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Recap of Supervised/Unsupervised

Supervised learning:
* Make predictions, classify data, perform regression

* Dataset: (Xl, yl), <X2, y2), IR <an,7 yn)

Features / Covariates / Input Labels / Outputs
* Goal: find function . x —, y to predict label on new data




Recap of Supervised/Unsupervised

Unsupervised learning:
* No labels; generally won’t be making predictions

* Dataset: x;,xs,...,X,

* Goal: find patterns & structures that help better understand
data. I
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Outline

Intro to Clustering

K-means clustering

Hierarchical Agglomerative Clustering
Other Clustering Types



Recap of Supervised/Unsupervised

Note that there are other kinds of ML:

— Mixtures: semi-supervised learning, self-supervised
* |dea: different types of “signal”

— Reinforcement learning
* Learn how to act in order
to maximize rewards
* Later onin course...

DeepMind



Unsupervised Learning & Clustering

* Note that clustering is just one type of unsupervised
learning (UL)
— PCA is another unsupervised algorithm

e Estimating probability distributions also UL (GANSs)
e Clustering is popular & useful!

StyleGAN2 (Kerras et al "20)



There are many clustering algorithms

K-means algorithm

HAC (Hierarchical Agglomerative Clustering) algorithm
Spectral clustering algorithm

t-SNE (t-distributed stochastic neighbor embedding)



K-means clustering

* |nput:
— A dataset Xy v X, each point is a feature vector
— Assume the number of desired clusters, k, is given



K-means clustering demo
* The

— Auton’s Graphics 4]
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Randomly picking 5
positions as initial cluster
centers (not necessarily a
data point)

K-means clustering
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Each point finds which
cluster center it is closest
to (very much like INN).
The point belongs to that
cluster.

K-means clustering
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Each cluster computes its

new centroid, based on
which points belong to it

K-means clustering
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Each cluster computes its

new centroid, based on
which points belong to it

And repeat until
convergence (cluster
centers no longer
move)...

K-means clustering
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K-means in action

Auton’s Graphics







K-means algorithm

% Input: x;..x., k

* Step 1:select k cluster centers ¢, ... ¢,

e Step 2: for each point x, determine its cluster assignment:
find the closest center in Euclidean distance

y(x) = argmin;_.|lx — ]|

e Step 3: update all cluster_centers as the centroids

—i X
Xy(xX)=1l
¢; = y ()

Zx:y(x)=i 1
* Repeat step 2, 3 until cluster centers no longer change



Questions on k-means

What is k-means trying to optimize?
Will k-means stop (converge)?

Will it find a global or local optimum?
How to pick starting cluster centers?

How many clusters should we use?



Distortion

* Suppose for a point x, you replace its coordinates by
the cluster center c,, it belongs to (lossy compression)

 How far are you off? Measure it with squared
Euclidean distance: ||x — cy(x)||2

* This is the distortion of a single point x. For the whole
dataset, the distortion is X.7= ||x; — (x| 1°



The optimization problem of k-means

min Z 1% = Ey el



Step 1

* For fixed cluster centers, if all you can do is to
assign x to some cluster, then assighing x to its
closest cluster center y(x) minimizes distortion

S o x(d)=c (d)P
* Why? Try any other cIuster z#y(x)

[x(d) - ¢ (d)]*

d1D



Step 2

If the assignment of x to clusters are fixed, and all you can do is to change
the location of cluster centers

Then this is an optimization problem!

Variables? c (1), ..., c,(D), ..., ¢ (1), ..., ¢ (D)

min Zx zdzl...D [X(CI)_CV(X)(CI)]2

cmin 2 2 Lo I~ A

y(x)=z

Unconstrained.

o) Ly, Ly 2y o) =0 =0

X)=2



Step 2

The solution is

c(d) = Zy(x)=2 x(d)/ In |

The d-th dimension of cluster z is the average of the d-th dimension of points
assigned to cluster z

Or, update cluster z to be the centroid of its points. This is exact what we did
in step 2.



Repeat (stepl, step?)

Both stepl and step2 minimizes the distortion
P2 [x(d) —¢, ., (d)]*

x d=1...D X
Stepl changes x assignments y(xS
Step2 changes c(d) the cluster centers

However there is no guarantee the distortion is
minimized over all... need to repeat

This is hill climbing (coordinate descent)
Will it stop?



Repeat (stepl, step2)

Will it stop?
There are finite number of points

Finite ways of assignhing points to clusters

In stepl, an assignment that reduces distortion
has to be a new assignment not used before

Step1 will terminate
So will step 2

So k-means terminates




What optimum does K-means find

¢ Will k-means find the global minimum in distortion? Sadly no guarantee...

¢ Can you think of one example?



What optimum does K-means find

¢ Will k-means find the global minimum in distortion? Sadly no guarantee
[ ]

Can you think of one example? (Hint: try k=3)
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What optimum does K-means find

¢ Will k-means find the global minimum in distortion? Sadly no guarantee...

