

CS 540 Introduction to Artificial Intelligence Machine Learning Overview University of Wisconsin-Madison

Spring 2022

Today's learning goal

- What is machine learning?
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering

Part I: What is machine learning?

HUMANS LEARN FROM PAST EXPERIENCES

MACHINES FOLLOW INSTRUCTIONS GIVEN BY HUMANS

What is machine learning?

• Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

Without Machine Learning

https://tung-dn.github.io/programming.html

What is machine learning?

- E.

• Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

• Tom Mitchell (1997): A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience

Taxonomy of ML

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Part II: Supervised Learning

User Sharon

Tempo

User Sharon

User Sharon

User Sharon

Or should the machine do this?

User Sharon

Or should the machine do this?

User Sharon

Or should the machine do this?

Example 2: Classify Images

http://www.image-net.org/

Example 2: Classify Images

indoor

outdoor

Example 2: Classify Images

Training data

Training data

learning (i.e.,training)

Label: outdoor

Test data

testing

Label: indoor

performance

How to represent data?

Intensity

Label $y \in \{0,1\}$

Where "supervision" comes from

Represent various types of data

- Image - Pixel values
- Bank account - Credit rating, balance, # deposits in last day, week, month, year, #withdrawals

Two Types of Supervised Learning Algorithms

Classification

Regression

Example of regression: housing price prediction Given: a dataset that contains *n* samples $(x_1, y_2), (x_2, y_2), \dots, (x_n, y_n)$ Price **Task**: if a residence has **x** squares feet, predict the price? **Square feet**

Example of regression: housing price prediction

Given: a dataset that contains *n* samples $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$

Task: if a residence has **x** squares feet, predict the price?

$$y \in \mathbb{R}$$

(credit: stanford CS229)

Example of regression: housing price prediction 3.5 3.0 2.5 price (\$1M 2.0 1.5 1.0 0.5 0.5 1.5 ining size (20

lot size (103 sq.ft)

6 3.0

Supervised Learning: More examples

x = raw pixels of the image y = bounding boxes

kit fox

airplane

croquette

Russakovsky et al. 2015

frog

Two Types of Supervised Learning Algorithms Classification Regression

• the label is a **discrete** variable

$$y \in \{1, 2, 3, ..., K\}$$

• the label is a **continuous** variable $y \in \mathbb{R}$

Training Set for Supervised Learning

A training set is a multiset of (instances, label) pairs to the learning algorithm:

$$\{(x_1, y_2), (x_2, y_2), (x_$$

input label

- the "experience" given to a learning algorithm • multiset: can have duplicate (x,y) pairs Independent and identically distributed (i.i.d.) assumption:

$$(x_i, y_i) \sim$$

 $\{x_3, y_3\}, \dots, \{x_n, y_n\}\}$

 p_{XY}

Goal of Supervised Learning

Given training set

Learn a function mapping $f: X \to Y$, such that f(x) predicts the label y on future data x (not in training set, but also drawn iid)

$\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)\}$

$(x, y) \sim p_{VV}$

Loss, empirical risk (training set error)

- Loss function
- 0-1 loss for classification $\ell(f, \mathbf{x}, y) = \mathbf{1}_{[f(\mathbf{x})\neq y]}$
- Empirical risk = training set error

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n$$

• Squared loss for regression: $\ell(f, \mathbf{x}, y) = (f(\mathbf{x}) - y)^2$

 $\ell(f, \mathbf{X}_i, y_i)$

The machine learning dilemma

Can only learn from the training set (may also regularize)

$$\hat{f} = \arg\min_{f \in \mathscr{F}} \hat{R}(f) = \arg\min_{f \in \mathscr{F}} \inf_{f \in \mathscr{F}} \hat{R}(f)$$

But really wants to find f^* : do well on distribution (test set, deploy, future data)

$$f^* = \arg\min_{f\in\mathscr{F}} R(f) = a$$

Also limited by the richness of model family \mathcal{F}

$\inf_{x \to n} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i)$

 $\underset{f \in \mathscr{F}}{\operatorname{rg\,min}} \mathbb{E}_{(x,y) \sim p_{XY}} \ell(f, x, y)$

Details in upcoming lectures :)

Quiz Break

Q1-1: Which is true about feature vectors?

