

CS 540 Introduction to Artificial Intelligence Unsupervised Learning I

University of Wisconsin-Madison

Spring 2022

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$

Features / Covariates / Input
Labels / Outputs

- Goal: find function $f: X \rightarrow Y$ to predict label on new data

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally won't be making predictions
- Dataset: $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}$
- Goal: find patterns \& structures that help better understand data.

Outline

- Intro to Clustering
- K-means clustering
- Hierarchical Agglomerative Clustering
- Other Clustering Types

Recap of Supervised/Unsupervised

Note that there are other kinds of ML:

- Mixtures: semi-supervised learning, self-supervised
- Idea: different types of "signal"
- Reinforcement learning
- Learn how to act in order to maximize rewards
- Later on in course...

Unsupervised Learning \& Clustering

- Note that clustering is just one type of unsupervised learning (UL)
- PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)
- Clustering is popular \& useful!

StyleGAN2 (Kerras et al'20)

There are many clustering algorithms

- K-means algorithm
- HAC (Hierarchical Agglomerative Clustering) algorithm
- Spectral clustering algorithm
- t-SNE (t-distributed stochastic neighbor embedding)

K-means clustering

- Input:
- A dataset $x_{1}, \ldots, x_{n^{\prime}}$ each point is a feature vector
- Assume the number of desired clusters, k, is given

K-means clustering demo

- The 2D dataset. $\mathrm{k}=5$

K-means clustering

- Randomly picking 5
positions as initial cluster centers (not necessarily a data point)

K-means clustering

- Each point finds which cluster center it is closest to (very much like 1NN). The point belongs to that cluster.

K-means clustering

- Each cluster computes its new centroid, based on which points belong to it

K-means clustering

- Each cluster computes its new centroid, based on which points belong to it
- And repeat until convergence (cluster centers no longer move)...

K-means: initial cluster centers

K-means in action

K-means in action

K-means in action

K-means in action

K-means in action

K-means in action

K-means in action

K-means in action

K-means algorithm

- Input: $x_{1} \ldots x_{n}, k$
- Step 1: select k cluster centers $c_{1} \ldots c_{k}$
- Step 2: for each point x, determine its cluster assignment: find the closest center in Euclidean distance

$$
y(x)=\operatorname{argmin}_{i=1: k}\left\|x-c_{i}\right\|
$$

- Step 3: update all clustercenters as the centroids

$$
c_{i}=\frac{\sum_{x: y(x)=i}}{\sum_{x: y(x)=i} 1}
$$

- Repeat step 2, 3 until cluster centers no longer change

Questions on k-means

- What is k-means trying to optimize?
- Will k-means stop (converge)?
- Will it find a global or local optimum?
- How to pick starting cluster centers?
- How many clusters should we use?

Distortion

- Suppose for a point x, you replace its coordinates by the cluster center $\mathrm{c}_{\mathrm{y}(\mathrm{x})}$ it belongs to (lossy compression)
- How far are you off? Measure it with squared Euclidean distance: $\left\|x-c_{y(x)}\right\|^{2}$
- This is the distortion of a single point x. For the whole dataset, the distortion is $\sum_{i=1}^{n}\left\|x_{i}-c_{y\left(x_{i}\right)}\right\|^{2}$

The optimization problem of k-means

$$
\min _{c, y} \sum_{i=1}^{n}\left\|x_{i}-c_{y\left(x_{i}\right)}\right\|^{2}
$$

