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Deep Neural Networks are Everywhere

Making Medical Decision Self-Driving Car

~ whole slide image

whole slide image '

What have been learned inside? \ECTED VEHICLE
What are the internal representations doing?

T o 2085 deep model

training data

On-Board Unit, emaps RADAR

overlapping image .
patches tumor prob. map ultrasonic sensors
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Let’s Start with a toy demo!

FEATURES + — 2 HIDDEN LAYERS
4+ -
6 neurons
il K
X b N
X p 4
X y y
XX, 3 S
weights
sin(X.) > } :
sin(X,) p :
neuron

[1] https://playground.tensorflow.org/

+ -

4 neurons

4

OUTPUT

Test loss 0.504

LA LR’
.
s .,
L s

. %

= %

= o
2 .

)
K ™ ‘;
o % S o
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Tag oo® e
.
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What about a deep CNN model?

[1] http://alexlenail. me/NN-SVG/AlexNet.html



We can print first layer’s filters!

~Jd 1) § 1
Ia=-5ER

ResNet-18: ResNet-101: DenseNet-121:
64 x3x7x7 64 X3 x7Tx7 64 X3 x7x7

AlexNet:
64 x 3 x 11 x 11

[1] “Visualizing and Understanding”, cs231n-2017 lecture 12, Fei-Fei Li, Justin Johnson, Serena Yeung



What about filters in deep layers?

[1] https://cs231n.github.io/understanding-cnn/



Maximally Activated Patches

[1] https://arxiv.org/pdf/1412.6806.pdf



Deep Feature Visualization by Gradient Ascent

[1] https://distill.pub/2017/feature-visualization/



Neuron

layer [x,y,2]

Channel

layer [:,:,2]

Layer/DeepDream

layer [:,:,:]?

nax

SOt

Class Logits

pre_softmax[k]

"

softmax

[

Class Probability
softmax[k]



Tricks to Make Natural Visualization

* Frequency penalization

- Penalize variance

- Penalize high-freq

* Transformatiol

. Step 1 Step 32 | Step 128 Se 256 Z. :.Tf;"..' -
- Generate IMages uidL st deuvdLe Lie UPUITIZAUUI LdTBEL EVET WILTT JILLer,
rotation or scaling

* Learned priors

- learn a model(GAN, VAE) of the real data to generate photorealistic visualizations



Step 1 Step 32 Step 128 Step 256 Step 248

Step 1 Step 32 Step 128 Step 256 Step 2048

4

- )

|
.. y

Step 1 Step 32 Step 128 Step 256 Step 2048

Frequency
Penalization

Transformation
robustness

[1] https://distill.pub/2017/feature-visualization/



Erhan, et al., 2009 (3]

Introduced core idea. Minimal
regularization.

Szegedy, et al., 2013 1]

Adversarial examples. Visualizes with
dataset examples.

Mahendran & Vedaldi, 2015 (7]
Introduces total variation regularizer.

Nguyen, et al., 2015 [14]

Explores counterexamples. Introduces
image blurring.

Mordvintsev, et al., 2015 [4]

Introduced jitter & multi-scale. Explored
GMM priors for classes.

@ygard, et al., 2015 [15]

Introduces gradient blurring.
(Also uses jitter.)

Tyka, et al., 2016 [16]

Regularizes with bilateral filters.
(Also uses jitter.)

Mordvintsey, et al., 2016 [17]

Normalizes gradient frequencies.
(Also uses jitter.)

Nguyen, et al., 2016 18]

Paramaterizes images with GAN
generator.

Nguyen, et al., 2016 [10]

Uses denoising autoencoder prior to
make a generative model.

[1] https://distill.pub/2017/feature-visualization/

Reconstructs input from representation.

