $t \leftarrow neighbor(s)$ If $f(s) \leq f(t)$, then $s \leftarrow t$ Else, with prob. P(f(s), f(t), T) then $s \leftarrow t$ **Output**: the final state s

Games Setup

Games setup: multiple agents

- Strategic decision making.

Minimax Search

Note that long games are yield huge computation

- To deal with this: limit *d* for the search depth
- **Q**: What to do at depth *d*, but no termination yet?
 - A: Use a heuristic evaluation function e(x)

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A

- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.