- A. Feature vectors can have at most 10 dimensions
- B. Feature vectors have only numeric values
- C. The raw image can also be used as the feature vector
- D. Text data don't have feature vectors

Q1-1: Which is true about feature vectors?

- A. Feature vectors can have at most 10 dimensions
- B. Feature vectors have only numeric values
- C. The raw image can also be used as the feature vector
- D. Text data don't have feature vectors
 - A. Feature vectors can be in high dimen.B. Some feature vectors can have other types of values like
 - B. Some feature vectors can ha strings
 - D. Bag-of-words is a type of feature vector for text

Q1-2: Which of the following is not a common task of supervised learning?

- images)
- B. Classification
- C. Regression
- **D.** Dimensionality reduction

A. Object detection (predicting bounding box from raw

Q1-2: Which of the following is not a common task of supervised learning?

- images)
- B. Classification
- C. Regression
- D. Dimensionality reduction (PCA)

Dimensionality reduction does not require label y

A. Object detection (predicting bounding box from raw

Part II: Unsupervised Learning (no labels)

Unsupervised Learning

- Given: dataset contains no label X_1, X_2, \ldots, X_n

Goal: discover interesting patterns and structures in the data

Unsupervised Learning

- Given: dataset contains no label x_1, x_2, \ldots, x_n
- - Dimension reduction

Goal: discover interesting patterns and structures in the data

Unsupervised Learning

- Given: dataset contains no label x_1, x_2, \ldots, x_n
- - Dimension reduction
 - Clustering

Tempo

Clustering

- Given: dataset contains no label x_1, x_2, \ldots, x_n
- Output: divides the data into clusters such that there are intra-cluster similarity and inter-cluster dissimilarity

Clustering

Clustering Irises using three different features

The colors represent clusters identified by the algorithm, not y's provided as input

Clustering

- After this class you will be able to organize them better (based on visual similarity)

You probably have >1000 digital photos stored on your phone

Clustering Genes Cluster 1 Genes

Individuals

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Clustering Words with Similar Meanings

[Arora-Ge-Liang-M.-Risteski, TACL'17,18]

How do we perform clustering?

- Many clustering algorithms. We will look at the two most frequently used ones:
 - K-means clustering: we specify the desired number of clusters, and use an iterative algorithm to find them
 - Hierarchical clustering: we build a binary tree over the dataset

K-means clustering • Very popular clustering method

- Don't confuse it with k-NN classifier
- clusters k is given

• Input: a dataset x_1, x_2, \ldots, x_n , and assume the number of

point)

Step 1: Randomly picking 2 positions as initial cluster centers (not necessarily a data

Step 2: for each point x, determine its cluster: find the closest center in Euclidean space

Step 3: update all cluster centers as the centroids

Repeat step 2 & 3 until convergence

Converged solution! No labels required!

Tempo

K-means clustering: A demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Hierarchical Clustering (more to follow next lecture)

- Q2-1: Which is true about machine learning?
- A. The process doesn't involve human inputs
- B. The machine is given the training and test data for learning
- C. In clustering, the training data also have labels for learning
- D. Supervised learning involves labeled data

- Q2-1: Which is true about machine learning?
- A. The process doesn't involve human inputs
- B. The machine is given the training and test data for learning
- C. In clustering, the training data also have labels for learning
- D. Supervised learning involves labeled data
 - B. The machine should not have test data for learning

 - A. The labels are human inputs C. No labels available for clustering

- Q2-2: Which is true about unsupervised learning?

- of clusters k
- D. Unsupervised learning is widely used in many applications

A. There are only 2 unsupervised learning algorithms B. Kmeans clustering is a type of hierarchical clustering C. Kmeans algorithm automatically determines the number

- Q2-2: Which is true about unsupervised learning?

- of clusters k
- D. Unsupervised learning is widely used in many applications

A. There are only 2 unsupervised learning algorithms B. Kmeans clustering is a type of hierarchical clustering C. Kmeans algorithm automatically determines the number

What we've learned today...

- What is machine learning?
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning

Thanks!