Step 1

- For fixed cluster centers, if all you can do is to assign x to some cluster, then assigning x to its closest cluster center $y(x)$ minimizes distortion

$$
\Sigma_{d=1 \ldots D}\left[x(d)-C_{y(x)}(d)\right]^{2}
$$

- Why? Try any other cluster $\mathrm{z} \neq \mathrm{y}(\mathrm{x})$

$$
\Sigma_{d=1 \ldots D}\left[x(d)-c_{z}(d)\right]^{2}
$$

Step 2

- If the assignment of x to clusters are fixed, and all you can do is to change the location of cluster centers
- Then this is an optimization problem!
- Variables? $\mathrm{c}_{1}(1), \ldots, \mathrm{c}_{1}(\mathrm{D}), \ldots, \mathrm{c}_{\mathrm{k}}(1), \ldots, \mathrm{c}_{\mathrm{k}}(\mathrm{D})$

$$
\begin{gathered}
\min \sum_{x} \sum_{d=1 \ldots D}\left[x(d)-c_{y(x)}(d)\right]^{2} \\
=\min \sum_{z=1 . . k} \sum_{y(x)=z} \sum_{d=1 \ldots D}\left[x(d)-c_{z}(d)\right]^{2}
\end{gathered}
$$

- Unconstrained.

$$
\partial / \partial c_{z}(d) \sum_{z=1 . . k} \sum_{y(x)=z} \sum_{d=1 \ldots D}\left[x(d)-c_{z}(d)\right]^{2}=0
$$

Step 2

- The solution is

$$
c_{z}(d)=\sum_{y(x)=z} x(d) /\left|n_{z}\right|
$$

- The d-th dimension of cluster z is the average of the d-th dimension of points assigned to cluster z
- Or, update cluster z to be the centroid of its points. This is exact what we did in step 2.

Repeat (step1, step2)

- Both step1 and step2 minimizes the distortion

$$
\sum_{x} \sum_{d=1 \ldots D}\left[x(d)-c_{y(x)}(d)\right]^{2}
$$

- Step1 changes x assignments $y(x)$
- Step2 changes $\mathrm{c}(\mathrm{d})$ the cluster centers
- However there is no guarantee the distortion is minimized over all... need to repeat
- This is hill climbing (coordinate descent)
- Will it stop?

Repeat (step1, step2)

- Will it stop?

Finite ways of assigning points to clusters

In step1, an assignment that reduces distortion has to be a new assignment not used before

Step1 will terminate

So will step 2

So k-means terminates

What optimum does K-means find

- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example?

What optimum does K-means find

- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example? (Hint: try k=3)

What optimum does K-means find

- Will k-means find the global minimum in distortion? Sadly no guarantee...
- Can you think of one example? (Hint: try k=3)

Picking starting cluster centers

- Which local optimum k-means goes to is determined solely by the starting cluster centers
- Be careful how to pick the starting cluster centers. Many ideas. Here's one neat trick:

1. Pick a random point $\times 1$ from dataset
2. Find the point $\times 2$ farthest from $x 1$ in the dataset
3. Find $x 3$ farthest from the closer of $x 1, x 2$
4. ... pick k points like this, use them as starting cluster centers for the k clusters

- Run k-means multiple times with different starting cluster centers (hill climbing with random restarts)

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion?

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion? k = N , distortion $=0$
- Need to regularize. A common approach is to minimize the Schwarz criterion

Break \& Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$
C_{1}=\{(2,2),(4,4),(6,6)\}, C_{2}=\{(0,4),(4,0)\}, C_{3}=\{(5,5),(9,9)\}
$$

Cluster centroids at the next iteration are?

- A. $C_{1}:(4,4), C_{2}:(2,2), C_{3}:(7,7)$
- B. $C_{1}:(6,6), C_{2}:(4,4), C_{3}:(9,9)$
- C. $C_{1}:(2,2), C_{2}:(0,0), C_{3}:(5,5)$
- D. $\mathrm{C}_{1}:(2,6), \mathrm{C}_{2}:(0,4), \mathrm{C}_{3}:(5,9)$

Break \& Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$
C_{1}=\{(2,2),(4,4),(6,6)\}, C_{2}=\{(0,4),(4,0)\}, C_{3}=\{(5,5),(9,9)\}
$$

Cluster centroids at the next iteration are?