Unregularized Frequency

Penalization

Transformatio
n
Robustness

Learned
Prior

Dataset
Examples



Comparison




From Visualization to Interpretation

Top Activated Images

IS v y Ja
, ] L0
Unit 1 4
11x11 conv, 96, /4, pool/2 O .
* \ %
5x5 conv, 256, pool/2
\

3x3 conv, 384

3x3 conv, 384 Lamp Intersection over Union (loU)=0.12

W
fc, 4096 ', ' r

\ 4

fc, 1000

<

[1] Zhou et al., Network Dissection. PAMI 2018.



loU Score Calculation

Input image Network being probed Pixel-wise segmentation
A
e 7z N 7
m/ 7 w
> 2 2 Z Z 9“3 ¢ 0 C 9
¢ g g 7 7 % B 5 ¢ ¢
§ 1186 18 []¢ )9 £ 854
= = 0
/ / / / i——o— —————— i 5 -

Freeze trained network weights

2.

Upsample target layer Evaluate on segmentation tasks

Area(Unit) N Area(Concept)

IToU (Unit, Concept) =

2.

[1] Zhou et al., Network Dissection. PAMI 2018.

Area(Unit) U Area(Concept)




Broadly and Densely (Broden) Annotated Dataset

ADE20K street (scene) flower (object)
Zhou et al, CVPR'17 i | 3
Pascal Context P
Mottaghi et al, CVPR’14 e
Pascal Part 1
Chen et al, CVPR’14 headboard (part)
Open-Surfaces
Bell et al, SIGGRAPH’14
Describable Textures
Cimpoi et al, CVPR’14
Colors swirly (texture)
Total = 63,305 images i
1,197 visual concepts

[1] Zhou et al., Network Dissection. PAMI 2018.



units
32 objects

S IR
o"a (;b\& Qt\’b\(\
’b

“IIIIIIIII------
S
\

AlexNet-Places205 conv5 unit 53: stairways

2]
i
©
Q
o]

6 scenes

QJ \d b?; AN
Q & *‘F

o.O R
\?’Q\\(‘\(‘b°e°o’°\\° O P (\"’
&

[1] Zhou et al., Network Dissection. PAMI 2018.

2 materials
25 textures

665666
Q 2
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Which pixels matter for classification?




The Building Blocks of Interpretability

ATTRIBUTION BY FACTORIZED GROUPS
MIXED4A MIXED4D OUTPUT CLASS

8 groups 6 groups Align layer factors

tiger cat

EED L0l
B s e C %l

[1] https://distill.pub/2018/building-blocks/



Occlusion Based Methods

e,

schooner African elephant, Loxodonta africana

[1] Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Saliency Map: Gradient Visualization

[1] Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014.



Guided Backprop

a) Forward pass "
Input image f° frHHe b 3 &
Feature map
Backward pass
Reconstructed : = 0 .
: 0 1R s —R" R
image R 0
c) activation: i = relu(fl) = max(f!,0)
ion: P! 0 141 g O
backpropagation: R = (f/ > 0)- R, where R'*! = T
backward R = (R 0) - R\1
‘deconvnet": ! :
guided R =(f!>0)- (R >0). B

backpropagation:

[1] Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

b)

Forward pass

Backward pass:
backpropagation

Backward pass:
“deconvnet”

Backward pass:
guided
backpropagation

11-1}5
2 | -5]-7
-312] 4
2101
6100
0O|-1}|3
oj3|]o
6101
210)3
01]0]0
6100
0j10]3

110]5
210}]0
0)12) 4
-2 S -1
6|-3]1
2 |-1]3
-2 I -1
o -3
2 -1 s
-2 s -1
Ol -3 I
2 -1 IS




[1] Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015



CAM

Can we use last feature map as attribution?

/ O
‘ﬂ\ .
\ ol Australian
g C C C C ; - O Wo /O terrier
’lo 0O 0O O 0 . GA‘P . .
N N N N b / ' - :
V Vv W
\' n
v /A/ O l—'“

Class Activation Mapping

Class
Activation
Map

(Australian terrier)

+ ... + Wn*

g A

[1] Bolei et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016



Brushing teeth Cutting trees




Grad-CAM

Can we use intermediate feature map as attribution?

f «——— Gradients E A ‘ ¢ | Tiger Cat
i —>Activations | p M Image Classification
Tt o o s e s g P '/l —)
‘ Gulded Back FC Layers Y
N Y. uided Backpropagation s’ L
r- ’,v . ( g ’o' ’ (or)
ey | Rectified Conv 2 L ,’—Al' -
Guided Backprop Feature Maps ,’: e S s z o)
7 A cat lying on Image Captioning
‘ Any RNN/LSTM
| 7% = the ground
|7 Task-spegific | «
o Network |.--- (or)
;uided Grad-CAM —
/ i
A Is there a cat? Clayer |- Visual
% Cioesion RNN/LSTM Question Answering
Backprop till conv] . < e Ves
Grad-CAM A V (OI‘)

[1] Ramprasaath et al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”, ICCV 2017.



