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Outline

* Finish up Other Clustering Types

— Graph-based, cuts, spectral clustering
* Unsupervised Learning: Visualization
— t-SNE, algorithm, example, vs. PCA

* Unsupervised Learning: Density Estimation
— Kernel density estimation: high-level intro



Other Types of Clustering

Graph-based/proximity-based

e Recall: Graph G = (V,E) has vertex set V, edge set E.
— Edges can be weighted or unweighted

— Encode similarity: w; = d(v;, v;) Q'Q

e Don’t need to KEEP vectors v =)
. | o N\
— Only keep the edges (possibly weighted) .
(—)



Graph-Based Clustering

Want: partition Vinto V, and V,
* Implies a graph “cut”

* One idea: minimize the weight of
the cut
— Downside: might just cut of one node
— Need: “balanced” cut




Partition-Based Clustering

Want: partition Vinto V, and V,
e Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vi, V) N Cut(V1, Va)

Cut(Vi1,Vs) =
N A v

Cut(Vl, Vg) n CUt<V17 V2)

NCU.t(Vl,V2>: z 1. Z 1
1€V, 1€V



Partition-Based Clustering

How do we compute these?

* Hard problem — heuristics
— Greedy algorithm
— “Spectral” approaches

* Spectral clustering approach: 8
— Adjacency matrix A= 10
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Partition-Based Clustering

* Spectral clustering approach:
— Adjacency matrix
— Degree matrix
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Spectral Clustering

* Spectral clustering approach:
— 1. Compute Laplacian L=D - A
(Important tool in graph theory)
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0 2 0 0 0 00 1 1 0
L={0 0 1 0 O0]—-(0 1 0 O 0=

00 0 3 0 1 1 0 0 1

00 0 0 2 1 0 0 1 0

"\ ' ] | ' [

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

* Spectral clustering approach:
— 1. Compute Laplacian L=D - A

— 2. Compute k smallest eigenvectors

— 3. Set U to be the n x kK matrix with u, ..., u as

columns. Take the n rows formed as points
— 4. Run k-means on the representations



Spectral Clustering

 Compare/contrast to PCA:

— Use an eigendecomposition / dimensionality
reduction

* But, run on Laplacian (not covariance); use smallest eigenvectors,
not largest

* Intuition: Laplacian encodes structure information
— “Lower” eigenvectors give partitioning information



Spectral Clustering

Q: Why do this?
— 1. No need for points or distances as input
— 2. Can handle intuitive separation (k-means can’t!)

K-Means Circles Spectral Circles
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Credit: William Fleshman



Break & Quiz

Q 1.1: We have two datasets: a social network dataset S, which shows
which individuals are friends with each other along with image dataset

SZ

What kind of clustering can we do? Assume we do not make additional
data transformations.

* A. k-means on both S1 and S2

B. graph-based on S, and k-means on S,
* C.k-meansonS, and graph-based on S,

D. hierarchical on S, and graph-based on S,
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Break & Quiz

Q 1.1: We have two datasets: a social network dataset S, which shows
which individuals are friends with each other along with image dataset

SZ

What kind of clustering can we do? Assume we do not make additional
data transformations.

* A.k-meansonbothS and S, (No: can’t do k-means on graph)

B. graph-based on S, and k-means on S,

* C.k-meansonS, and graph-based on S (Same as A)

D. hierarchical on S, and graph-based on S, (No: S, is not a graph)



Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled
with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering
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Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled
with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

A. Only (i)

e B. Only (ii) and (iii)
e C.Only (i) and (ii)
D. All of them



Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled
with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

* (i) Yes: train an image classifier; have labels)

* (ii) Yes: run PCA on image vectors to reduce
dimensionality

e (iii) Yes: can cluster image vectors with k-means
D. All of them



Unsupervised Learning Beyond Clustering

Data analysis, dimensionality

reduction, etc

* Already talked about PCA

* Note: PCA can be used for
visualization, but not specifically
designed for it

* Some algorithms specifically for

visualization Philip Slingerland



Dimensionality Reduction & Visualization

Typical dataset: MNIST
* Handwritten digits 0-9
— 60,000 images (small by ML standards)

— 28x28 pixel (784 dimensions) 0 p 0 6 v 6 Oopr OO OV

: SR REY A TALRE

— Standard for image o G BN T B3 2
experiments 3333333533383
Hg sq4a494Yd¢yddsy

555855$S555s5¢

: : : : L66bLELLLEG EG

* Dimensionality reduction? .- _ 5. ,,,7 542
AR EEREAE EEE

7499949339294 494

DY YN = WP -

SaAaNONYQTWPND
O w>w~Jd gANANTWH»Y~~Q



on & Visualization

Dimensionality Reduct
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http://deeplearning.csail.mit.edu/slide_cvpr2018/laurens_cvpr18tutorial.pdf

