Outline

• Review of reinforcement learning
 – MDPs, value functions, value iteration

• Q-learning
 – Q function, deep Q-learning

• Search + RL Review
 – Uninformed/informed search, optimization, RL
Building The Theoretical Model

Basic setup:
- Set of states, S
- Set of actions A
- Interaction:
 - At time t, observe state $s_t \in S$.
 - Agent makes choice $a_t \in A$.
 - Gets reward r_t, state changes to s_{t+1}, continue

Goal: find a policy from **states to actions** to maximize rewards.
Markov Decision Process (MDP)

The formal mathematical model $M = (S, A, P, r, \mu, \gamma)$:

- **State set** S. Initial state s_0. **Action set** A
- **Reward function**: $r(s_t, a_t)$
- **State transition model**: $P(s_{t+1} | s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not earlier history (older actions or states).
 - More generally: $P(r_t, s_{t+1} | s_t, a_t)$
- **Policy**: $\pi(s) : S \rightarrow A$ action to take at a particular state.

\[s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots \]
Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \text{ for every non-terminal state} \]
Defining the Optimal Policy

For policy \(\pi \), the value starting from \(s_0 \) produced by following that policy:

\[
V^\pi(s_0) = \sum P \text{sequence} U \text{sequence}
\]

sequences \((s_t, a_t, r_t, s_{t+1}) \) starting from \(s_0 \)

Called the value function (for \(\pi, s_0 \))
Discounted Rewards

One issue: these are infinite series. **Convergence?**

- **Solution**

 \[
 U(\text{sequence}) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots = \sum_{t \geq 0} \gamma^t r_t
 \]

- **Discount factor** \(\gamma \in (0,1) \)
 - Set according to how important **present** is VS **future**
 - Note: has to be less than 1 for convergence
Let’s walk over one step for the value function:

$$V^*(s) = \max_a r(s, a) + \gamma \sum_{s'} P(s'|s, a) V^*(s')$$

- **Bellman: inventor of dynamic programming**

Bellman Equation
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward $r(s)$, transition probability $P(s'|s,a)$
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V_i(s')$$
Now that $V^\pi(s_0)$ is defined what a should we take?

- Optimal policy $\pi^* \in \arg\max_{\pi} V^\pi(s_0)$
- At any state s, we should take action $a = \pi^*(s)$
- Define $V^*(s) = V^{\pi^*}(s)$
- If we know V^*, we can extract π^*:

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a)V^*(s')$$
Q 1.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. What is the optimal policy \(\pi(A) \) and \(\pi(B) \)? What are \(V^*(A) \), \(V^*(B) \)?

- A. Stay, Stay, \(1/(1-\gamma) \), 1
- B. Stay, Move, \(1/(1-\gamma) \), \(1/(1-\gamma) \)
- C. Move, Move, \(1/(1-\gamma) \), 1
- D. Stay, Move, \(1/(1-\gamma) \), \(\gamma/(1-\gamma) \)
Q 1.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, \ r(B) = 0 \). Let \(\gamma \) be the discounting factor. What is the optimal policy \(\pi(A) \) and \(\pi(B) \)? What are \(V^*(A) \), \(V^*(B) \)?

- A. Stay, Stay, \(1/(1-\gamma) \), 1
- B. Stay, Move, \(1/(1-\gamma) \), \(1/(1-\gamma) \)
- C. Move, Move, \(1/(1-\gamma) \), 1
- D. Stay, Move, \(1/(1-\gamma) \), \(\gamma/(1-\gamma) \)
Q 1.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. What is the optimal policy \(\pi(A) \) and \(\pi(B) \)? What are \(V^*(A), V^*(B) \)?