From attribution to interpretation

tail (6.60%)

Prediction: topiary garden CAM

sculpture (5.17%)  sheep (4.53%)




IBD

Classification Network Class Activation Map

Prediction:
Living room

conv layers

Amqeqoid

class weight vector for living room

©O0O0 w 0000 =
-

5

Interpretable Basis Decomposition —

wall, contributition=24.8% table, contribution=6.25%

| 3
e+ @000 4,,0000 - [l =l Se* Q00090000 ) + Al = -

unlabeled residual=40.2%

sofa, contribution=9.3%

50 * Q000 G, 0000 +

[1] Bolei et al, “Interpretable basis decomposition for visual explanation”, ECCV 2018




Train Concept Vectors

Input image

Network being probed

Pixel-wise segmentation

NG

-

S

_/

Conv

P

Conv

S

>

One Lo
Acxivaxion

\ Conv
I
/ Conn )
/ \
/ \
/ \
I
|
’
|
|
|
|
|

Freeze trained network weights Upsample target layer

[1] Zhou et al., Network Dissection. PAMI 2018.

W\axen\a\s
Scenes

@
2
7
b
&

Evaluate on segmentation tasks



IBD Framework

Weight Vector: Wi € R”

Interpretable Basis: ¢., € R” Q. = [qc,| - |ge, ]
Coefficient for the Interpretable Basis: s, € R
Residual: r € R” s = [s1|--|sn]

TASK:

Find s., to minimize ||r|| where wy = S¢,qe, + -+ + S¢, Qe,, + 7

= Q.5+




Greedy Algorithm

Given that we have already

chosen a set of columns Qe = 19er |-+ e,

Find the (n + 1)th argmin 81?‘130 lwe — [Qe | ge.][s | si]l
concept basis 9ei€Qe =7



Explaining Classification Decision Boundaries

Comparing different concepts that

different networks

(Resnetl8, Resnet50, AlexNet, VGG16)
utilize to make predictions

dining hall (Resnet50)

dining hall (Resnet18)

dining hall (AlexNet)

dining hall (VGG16)

fwall
Itable

Bchandelie

wineglass shoe shop (AlexNet)

plate

Jiight
Istool
Ibuffet

Itables

Idrinking
glass

Icurtains

Istile
Ispindle

Imug
Esconce

shoe shop (Resnet50)

shoe shop (Resnet18)

shoe shop (VGG16)

eck—in

R86ag

= = ==
I 0Q
5

[\Wel

shoe

foot

|gym shoe

Isheﬁ

Ewindow
mpottle

boot

Bprice tag
Bexhibitor

Comparing different concepts that
Resnet18 utilizes to make different

butte

canyon

coast

creek

predictions.

Idesert
Ihill

mountair

badlands

cliff

‘sea

sand

fwave
Iclouds

waterfall

river

|bush
Irock



More Complicated Interpretation Methods

Interpret as Explanation Graph

Head Neck
pattern pattern

Input Feature maps Explanatory Parts corresponding to

image  Of different graph each graph node
conv-layers

Interpret as Decision Tree

image

A feet filter contribute 7.2%
A torso filter contribute 12.1%

|

Mode for
flying birds

Most generic
N rationales
(thc ﬁgel)

ost specific

Disentangled
representations

Mode for
standing birds

Mode for long-

neck birds O © © o o rationales
I - ay;
1y B "

[1] Quanshi Zhang, Yu Yang, Ying Nian Wu, and Song-Chun Zhu. Interpreting cnns via decision trees. arXiv:1802.00121, 2018.
[2] Q. Zhang, R. Cao, F. Shi, Y.N. Wu, and S.-C. Zhu. Interpreting cnn knowledge via an explanatory graph. In AAAI, 2018.
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What are the problems in interpretation methods?

