

CS 540 Introduction to Artificial Intelligence Unsupervised Learning II University of Wisconsin-Madison

Spring 2022

Outline

- Finish up Other Clustering Types
 - Graph-based, cuts, spectral clustering
- Unsupervised Learning: Visualization
 - t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro

Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode **similarity**: $w_{ij} = d(v_i, v_j)$
- Don't need to KEEP vectors v

- Only keep the edges (possibly weighted)

Graph-Based Clustering

Want: partition V into V_1 and V_2

- Implies a graph "cut"
- One idea: minimize the **weight** of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut

Partition-Based Clustering

Want: partition V into V_1 and V_2

- Just minimizing weight isn't good... want **balance!**
- Approaches:

$$\operatorname{Cut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{|V_1|} + \frac{\operatorname{Cut}(V_1, V_2)}{|V_2|}$$

$$\operatorname{NCut}(V_1, V_2) = \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{\operatorname{Cut}(V_1, V_2)}{\sum_{i \in V_2} d_i}$$

Partition-Based Clustering

How do we compute these?

- Hard problem \rightarrow heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:
 Adjacency matrix

 $A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

Partition-Based Clustering

- Spectral clustering approach:
 - Adjacency matrix
 - Degree matrix

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Spectral clustering approach:

 1. Compute Laplacian L = D - A
 (Important tool in graph theory)

$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$

Degree Matrix Adjacency Matrix Laplacian

3

- Spectral clustering approach:
 - 1. Compute Laplacian L = D A
 - 2. Compute *k* smallest eigenvectors
 - 3. Set *U* to be the *n* x *k* matrix with u_1, \ldots, u_k as columns. Take the *n* rows formed as points
 - 4. Run k-means on the representations

- Compare/contrast to **PCA**:
 - Use an eigendecomposition / dimensionality reduction
 - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

- **Q**: Why do this?
 - 1. No need for points or distances as input
 - 2. Can handle intuitive separation (k-means can't!)

Credit: William Fleshman

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset $S_{2.}$

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset $S_{2.}$

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂ (No: can't do k-means on graph)
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S (Same as A)
- D. hierarchical on S₁ and graph-based on S₂ (No: S₂ is not a graph)

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

airplane	tende inte
automobile	
bird	N.
cat	
deer	Sec. 14
dog	1
lrog	-
horse	-
ship	1
ruck	

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels)
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them

Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization

Dimensionality Reduction & Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
 - 60,000 images (small by ML standards)

 - Standard for image experiments
- Dimensionality reduction?

Dimensionality Reduction & Visualization

Run PCA on MNIST

 PCA is a linear mapping, (can be restrictive)

7578 238073857 0146460243 7128169861

Image source:

http://deeplearning.csail.mit.edu/slide_cvpr2018/laurens_cvpr18tutorial.pdf

Visualization: T-SNE

Typical dataset: MNIST

- **T-SNE**: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- Input: x₁, x₂, ..., x_n
- **Output**: 2D/3D $y_1, y_2, ..., y_n^{-20}$

T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

X₄

)X

X₁

Intuition: probability that x_i would pick x_j as its neighbor under a Gaussian probability

T-SNE Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$

and minimize

Step 2: set

X,

T-SNE Algorithm: Step 2

More on step 2:

- We have two distributions *p*, *q*. *p* is fixed
- q is a function of the y_i which we move around
- Move y_i around until the KL divergence is small
 - So we have a good representation!

KL Divergence between p and q

• **Optimizing a loss function**---we'll see more in supervised learning.

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies:

https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB:

https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg

Visualization: T-SNE

t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
 not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

Short Intro to Density Estimation

Goal: given samples x_1, \ldots, x_n from some distribution *P*, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples x_1, \ldots, x_n from some distribution *P*, estimate P.

Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples x_1, \ldots, x_n from some distribution *P*, estimate P.

Downsides:

- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?

Kernel Density Estimation

Goal: given samples x_1, \ldots, x_n from some distribution *P*, estimate P.

Idea: represent density as combination of "kernels"

Kernel Density Estimation

Idea: represent density as combination of kernels

• "Smooth" out the histogram

Q 1.1: Which of the following is not true?

- A. Using a Gaussian kernel for KDE, all possible values for x_i will have non-zero probability.
- B. The goal of KDE is to approximate the true probability distribution function of X.
- C. When using a histogram, every bucket must be represented explicitly in memory
- D. With some kernels, KDE can assign zero probability to some subset of values for x_i.

Q 1.1: Which of the following is not true?

- A. Using a Gaussian kernel for KDE, all possible values for x_i will have non-zero probability.
- B. The goal of KDE is to approximate the true probability distribution function of X.
- C. When using a histogram, every bucket must be represented explicitly in memory
- D. With some kernels, KDE can assign zero probability to some subset of values for x_i.

Q 1.1: Which of the following is not true?

- A. Using a Gaussian kernel for KDE, all possible values for x_i will have non-zero probability. (Gaussian PDF positive for all inputs)
- B. The goal of KDE is to approximate the true probability distribution function of X. (same goal as histograms)
- C. When using a histogram, every bucket must be represented explicitly in memory
- D. With some kernels, KDE can assign zero probability to some subset of values for x_i. (Consider K = uniform(0,1))