

CS540 Introduction to Artificial Intelligence Al in the Real World University of Wisconsin-Madison

Spring 2022

Food Image Classifier

A running example

Basic steps to build an ML system

The steps overview

- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat

Acquire and annotate data

Data should be **diverse** (annotation can be expensive)

Data should be realistic

Ideal data sampled from the distribution your product will be run on.

Real photo taken by users

Professional ads photo

Look at your data.

Look at your data.

- You have some food images, take a closer look at them!
- Food from Europe different than from Africa? from Asia?
- Any potential bias in your data?
- Have the right people look at your data.
- Do this at every stage!

Expertise sometimes can be required

- Biomedical imaging annotation can be expensive
- Professionally trained radiologists
- Domain knowledge

Effusion

Mass

Infiltration

Input

Human annotation

Train/Dev/Test Split

Partitioning Data: Train, Test, and Validation

(1) Fit model to the training dataset

(2) Fit hyperparameters to the *validation* (or *development*) dataset

(3) Test model performance on the test set

Slides credit: Chris Ré, Stanford CS229

What makes a good split?

- Ideal: Train, test, & dev randomly sampled
 - Allows us to say train quality is approximately test quality
- Test is a proxy for the real world! We'll talk more about this later...
- Challenge: Leakage.
 - (Nearly) same example in train and dev.
 - Causes performance to be overstated!
 - Eg., same senders in train and test?

Slides credit: Chris Ré, Stanford CS229

Build your model.

Build your model.

- A bag of learning algorithms learned from class.
- •Simple model vs. deep models

Underfitting Overfitting

Image credit: hackernoon.com

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

inctions gles to

Underfitting and Overfitting

Low

High

Data complexity

Simple	Complex
Normal	Underfitting
Overfitting	Normal

Data Complexity

- Multiple factors matters
 - # of examples
 - # of features in each example
 - time/space structure
 - # of labels

Ablation studies.

- You've built up a model, it has many different components.
 - Which matter?
 - which are stable?
- Remove one feature at a time!
 - Adding features + baseline could overestimate overlap. How?
- Measure performance.
 - Critical for research!

Slides credit: Chris Ré, Stanford CS229

Diagnose the error

(inspect the data where the model makes mistakes)

Open-world Machine Learning

Self-driving car model

Closed-world: Training and testing distributions **match** Open-world: Training and testing distributions differ, unknowns can emerge

Deep Networks Do Not Necessarily Know What They Don't Know... [Nguyen et al. 2015]

Model trained on BDD dataset produces overconfident predictions for unknown object "helicopter"

n't Know by Virtual Outlier Synthesis", ICLR, 2022

Pedestrian

Truck

Car

Out-of-distribution Detection

Pedestrian

Truck

Closed-world

Input space: $\mathcal{X} = \mathbb{R}^d$ Label space: $\mathcal{Y} = \{1, -1\}$

Closed-world

Open-world

 $y \notin \{+1, -1\}$

Unknown class from out-of-distribution data

CIFAR-10

Slide from OpenAl

The Internet

The steps overview

- Step 1: collect data
- Step 2: look at your data
- Step 3: Create train/dev/test splits
- Step 4: build model
- Step 5: Evaluate your model
- Step 6: Diagnose error and repeat

Industry-scale Machine Learning

Model Complexity Keeps Increasing

ResNet (He et al. 2016)

LeNet (Lecun et al. 1998)

[Sun et al. 2017]

[Deng et al. 2009]

Challenge: Limited labeled data

x 1000

1B images ~million annotation hours

TRAINING AT SCALE

Levels of Supervision

Weedly \$8pperisedd

ImageNet

Un-supervised

A CUTEAC, ADOGOUPLE ??? F#CAOR Instagram/Flickr Crawled web image

TRAINING AT SCALE Noisy Data

Non-Visual Labels

#LOVE #CAT #DOG #HUSKY -

Incorrect Labels

Missing Labels

Weakly Supervised Training

3.5B **PUBLIC INSTAGRAM IMAGES**

LARGE CAPACITY MODEL **17K UNIQUE LABELS** (RESNEXT101-32X48)

DISTRIBUTED

TRAINING (350 GPUS)

[Mahajan et al. 2018]

Self-supervised Learning (no label)

What if we can get labels **for free** from unlabelled data and train unsupervised dataset in a supervised manner?

Pretext Tasks

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Rotation

[Gidaris et al. 2018]

Rotation

Gidaris et al. 2018

Rotation

Gidaris et al. 2018

Patches

Example:

Question 1:

Question 2:

[Doersch et al., 2015]

- Basic steps to build an ML system
- **Open-world machine learning**
- Industry-scale machine learning \bullet

Summary

Thank you!