¢ Can you think of one example? (Hint: try k=3)
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Picking starting cluster centers

* Which local optimum k-means goes to is determined solely

by the starting cluster centers

— Be careful how to pick the starting cluster centers. Many ideas.
Here’s one neat trick:
1. Pick a random point x1 from dataset
2. Find the point x2 farthest from x1 in the dataset

3. Find x3 farthest from the closer of x1, x2
4. ... pick k points like this, use them as starting cluster centers for the k

clusters
— Run k-means multiple times with different starting cluster centers

(hill climbing with random restarts)



Picking the number of clusters

* Difficult problem
* Domain knowledge?

e Otherwise, shall we find k which minimizes
distortion?



Picking the number of clusters

Difficult problem
Domain knowledge?

Otherwise, shall we find k which minimizes distortion? k
=N, distortion =0

Need to regularize. A common approach is to minimize
the Schwarz criterion
distortion + A (#param) logN
= distortion + A D k logN

et NN

#dimensions #clusters #points




Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676)}7 Cy = {<074)7 (47())}703 — {(575>7 (979>}

Cluster centroids at the next iteration are?

.C:(4,4),C:(2,2),C:(7,7)
C (6,6), C (4,4), C (9,9)
C (2,2), C (0,0), C (5,5)
C (2,6), C,: (0,4), C,: (5,9)



Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676)}7 Cy = {<074>7 (47())}703 — {<575>7 (979>}

Cluster centroids at the next iteration are?

. : (4,4), C,: (2,2), C,: (7,7)
:(6,6), C,: (4,4), C,: (9,9)
:(2,2), C,:(0,0), C,: (5,5)

:(2,6), C,: (0,4), C,: (5,9)

A.C,
B. C,
C. C,
D.C,



Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C,
(0,1), C,, (2,1), C, (-1,2). Which cluster assignment is p055|ble for
the pomts (1,1) and (-1,1), respectively? Ties are broken
arbitrarily:

(i), €, (i) C,, C, (iii) C,, C

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them



Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers, C,
(0,1), C,, (2,1), C, (-1,2). Which cluster assignment is p055|ble for
the pomts (1,1) and (-1,1), respectively? Ties are broken
arbitrarily:

(i), €, (i) C,, C, (iii) C,, C

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them



Break & Quiz

Q 1.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
* D.No, No



Break & Quiz

Q 1.3: If we run K-means clustering twice with random
starting cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
* B. No, Yes
* C.Yes, No
* D.No, No



Basic idea: build a “hierarchy”

Hierarchical Clustering

Want: arrangements from specific to
general

One advantage: no need for k, number ——— 7
of clusters. :

Input: points. Output: a hierarchy
— Abinary tree =\

rrrrrrr

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.

— Start: each point a cluster. Progressively
merge clusters

* Divisive: top down
— Start: all points in one cluster. Progressively
split clusters

Credit: r2d3.us



Agglomerative Clustering Example
Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example
Get pair of clusters that are closest and merge

e



Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge

LR Y ax



Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge

“Q’Q@ Q

: /AR



Merging Criteria

Merge: use closest clusters. Define closest?
e Single-linkage

d(4,B) = min _d(xy, )
 Complete-linkage

d(A, B) = , Jnax d(x1,22)
* Average-linkage

d(A,B) — ﬁ Z d(il?l,flfg)

X1 EA,.CCQ eB



Single-linkage Example

We'll merge using single-linkage
* 1-dimensional vectors.
* Initial: all points are clusters

1 2 4 5 7.25



Single-linkage Example
We'll merge using single-linkage

d(Cy, {4)) = d(2,4) = 2
d({4},{5}) = d(4,5) =1




Single-linkage Example

Continue...
d(Cy,Cz) = d(2,4) =2
d(Co,{7.25}) = d(5,7.25) = 2.25

NN

1 2 4 5 7.25



Single-linkage Example

Continue...

1 2 4 3) 7.25



Single-linkage Example

1 2 4 5 7.25



Complete-linkage Example

We’ll merge using complete-linkage
* 1-dimensional vectors.
* Initial: all points are clusters

1 2 4 5 7.25



Complete-linkage Example

Beginning is the same...

d(C1,Cy) = d(1,5) = 4
d(Cy, {7.25}) = d(4,7.25) = 3.25

1 2 4 5 7.25



Complete-linkage Example

Now we diverge:

1 2 4 5 7.25



Complete-linkage Example

1 2 4 5 7.25



When to Stop?

No simple answer:

e Use the binary tree (a
dendogram)

e Cut at different levels (g
different heights/depth:
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http://opentreeoflife.org/



Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

A. {1}, {2,4,5,7.25}
B.{1,2}, {4, 5, 7.25}
C.{1,2,4}, {5, 7.25}
D. {1,2,4,5}, {7.25}

o—©@ @ @ @ >
1 2 4 5 7.25



Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A.{1},{2,4,5,7.25}
¢ B.{1,2},{4,5,7.25)
« C.{1,2,4}, {5, 7.25}
e D.{1,2,4,5},{7.25)

o—©@ @ @ @ >
1 2 4 5 7.25



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

A. 2

e B.logn
C.n/2
* D.n-1



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

A. 2

e B.logn
* C.n/2
* D.n-1



