

CS 540 Introduction to Artificial Intelligence Linear Algebra \& PCA
 University of Wisconsin-Madison

Spring 2022

Linear Algebra: What is it good for?

- Almost everything is a function
- Multiple inputs and outputs
- Linear functions
- Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Hieu Tran

Stanford CS231n

Outline

- Basics: vectors, matrices, operations
- Dimensionality reduction
- Principal Components Analysis (PCA)

Lior Pachter

Basics: Vectors

Vectors

- Many interpretations
- Physics: magnitude + direction
- Point in a space
- List of values (represents information)

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

Basics: Vectors

- Dimension
- Number of values $\quad x \in \mathbb{R}^{d}$
- Higher dimensions: richer but more complex
- $\mathrm{Al} / \mathrm{ML}$: often use very high dimensions:
- Ex: images!

Basics: Matrices

- Again, many interpretations
- Represent linear transformations
- Apply to a vector, get another vector
- Also, list of vectors
- Not necessarily square
- Indexing! $\quad A \in \mathbb{R}^{c \times d}$

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

- Dimensions: \#rows x \#columns

Basics: Transposition

- Transposes: flip rows and columns
- Vector: standard is a column. Transpose: row
- Matrix: go from $m \times n$ to $n \times m$

$$
\begin{array}{r}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] x^{T}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \\
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22} \\
A_{13} & A_{23}
\end{array}\right]
\end{array}
$$

Matrix \& Vector Operations

- Vectors
- Addition: component-wise
- Commutative
- Associative

$$
x+y=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

- Scalar Multiplication
- Uniform stretch / scaling

$$
c x=\left[\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- Vector products.
- Inner product (e.g., dot product)

$$
<x, y>:=x^{T} y=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

- Outer product

$$
x y^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- Inner product defines "orthogonality"
$-\operatorname{If}\langle x, y\rangle=0$
- Vector norms: "length"

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Matrix \& Vector Operations

- Matrices:
- Addition: Component-wise
- Commutative, Associative

$$
A+B=\left[\begin{array}{ll}
A_{11}+B_{11} & A_{12}+B_{12} \\
A_{21}+B_{21} & A_{22}+B_{22} \\
A_{31}+B_{31} & A_{32}+B_{32}
\end{array}\right]
$$

- Scalar Multiplication

$$
c A=\left[\begin{array}{ll}
c A_{11} & c A_{12} \\
c A_{21} & c A_{22} \\
c A_{31} & c A_{32}
\end{array}\right]
$$

Matrix \& Vector Operations

- Matrix-Vector multiply
- I.e., linear transformation; plug in vector, get another vector
- Each entry in $A x$ is the inner product of a row of A with x

$$
A x=\left[\begin{array}{c}
A_{11} x_{1}+A_{12} x_{2}+\ldots+A_{1 n} x_{n} \\
A_{21} x_{1}+A_{22} x_{2}+\ldots+A_{2 n} x_{n} \\
\vdots \\
A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots+A_{n n} x_{n}
\end{array}\right]
$$

Matrix \& Vector Operations

Ex: feedforward neural networks. Input x.

- Output of layer kis

Output of layer k-1: vector
Wikipedia

Output of layer k : vector

Matrix \& Vector Operations

- Matrix multiplication
- "Composition" of linear transformations
- Not commutative (in general)!
- Lots of interpretations

More on Matrix Operations

- Identity matrix:
- Like " 1 "
- Multiplying by it gets back the same matrix or vector
- Rows \& columns are the "standard basis vectors" e_{i}

$$
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Break \& Quiz

- Q 1.1: What is $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
- A. $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}$
- B. $\left[\begin{array}{lll}2 & 1 & 1\end{array}\right]^{\top}$
- C. $\left[\begin{array}{ll}1 & 3\end{array}\right]^{\top}$
- D. [1.5 21$]^{\top}$

Break \& Quiz

- Q 1.1: What is $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
- A. $\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}$
- B. [2 111$]^{\top}$
- C. $\left[\begin{array}{ll}1 & 3\end{array}\right]^{\top}$
- D. [1.5 21 1 ${ }^{\top}$

Break \& Quiz

- Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of $B A C^{T}$
- A. $n \times p$
- B. $d x p$
- C. $d x n$
- D. Undefined

Break \& Quiz

- Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of $B A C^{T}$
- A. $n \times p$
- B. $d x p$
- C. $d x n$
- D. Undefined

Break \& Quiz

- Q 1.3: A and B are matrices, neither of which is the identity. Is $A B=B A$?
- A. Never
- B. Always
- C. Sometimes

Break \& Quiz

- Q 1.3: A and B are matrices, neither of which is the identity. Is $A B=B A$?
- A. Never
- B. Always
- C. Sometimes

More on Matrices: Inverses

- If for A there is a B such that $A B=B A=I$
- Then A is invertible/nonsingular, B is its inverse
- Some matrices are not invertible!
- Usual notation: A^{-1}

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=I
$$

Eigenvalues \& Eigenvectors

- For a square matrix A, solutions to $A v=\lambda v$
- v (nonzero) is a vector: eigenvector
$-\lambda$ is a scalar: eigenvalue
- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)