Visualization: T-SNE

Typical dataset: MNIST

* T-SNE: project data into just 2 dimensions

Try to mainta

MNIST Exam
* Input: x,, x,,

* Output: 2D/3Dy.,vy, ...,y -
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T-SNE Algorithm: Step 1

How does it work? Two steps X,
X
e 1. Turn vectors into probability pairs ¢ o ®
e 2. Turn pairs back into (lower-dim) vectors °
et (2 — 3 /20%) L
exp(—||r; — T, o
Djli = : g ; Dij = %(Pju ‘|‘p7;\j)

> ets XP(= i — i [?/207)

Intuition: probability that x. would plckx as its neighbor under
a Gaussian probability



T-SNE Algorithm: Step 2

How does it work? Two steps y o
e 1. Turn vectors into probability pairs ¢ o

* 2. Turn pairs back into (lower-dim) vectors o,
Step 2: set (14 i — 52"

qij = -
T Y ke (U e — wel?) !

and minimize Dl
Z Z jli -
Dj|i log <_ KL Divergence
o]

Qj\z' between p and q




T-SNE Algorithm: Step 2

More on step 2: Z ZP‘I'IOQS Py
* We have two distributions p, g. p is fixed P T djli

e gis afunction of the yiwhich we move around +

* Move y. around until the KL divergence is small
— So we have a good representation! KL Divergence
between p and q
* Optimizing a loss function---we’ll see more in
supervised learning.



T-SNE Examples

 Examples: (from Laurens van der Maaten)

* Movies:
https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg

Fast Times at Bigg@yghack  National Lampoon's V..
NaftieaP LahipaonayA.



T-SNE Examples

 Examples: (from Laurens van der Maaten)

* NORB:
https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg

444444



Visualization: T-SNE

Gaussian blobs different sizes - tSNE

t-SNE vs PCA? N
* “Local” vs “Global” . %‘%
* Lose information in t-SNE W

— not a bad thing necessarily

[ D O W n St r'e a m u S e Gaussian blobs different sizes - PCA

Good resource/credit: |
https://www.thekerneltrip.com/statistics/tsne-vs-pca/ ‘| 4




Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph
datasets?

* A. Never

* B. Yes, after running PCA on them

* C. Yes, after mapping them into RY (ie, embedding)
* D. Yes, after running hierarchical clustering on them
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Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

* A. Never (No: too strong)

* B. Yes, after running PCA on them (No: can’t run PCA on
words or graphs directly. Need vectors)

e C. Yes, after mapping them into R? (ie, embedding)

* D. Yes, after running hierarchical clustering on them (No:
hierarchical clustering gives us a graph)



Short Intro to Density Estimation

Goal: given samples Xpyoeer X from some distribution P,
estimate P.

 Compute statistics (mean, variance)
* Generate samples from P
* Run inference




Simplest Idea: Histograms

Goal: given samples Xpy oeur X from some distribution P,
estimate P.

| Histogram
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Define bins; count # of samples in each bin, normalize
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Simplest Idea: Histograms

Goal: given samples Xpyovur X from some distribution P,
estimate P.

0.3 - Histogram
Downsides: g
1) High-dimensions: most 5
bins empty § 0.1
>

i) Not continuous
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i) How to choose bins?



Kernel Density Estimation

Goal: given samples Xpyovur X from some distribution P,
estimate P.

Idea: represent density as combination of “kernels”

1 —
f(z) = = ZK (I £ <— Center at
i=1

A h each point

Kernel function: often Width
Gaussian parameter




Kernel Density Estimation

Idea: represent density as combination of kernels
* “Smooth” out the histogram
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Break & Quiz

Q 1.1: Which of the following is not true?

A. Using a Gaussian kernel for KDE, all possible values for x. will have
non-zero probability.

* B. The goal of KDE is to approximate the true probability distribution
function of X.

* C.When using a histogram, every bucket must be represented
explicitly in memory

* D. With some kernels, KDE can assign zero probability to some subset
of values for x..
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Break & Quiz

Q 1.1: Which of the following is not true?

A. Using a Gaussian kernel for KDE, all possible values for x. will have
non-zero probability. (Gaussian PDF positive for all inputs)

* B. The goal of KDE is to approximate the true probability distribution
function of X. (same goal as histograms)

* C. When using a histogram, every bucket must be represented
explicitly in memory

* D. With some kernels, KDE can assign zero probability to some subset
of values for x. (Consider K = uniform(0,1))



