What is NLP?

Combining computing with human language. Want to:

- Answer questions
- Summarize or extract information
- Translate between languages
- Generate dialogue/language
- Write stories automatically
Why is it hard?

Many reasons:

– Ambiguity: “He saw the duck in the park with the telescope”. Several meanings.

– Non-standard use of language

– Segmentation challenges

– Understanding of the world
 • “Bob and Joe are brothers”.
 • “Bob and Joe are fathers”.

Approaches to NLP

A brief history

– Symbolic NLP: 50’s to 90’s
– Statistical/Probabilistic: 90’s to present
 • Neural: 2010’s to present

Lots of progress!
Lots more to work to do

ELIZA program
Outline

• Introduction to language models
 – n-grams, training, improving issues, evaluation

• Classic NLP tasks
 – Part-of-speech tagging, parsing, dependencies

• Word representations
 – One-hot, word embeddings, transformer-based

Language Models

- Basic idea: use probabilistic models to **assign a probability to a sentence**

\[P(W) = P(w_1, w_2, \ldots, w_n) \text{ or } P(w_{\text{next}}|w_1, w_2 \ldots) \]

- Goes back to Shannon
 - Information theory: letters

<table>
<thead>
<tr>
<th>Approximation</th>
<th>Text Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-order approximation</td>
<td>XFOML RXKRFJFFUJ ALPWXFWJXYJ FFJELYV/INC/SHYD QPAAMKBZAC/BJLJKQD</td>
</tr>
<tr>
<td>First-order approximation</td>
<td>OCRHO RGW SMIELWIS EU LL NNBNESEBYA TH EEI ALHENHTPPA OOBTVNAH BRL</td>
</tr>
<tr>
<td>Second-order approximation</td>
<td>ON IE ANTSOTINYS ARE T INCOREE ST BE S DEAMY ACHIN D ILONASIV TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE</td>
</tr>
<tr>
<td>Third-order approximation</td>
<td>IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE</td>
</tr>
<tr>
<td>First-order word approximation</td>
<td>REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OT TO EXPERT OR AM COME TO</td>
</tr>
</tbody>
</table>

Training The Model

Recall the chain rule

\[P(w_1, w_2, \ldots, w_n) = P(w_1)P(w_2|w_1) \ldots P(w_n|w_{n-1} \ldots w_1) \]

• How do we estimate these probabilities
 – Same thing as “training”
• From data?
 – Yes, but not directly: too many sentences.
 – Can’t estimate reliably.
Training: Make Assumptions

• Markov-type assumptions:

$$P(w_i|w_{i-1}w_{i-2}...w_1) = P(w_i|w_{i-1}w_{i-2}...w_{i-k})$$

• Present doesn’t depend on whole past
 – Just recent past
 – Markov chains have $k=1$. (Present only depends on immediate past).
 – What’s $k=0$?
k=0: Unigram Model

• Full independence assumption:
 – (Present doesn’t depend on the past)

\[P(w_1, w_2, \ldots, w_n) = P(w_1)P(w_2)\ldots P(w_n) \]

• Example (from Dan Jurafsky’s notes)

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the
k=1: Bigram Model

• Markov Assumption:
 – (Present depends on immediate past)

\[P(w_1, w_2, \ldots, w_n) = P(w_1)P(w_2|w_1)P(w_3|w_2)\ldots P(w_n|w_{n-1}) \]

• Example:
texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november
k=n-1: n-gram Model

Can do trigrams, 4-grams, and so on
- More expressive as n goes up
- Harder to estimate

Training: just count? I.e, for bigram:

$$P(w_i | w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}$$
n-gram Training

Issues:

1. Multiply tiny numbers?
 - Solution: use logs; add instead of multiply

2. n-grams with zero probability?
 - Solution: smoothing

\[
P(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}
\]

\[
P(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i) + 1}{\text{count}(w_{i-1}) + V}
\]
Other Solutions: Backoff & Interpolation

For issue 2, back-off methods

• Use n-gram where there is lots of information, r-gram (with r << n) elsewhere. (trigrams / bigrams)

Interpolation

• Mix different models: (tri- + bi- + unigrams)

\[\hat{P}(w_i|w_{i-1}, w_{i-2}) = \lambda_1 P(w_i|w_{i-1}, w_{i-2}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_3 P(w_i) \]
n-gram Training Issues

Issues:

• 1. Multiply tiny numbers?
 – Solution: use logs; add instead of multiply

• 2. Sparse n-grams
 – Solution: smoothing, backoff, interpolation

• 3. Vocabulary: open vs closed
 – Solution: use <UNK> unknown word token
Vocabulary: open vs closed

• Possible to estimate size of unknown vocabulary
 – Good-Turing estimator
• Originally developed to crack the Enigma machine
Q 1.1: Which of the below are bigrams from the sentence “It is cold outside today”.