- A. Stay, Stay, \(1/(1-\gamma) \), 1
- B. Stay, Move, \(1/(1-\gamma) \), \(1/(1-\gamma) \)
- C. Move, Move, \(1/(1-\gamma) \), 1
- D. Stay, Move, \(1/(1-\gamma) \), \(\gamma/(1-\gamma) \) Note: want to stay at A, if at B, move to A. Starting at A, sequence A,A,A,... rewards 1, \(\gamma \), \(\gamma^2 \),... Start at B, sequence B,A,A,... rewards 0, \(\gamma \), \(\gamma^2 \),... Sums to \(1/(1-\gamma) \), \(\gamma/(1-\gamma) \).
Q-Learning

Our first reinforcement learning algorithm

• Don’t know the whole r and P. But can see interaction trajectory \((s_t, a_t, r_t, s_{t+1})\)

• **Q-learning**: get an action-utility function \(Q^*(s,a)\) that tells us the value of doing \(a\) in state \(s\)

• Note: \(V^*(s) = \max_a Q^*(s,a)\)

• Now, we can just do \(\pi^*(s) = \arg \max_a Q^*(s,a)\)
 – But need to estimate \(Q^*\)!
The $Q^*(s,a)$ function

- Starting from state s, perform (perhaps suboptimal) action a. THEN follow the optimal policy

$$Q^*(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

- Equivalent to

$$Q^*(s,a) = r(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_b Q^*(s',b)$$
Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

1. Initialize $Q(.,.)$ arbitrarily (eg all zeros)
 1. Except terminal states $Q(s_{\text{terminal}},.)=0$
2. Iterate over data until $Q(.,.)$ converges:

 $$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>-4.10</td>
<td>-3.44</td>
<td>-2.71</td>
<td>-1.90</td>
</tr>
<tr>
<td>Right</td>
<td>-3.44</td>
<td>-2.71</td>
<td>-1.90</td>
<td>-1.90</td>
</tr>
<tr>
<td>Down</td>
<td>-3.44</td>
<td>-2.71</td>
<td>-1.90</td>
<td>-1.00</td>
</tr>
<tr>
<td>Left</td>
<td>-4.10</td>
<td>-4.10</td>
<td>-3.44</td>
<td>-2.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>-4.10</td>
<td>-3.44</td>
<td>-2.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Right</td>
<td>-2.71</td>
<td>-1.90</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Down</td>
<td>-4.10</td>
<td>-100.00</td>
<td>-100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Left</td>
<td>-3.44</td>
<td>-100.00</td>
<td>-100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CLIFF is located at (2, 2).

START is at (0, 0) and **END** is at (3, 3).
<table>
<thead>
<tr>
<th>Possible States (Row, Column)</th>
<th>Up</th>
<th>Right</th>
<th>Down</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>-4.10</td>
<td>-3.44</td>
<td>-3.44</td>
<td>-4.10</td>
</tr>
<tr>
<td>0, 1</td>
<td>-3.44</td>
<td>-2.71</td>
<td>-2.71</td>
<td>-4.10</td>
</tr>
<tr>
<td>0, 2</td>
<td>-2.71</td>
<td>-1.90</td>
<td>-1.90</td>
<td>-3.44</td>
</tr>
<tr>
<td>0, 3</td>
<td>-1.90</td>
<td>-1.90</td>
<td>-1.00</td>
<td>-2.71</td>
</tr>
<tr>
<td>1, 0</td>
<td>-4.10</td>
<td>-2.71</td>
<td>-4.10</td>
<td>-3.44</td>
</tr>
<tr>
<td>1, 1</td>
<td>-3.44</td>
<td>-1.90</td>
<td>-100.00</td>
<td>-3.44</td>
</tr>
<tr>
<td>1, 2</td>
<td>-2.71</td>
<td>-1.00</td>
<td>-100.00</td>
<td>-2.71</td>
</tr>
<tr>
<td>1, 3</td>
<td>-1.90</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.90</td>
</tr>
<tr>
<td>2, 0</td>
<td>-3.44</td>
<td>-100.00</td>
<td>-4.10</td>
<td>-4.10</td>
</tr>
<tr>
<td>2, 1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2, 2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2, 3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Exploration Vs. Exploitation

General question!