- A. $C_{1}:(4,4), C_{2}:(2,2), C_{3}:(7,7)$
- B. $C_{1}:(6,6), C_{2}:(4,4), C_{3}:(9,9)$
- C. $C_{1}:(2,2), C_{2}:(0,0), C_{3}:(5,5)$
- D. $C_{1}:(2,6), C_{2}:(0,4), C_{3}:(5,9)$

Break \& Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C_{1} $(0,1), C_{2},(2,1), C_{3}(-1,2)$. Which cluster assignment is possible for the points (1,1) and ($-1,1$), respectively? Ties are broken arbitrarily:

$$
\text { (i) } \mathrm{C}_{1}, \mathrm{C}_{1} \text { (ii) } \mathrm{C}_{2}, \mathrm{C}_{3} \text { (iii) } \mathrm{C}_{1}, \mathrm{C}_{3}
$$

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Break \& Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C_{1} $(0,1), C_{2}(2,1), C_{3}(-1,2)$. Which cluster assignment is possible for the points (1,1) and ($-1,1$), respectively? Ties are broken arbitrarily:

$$
\text { (i) } \mathrm{C}_{1}, \mathrm{C}_{1} \text { (ii) } \mathrm{C}_{2}, \mathrm{C}_{3} \text { (iii) } \mathrm{C}_{1}, \mathrm{C}_{3}
$$

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Break \& Quiz

Q 1.3: If we run K-means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Break \& Quiz

Q 1.3: If we run K-means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Hierarchical Clustering

Basic idea: build a "hierarchy"

- Want: arrangements from specific to general
- One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
- A binary tree

Agglomerative vs Divisive

Two ways to go:

- Agglomerative: bottom up.
- Start: each point a cluster. Progressively merge clusters
- Divisive: top down
- Start: all points in one cluster. Progressively split clusters

Agglomerative Clustering Example

Agglomerative. Start: every point is its own cluster

Agglomerative Clustering Example

Get pair of clusters that are closest and merge

Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge

Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge

Merging Criteria

Merge: use closest clusters. Define closest?

- Single-linkage

$$
d(A, B)=\min _{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

- Complete-linkage

$$
d(A, B)=\max _{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

- Average-linkage

$$
d(A, B)=\frac{1}{|A||B|} \sum_{x_{1} \in A, x_{2} \in B} d\left(x_{1}, x_{2}\right)
$$

Single-linkage Example

We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Single-linkage Example

We'll merge using single-linkage

$$
\begin{gathered}
d\left(C_{1},\{4\}\right)=d(2,4)=2 \\
d(\{4\},\{5\})=d(4,5)=1
\end{gathered}
$$

Single-linkage Example

Continue...

$$
\begin{gathered}
d\left(C_{1}, C_{2}\right)=d(2,4)=2 \\
d\left(C_{2},\{7.25\}\right)=d(5,7.25)=2.25
\end{gathered}
$$

Single-linkage Example

Continue...

Single-linkage Example

Complete-linkage Example

We'll merge using complete-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Complete-linkage Example

Beginning is the same...

$$
\begin{gathered}
d\left(C_{1}, C_{2}\right)=d(1,5)=4 \\
d\left(C_{2},\{7.25\}\right)=d(4,7.25)=3.25
\end{gathered}
$$

Complete-linkage Example

Now we diverge:

Complete-linkage Example

When to Stop?

No simple answer:

- Use the binary tree (a dendogram)
- Cut at different levels (g different heights/depth:

Break \& Quiz

Q 2.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. $\{1\},\{2,4,5,7.25\}$
- B. $\{1,2\},\{4,5,7.25\}$
- C. $\{1,2,4\},\{5,7.25\}$
- D. $\{1,2,4,5\},\{7.25\}$

Break \& Quiz

Q 2.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. $\{1\},\{2,4,5,7.25\}$
- B. $\{1,2\},\{4,5,7.25\}$
- C. $\{1,2,4\},\{5,7.25\}$
- D. $\{1,2,4,5\},\{7.25\}$

Break \& Quiz

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- A. 2
- B. $\log n$
- C. $n / 2$
- D. $n-1$

Break \& Quiz

Q 2.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- A. 2
- B. $\log n$
- C. $n / 2$
- D. $n-1$