- A. It is
- B. cold today
- C. is cold
- D. A & C
Break & Quiz

Q 1.1: Which of the below are bigrams from the sentence “It is cold outside today”.

- A. It is
- B. cold today
- C. is cold
- **D. A & C**
Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10
Break & Quiz

Q 1.2: Smoothing is increasingly useful for n-grams when

- A. n gets larger
- B. n gets smaller
- C. always the same
- D. n larger than 10
Evaluating Language Models

How do we know we’ve done a good job?

• Observation
• Train/test on separate data & measure metrics

• Metrics:
 – 1. Extrinsic evaluation
 – 2. Perplexity
Extrinsic Evaluation

How do we know we’ve done a good job?

• **Pick a task** and use the model to do the task
• For two models, M_1, M_2, compare the accuracy for each task
 – **Ex**: Q/A system: how many questions right. Translation: how many words translated correctly
• Downside: slow; may change relatively
Intrinsic Evaluation: Perplexity

Perplexity is a **measure of uncertainty**

\[\text{PP}(W) = P(w_1, w_2, \ldots, w_n)^{-\frac{1}{n}} \]

Lower is better! Examples:

- WSJ corpus; 40 million words for training:
 - Unigram: 962, Bigram 170, Trigram 109
Further NLP Tasks

Language modeling is not the only task. Two further types:

1. **Auxilliary** tasks:
 - Part-of-speech tagging, parsing, etc.

2. **Direct** tasks:
 - Question-answering, translation, summarization, classification (e.g., sentiment analysis)
Part-of-speech Tagging

Tag words as nouns, verbs, adjectives, etc.

- Tough part: ambiguous, even for people.
- Needs:
 - Getting neighboring word parts right
 - Knowledge of words ("man" is used as a noun, rarely as verb)

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>Token</th>
<th>Unknown</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>56,805</td>
<td>93.69%</td>
<td>82.61%</td>
<td>26.74%</td>
</tr>
<tr>
<td>3Words</td>
<td>239,767</td>
<td>96.57%</td>
<td>86.78%</td>
<td>48.27%</td>
</tr>
</tbody>
</table>

Chris Manning
Parsing

Get the grammatical structure of sentences

- Which words depend on each other? Note: input a sentence, output a tree (dependency parsing)
Q 2.1: What is the perplexity for a sequence of n digits 0-9? All occur with equal probability.

\[PP(W) = P(w_1, w_2, \ldots, w_n)^{-\frac{1}{n}} \]

- A. 10
- B. 1/10
- C. 10^n
- D. 0
Break & Quiz

Q 2.1: What is the perplexity for a sequence of n digits 0-9? All occur with equal probability.

- A. 10
- B. 1/10
- C. 10^n
- D. 0

\[
PP(W) = P(w_1, w_2, \ldots, w_n)^{-\frac{1}{n}}
\]
Representing Words

Remember value of random variables (RVs)
• Easier to work with than objects like ‘dog’

Traditional representation: **one-hot vectors**

\[
dog = [0 \ 0 \ 0 \ 0 \ 1 \ 0]
\]

– Dimension: # of words in vocabulary
– Relationships between words?
Smarter Representations

Distributional semantics: account for relationships
• Reps should be close/similar to other words that appear in a similar context

Dense vectors:

\[
\begin{align*}
\text{dog} &= [0.13 \quad 0.87 \quad -0.23 \quad 0.46 \quad 0.87 \quad -0.31]^T \\
\text{cat} &= [0.07 \quad 1.03 \quad -0.43 \quad -0.21 \quad 1.11 \quad -0.34]^T
\end{align*}
\]

AKA word embeddings
Training Word Embeddings

Many approaches (super popular 2010-present)

- Word2vec: a famous approach
- What’s our likelihood?

\[L(\theta) = \prod_{t=1}^{T} \prod_{-a \leq j \leq a} P(w_{t+j} | w_t, \theta) \]

Windows of length 2a

Our word vectors (variables/hypotheses)

All positions
Training Word Embeddings

Word2vec likelihood

\[L(\theta) = \prod_{t=1}^{T} \prod_{-a \leq j \leq a} P(w_{t+j} | w_t, \theta) \]

• Maximize this; what’s the probability?
 – Two vectors per word. \(v_w \), \(u_w \) for center/context
 (o is context word, c is center)

\[
P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}
\]
Beyond “Shallow” Embeddings

• Transformers: special model architectures based on attention
 – Sophisticated types of neural networks

• Pretrained models
 – Based on transformers: BERT
 – Include context!

• **Fine-tune** for desired task

Vaswani et al. 17
Reading