IBD Framework Building Block for Interpretability

INPUT IMAGE ATTRIBUTION BY FACTORIZED GROUPS
MIXED4A MIXED4AD OUTPUT CLASS
el Jr 6 GrOURS w6 groups Align layer factors

Prediction: topiary garden CAM

tiger cat

sculpture (5.17%)  sheep (4.53%)

brush (5.72%)

To understand multiple layers together,

we would like each layer's factorization
to be "compatible"—to have the groups
of earlier layers naturally compose into
the groups of later layers. This is also
something we can optimize the
factorization for.

T

= positive influence

&
A
&
S

- - WA

negative influence

[1] Bolei et al, “Interpretable basis decomposition for visual explanation”, ECCV 2018
[2] https://distill.pub/2018/building-blocks/



What are the problems in interpretation methods?

(ii) Explainable ML methods provide explanations that are not faithful to what the original model com-
putes.

Explanatlons must be wrong. They cannot have perfect fidelity with respect to the onglnal model. If the
CADIdId .'A‘. OUINDICLC -.l. D WIId !'0l (1d 1l I110UC OIIIDULC (1C CADIdIld .l‘..!"..-., [1C
original model, and one would not need the original model in the first place, only the explanation. (In other words,
this is a case where the original model would be interpretable.) This leads to the danger that any explanation
method for a black box model can be an inaccurate representation of the original model in parts of the feature
space. [See also for instance, 23, among others.]

An inaccurate (low-fidelity) explanation model limits trust in the explanation, and by extension, trust in the

black box that it is trying to explain. An explainable model that has a 90% agreement with the original model

indeed explains the original model most of the time. However, an explanation model that is correct 90% of the
time is wrong 10% of the time, If a tenth of the explanations are incorrect, one cannot trust the explanations, and

thus one cannot trust the original black box. If we cannot know for certain whether our explanation is correct,
we cannot know whether to trust either the explanation or the original model.

[1] Cynthia Rudin, “Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead”, arxiv:1811.10154.



How to optimize 3
network
that is
by design,
interpretable’



We can impose constraints on filters directly

Outpout Y Feature maps of a certain filter in a high

Jutput Raw ma Map after mask Receptive field
conv-layer computed using different images
Soveral I Feature maps of an interpretable filter Filter
connectead layers
‘ Filter
Conv-layer L
Conv-layer L-1 Filter
Filter
Conv-layer 1

[1] Quanshi Zhang, “Interpretable Convolutional Neural Networks”, CVPR 2018.



We can train some “prototype” for inference

looks like

looks like

[1] Chaofan et al. “This Looks Like That: Deep Learning for Interpretable Image Recognition” NeurlPS spotlight.



Capsule Network: Capsule Concepts and Assemble

Boat

x=22

y=28

angle=16°

—_— !

Rectangle Triangle f 4 f ﬂ
x=20 x=24 i
y=30 y=25 Q ’ Strong agreement!
angle=16 angle=-65 \ g The rectangle and triangle

capsules should be routed to
Predicted Outputs the boat capsules. t

House
x=22 < /

y=28
angle=-5°

Primary Capsules

N

Rectangle Triangle
x=20 x=26
y=30 y=31
angle=-5° angle=137°

[1] https://www.youtube.com/watch?v=pPN8d0OE3900



DYNAMIC CONN

~CTION

16

DigitCaps

ReLU Convi 7256
9X9 . /6
] PrimaryCaps
- SN ' L /)
\ v > 4
20 g | | 32
. , #W,;; = [8 x 16]

Procedure 1 Routing algorithm.

procedure ROUTING(;, T, 1)

for all capsule ¢ in layer [ and capsule j in layer (I + 1): b;; < 0.

