

CS 540 Introduction to Artificial Intelligence Statistics & Math Review University of Wisconsin-Madison

Spring 2022

Samples and Estimation

- Usually, we don't know the distribution P
 - Instead, we see a bunch of samples

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)- Estimate the mean E[X]

 - Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{ heta}(X)$
- Example: Bernoulli with parameter μ Mean E[X] is p

Examples: Sample Mean

- Bernoulli with parameter *p*
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with **sample mean**

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

No different from counting heads

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

- A. 9/8
- **B.** 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- **D.** Between 50 and 99, inclusive.

Estimating Multinomial Parameters

- *k*-sized die (special case: *k*=2 coin)
- Face *i* has probability *p_i*, for *i=1..k*
- In *n* rolls, we observe face *i* showing up n_i times
- Estimate $(p_{1,...,}, p_k)$ from this data $(n_{1,...,}, n_k)$

Maximum Likelihood Estimate (MLE)

• The MLE of multinomial parameters $(\widehat{p_1}, ..., \widehat{p_k})$

$$\widehat{p_i} = \frac{n_i}{n}$$

"frequency estimate"

Regularized Estimate

- Equivalent to a specific Maximum A Posterori (MAP) estimate, or smoothing
- Hyperparameter $\epsilon > 0$

$$\widehat{p}_i = \frac{n_i + \epsilon}{n + k\epsilon}$$

- Avoids zero when *n* is small
- Biased, but has smaller variance

Estimating 1D Gaussian Parameters

- Gaussian distribution $N(\mu, \sigma^2)$
- Observe *n* data points from this distribution

• Estimate μ, σ^2 from this data

Estimating 1D Gaussian Parameters

- Mean estimate $\hat{\mu} = \frac{x_1 + \dots + x_n}{n}$
- Variance estimates

- Unbiased
$$s^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n-1}$$

- MLE $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n}$

Estimation Theory

- How do we know that the sample mean is a good estimate of the true mean?
 - Concentration inequalities

 $P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$

- Law of large numbers
- Central limit theorems, etc.

Wolfram Demo