CS 540 Introduction to Artificial Intelligence
Statistics & Math Review
University of Wisconsin-Madison
Spring 2022
Samples and Estimation

• Usually, we don’t know the distribution P
 – Instead, we see a bunch of samples

• Typical statistics problem: **estimate parameters** from samples
 – Estimate probability $P(H)$
 – Estimate the mean $E[X]$
 – Estimate parameters $P_\theta(X)$
Samples and Estimation

• Typical statistics problem: estimate **parameters** from samples
 – Estimate probability $P(H)$
 – Estimate the mean $E[X]$
 – Estimate parameters $P_\theta(X)$

• Example: Bernoulli with parameter p
 – Mean $E[X]$ is p
Examples: Sample Mean

- Bernoulli with parameter p
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with sample mean
 $$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 - No different from counting heads
Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $E[X^2]$

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate $E[X^2]$
Break & Quiz

Q 2.1: You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate $E[X^2]$
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Estimating Multinomial Parameters

- \(k \)-sized die (special case: \(k=2 \) coin)
- Face \(i \) has probability \(p_i \), for \(i=1..k \)
- In \(n \) rolls, we observe face \(i \) showing up \(n_i \) times
 \[\sum_{i=1}^{k} n_i = n \]
- Estimate \((p_1, \ldots, p_k)\) from this data \((n_1, \ldots, n_k)\)
Maximum Likelihood Estimate (MLE)

- The MLE of multinomial parameters \((\hat{p}_1, ..., \hat{p}_k)\)
 \[
 \hat{p}_i = \frac{n_i}{n}
 \]
- “frequency estimate”
Regularized Estimate

- Equivalent to a specific Maximum A Posteriori (MAP) estimate, or smoothing
- Hyperparameter $\epsilon > 0$
 \[
 \hat{p}_i = \frac{n_i + \epsilon}{n + k\epsilon}
 \]
- Avoids zero when n is small
- Biased, but has smaller variance
Estimating 1D Gaussian Parameters

- Gaussian distribution $N(\mu, \sigma^2)$
- Observe n data points from this distribution x_1, \ldots, x_n
- Estimate μ, σ^2 from this data
Estimating 1D Gaussian Parameters

- Mean estimate
 \[\hat{\mu} = \frac{x_1 + \cdots + x_n}{n} \]

- Variance estimates
 - Unbiased
 \[s^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n - 1} \]
 - MLE
 \[\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n} \]
Estimation Theory

• How do we know that the sample mean is a good estimate of the true mean?
 – Concentration inequalities
 \[P(|\bar{X} - \hat{E}[X]| \geq t) \leq \exp(-2nt^2) \]
 – Law of large numbers
 – Central limit theorems, etc.