- **Exploration**: take an action with unknown consequences
 - **Pros**:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - **Cons**:
 - When exploring, not maximizing your utility
 - Something bad might happen

- **Exploitation**: go with the best strategy found so far
 - **Pros**:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - **Cons**:
 - Might prevent you from discovering the true optimal strategy
Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε, take a random action; else the action with the highest (current) $Q(s,a)$ value.

$$a = \begin{cases} \arg\max_{a \in A} Q(s, a) & \text{uniform}(0, 1) > \varepsilon \\ \text{random } a \in A & \text{otherwise} \end{cases}$$
The Q-learning algorithm

Input: step size α, greedy parameter ϵ

1. $Q(.,.)=0$
2. for each episode
3. draw initial state $s \sim \mu$
4. while (s not terminal)
5. perform $a = \epsilon$-greedy(Q), receive r, s'
6. $Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_b Q(s', b))$
7. $s \leftarrow s'$
8. endwhile
9. endfor

Note: step 5 can use any other behavior policies
The Q-learning algorithm

• Step 5 can use any other behavior policies to choose action a, as long as all actions are chosen frequently enough.

• The cumulative rewards during Q-learning may not be the highest.

• But after Q-learning converges, can extract an optimal policy:

$$\pi^*(s) \in \arg\max_a Q(s, a)$$
$$V^*(s) = \max_a Q^*(s, a)$$
Deep Q-Learning

How do we get $Q(s,a)$?

Mnih et al, "Human-level control through deep reinforcement learning"
Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning
Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.
Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• **A. Visit every state and try every action**
• B. Perform at least 20,000 iterations.
• C. Re-start with different random initial table values.
• D. Prioritize exploitation over exploration.
Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is not necessary in general).
• D. Prioritize exploitation over exploration. (No: insufficient exploration means potentially unupdated state action pairs).
Search and RL Review

• Search
 – Uninformed vs Informed
 – Optimization

• Games
 – Minimax search

• Reinforcement Learning
 – MDPs, value iteration, Q-learning
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost $g(s)$ from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal (recall game heuristic)
Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(bd)$

A good option!
Informed Search: A* Search

A*: Expand best $g(s) + h(s)$, with one requirement

• Demand that $h(s) \leq h^*(s)$

• If heuristic has this property, “admissible”
 – Optimistic! Never over-estimates

• Still need $h(s) \geq 0$
 – Negative heuristics can lead to strange behavior
Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values $f(s)$
• Want: s with optimal value $f(s)$ (i.e., optimize over states)
• Challenging setting: too many states for previous search approaches, but maybe not a continuous function for SGD.
Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in neighbors(s) with the largest $f(t)$
3. if $f(t) \leq f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2.

What could happen? **Local optima!**
Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?

Done?

Where do I go?
Simulated Annealing

A more sophisticated optimization approach.

- **Idea:** move quickly at first, then slow down
- **Pseudocode:**

Pick initial state \(s \)

For \(k = 0 \) through \(k_{\text{max}} \):

\[
T \leftarrow \text{temperature}((k+1)/k_{\text{max}})
\]

Pick a random neighbour, \(t \leftarrow \text{neighbor}(s) \)

If \(f(s) \leq f(t) \), then \(s \leftarrow t \)

Else, with prob. \(P(f(s), f(t), T) \) then \(s \leftarrow t \)

Output: the final state \(s \)

The interesting bit
Games Setup

Games setup: **multiple** agents

- Now: interactions between agents
- Still want to maximize utility
- **Strategic** decision making.
Minimax Search

Note that long games are yield huge computation

• To deal with this: limit d for the search depth

• **Q:** What to do at depth d, but no termination yet?
 – **A:** Use a heuristic evaluation function $e(x)$

```java
function MINIMAX(x, d) returns an estimate of x’s utility value
    inputs: x, current state in game
             d, an upper bound on the search depth
    if x is a terminal state then return Max’s payoff at x
    else if $d = 0$ then return $e(x)$
    else if it is Max’s move at $x$ then
        return max{MINIMAX(y, $d-1$) : y is a child of x}
    else return min{MINIMAX(y, $d-1$) : y is a child of x}
```

Credit: Dana Nau
Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A
- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1}, continue

Goal: find a map from **states to actions** maximize rewards.

A “policy”