Dimensionality Reduction

- Vectors used to store features
- Lots of data -> lots of features!
- Document classification
- Each doc: thousands of words/millions of bigrams, etc
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	$?$	$?$	1	3	$?$
George	$?$	$?$	3	1	2	5
Susan	4	3	1	$?$	5	1
Beth	4	3	$?$	2	4	2

Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects

- Or any image

Dimensionality Reduction

Reduce dimensions

- Why?
- Lots of features redundant
- Storage \& computation costs

- Goal: take $x \in \mathbb{R}^{d} \rightarrow x \in \mathbb{R}^{r}$ for $r \ll d$
- But, minimize information loss

Compression

Examples: 3D to 2D

Andrew Ng

Break \& Quiz

Q 2.1: What is the inverse of

$$
A=\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{ll}
0 & \frac{1}{3} \\
\frac{1}{2} & 0
\end{array}\right]
\end{aligned}
$$

Undefined / A is not invertible

Break \& Quiz

Q 2.1: What is the inverse of

$$
A=\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{ll}
0 & \frac{1}{3} \\
\frac{1}{2} & 0
\end{array}\right]
\end{aligned}
$$

Undefined / A is not invertible

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$
A. $-1,2,4$
B. $0.5,0.2,1.0$
C. $0,2,5$
D. $2,5,1$

Break \& Quiz

Q 2.2: What are the eigenvalues of $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$

A. $-1,2,4$
B. $0.5,0.2,1.0$
C. $0,2,5$
D. $2,5,1$

Break \& Quiz

Q 2.3: Suppose we are given a dataset with $n=10000$ samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?
A. 20X
B. 100 X
C. $5 x$
D. $1 x$

Break \& Quiz

Q 2.3: Suppose we are given a dataset with $\mathrm{n}=10000$ samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?
A. 20 X
B. 100 X
C. $5 x$
D. $1 x$

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach
- For when data is approximately lower dimensional

Principal Components Analysis (PCA)

- Goal: find axes of a subspace
- Will project to this subspace; want to preserve data

Principal Components Analysis (PCA)

- From 2D to 1D:
- Find a $v_{1} \in \mathbb{R}^{d}$ so that we maximize "variability"
- IE,

- New representations are along this vector (1D!)

Principal Components Analysis (PCA)

- From d dimensions to r dimensions
- Sequentially get $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!
- Still minimize the projection error
- Equivalent to "maximizing variability"
- The vectors are the principal components

PCA Setup

- Inputs
- Data:
$x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{d}$
- Can arrange into
- Centered!

$$
\begin{gathered}
X \in \mathbb{R}^{n \times d} \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}=0
\end{gathered}
$$

Victor Powell

- Outputs

- Principal components $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!

PCA Goals

- Want directions/components (unit vectors) so that
- Projecting data maximizes variance
- What's projection?

$$
\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle^{2}=\|X v\|^{2}
$$

Let's look at an example!

Projection: An Example

$x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{2}$

Projection: An Example

$x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{2}$

A random line that goes through the origin

Projection: An Example

$x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{2}$

To quantify how good the line fits the data, PCA project data onto it...

Projection: An Example

$$
x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{2}
$$

Goal of PCA: finding a line that maximizes the distance from the projected points to the origin (sum over all points)

$$
\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle^{2}=\|X v\|^{2}
$$

Projection: An Example

$$
x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{2}
$$

For a fixed point, this distance gets larger as the line fits better (why? Pythagorean Theorem)

$$
\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle^{2}=\|X v\|^{2}
$$

This orange line is called Principal Component 1

PCA First Step

- First component,

$$
v_{1}=\arg \max _{\|v\|=1} \sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle^{2}
$$

- Same as getting

$$
v_{1}=\arg \max _{\|v\|=1}\|X v\|^{2}
$$

PCA Goals

- Want directions/components (unit vectors) so that
- Projecting data maximizes variance
- What's projection?

$$
\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle=\|X v\|^{2}
$$

- Do this recursively
- Get orthogonal directions $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$

PCA Recursion

- Once we have k-1 components, next?

$$
\hat{X}_{k}=X-\sum_{i=1}^{k-1} X v_{i} v_{i}^{T}
$$

- Then do the same thing

$$
v_{k}=\arg \max _{\|v\|=1}\left\|\hat{X}_{k} w\right\|^{2}
$$

PCA Interpretations

- The v's are eigenvectors of $X^{\top} X$ (Gram matrix)
- Show via Rayleigh quotient
- $X^{\top} X$ (proportional to) sample covariance matrix
- When data is 0 mean!
- I.e., PCA is eigendecomposition of sample covariance
- Nested subspaces $\operatorname{span}(v 1), \operatorname{span}(v 1, v 2), \ldots$

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
- Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
- Visualization
- Efficiency
- Noise removal
- Downstream machine learning use

Application: Image Compression

- Start with image; divide into 12×12 patches
- I.E., 144-D vector
- Original image:

Application: Image Compression

- 6 most important components (as an image)

Application: Image Compression

- Project to 6D,

Compressed

Original

Application: Exploratory Data Analysis

- [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)

[^0]
Readings

- Vast literature on linear algebra.
- Local class: Math 341.
- Suggested reading:
- Lecture notes on PCA by Roughgarden and Valiant
https://web.stanford.edu/class/cs168/l/l7.pdf
- 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

[^0]: "Genes Mirror Geography in Europe"