15
2
3: for r iterations do

4: for all capsule 7 in layer [: c; <—bz~)
5: for all capsule j in layer (I + 1): s; < ) _; ¢ij0,;
6 for all capsule j in layer (I + 1): v; < squash(s;)
7

> softmax computes Eq. 3

> squash computes Eq. 1

for all capsule 7 in layer / and capsule j in layer (I + 1): bi; < bi; + 0;);.V;

return V;

[1] Sara et al. “Dynamic Routing Between Capsules”. NeurlIPS 2018. 4



Scale and thickness N O O WO W WL

Localized part bbbbbbbbblbllbll

Stroke thickness 5 5 5 5 5 5 5 ‘C‘) ;) ,;f‘ ,,‘

9999999991
Width and translation , ) ) } 3 3 3 3 3 3 $

Localized part 2,2_,2, 2.. z., 2_. 2. Z. L L Z.

[1] Sara et al. “Dynamic Routing Between Capsules”. NeurlIPS 2018.

Localized skew




House Dog Train Plant Airplane

res5c unit 1410 10U=0.142 res5c unit 1573 10U=0.216 res5c unit 924 10U=0.293 res5c unit 264 loU=0.126 res5c unit 1243 10U=0.172

ResNet-152

inception_4e unit 750 loU=0.203 inception_4e unit 56 loU=0.139

inception_4e unit 175 1oU=0.115 inception_4e unit 714 10U=0.105 inception_4e unit 759 loU=0.144

GooglLeNet

conv5_3 unit 142 loU=0.205 K conv5_3 unit 85 10U=0.086 conv5_3 unit 151 1oU=0.150

LK 4

convS_3 unit 491 loU=0.112 1oU=0.068

VGG-16

[David. B et al, CVPR, 2017]

Unit 115, Conv5

5% |
Q
© 0% , , , —_— ,
| - 2
o 5%
o
3 -10%
< youth_hostel
: 9 -15% bedroom
s bedchamb
§ G -20% o overall accuracy: 50.6%
S5 hotel_room overall accuracy after ablating unit 115: 50.4%
¢ 0

[Bolel. Z et al., arxiv, 201 8]



IMPLICATION WITH DYNAMIC CONNECTION

7

Predict by Dynamic Connection | Predict by Dynamic Connection | Predict by Dynamic Connection | Predict by Dynamic Connection
BeaChz BeachO BeachO Beach
Coast
B Water WaterQ_  ®C03St | cumm W Water @Coast "| WaterO\ ®Coast
) . 5 @Ice Berg || Ice Berg | [F ¢ "t & @Ice Berg @|ce Berg
o~ — Forest — ForestO — Forest — ForestO
‘”"ﬂw Sports ®Swamp @Swamp O\'SWGmp — | @ Swamp
po @ Sports ®) Sports e Sports
Field @ Volleyball Field @ Volleyball Field @ Volleyball Field Volleyball
Mountain () Court Mountain Court Mountain () Court Mountain () Court
Snow Snow Snow Snow
Semantic Interpretation: Semantic Interpretation: Semantic Interpretation: Semantic Interpretation:
Class(Coast) = Beach + Water Class(lce Berg) = Mountain Snow + Water Class(Swamp) = Forest + Water Class( ) = Beach + Sports Field

J

Sparsity
It reduces the parargleters
Simulatability
Human is able to s
Modularity

The meaningful units c2

l@,ﬁawed.

ulate rts decsi{#@'ﬁ iiocess.
7,

be interpreted indep€

[1] Yiyou et al. “Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks”. ICCV 2019.
7/



MAIN INTUITION

Image:
bx3xWxH .

Son(\; Fev;\alt,ureHs; Softmax:
R - bxOxC

' . 9 —

CNN S s |Prediction
NS °

L] . /

5 —

Water Park Water Park amusement Q \\ () Water Park

device ‘\\
’ \ \\

" \‘\ O \\\\

\ “\ \ A

‘\ N
O—&) Amusement Park]
7

o

Canal/Natural

Canal/Natural Canal/Natural ]

Amusement Park Amusement Park

Dynamic Connection Layer

4
[1] Yiyou et al. “Adaptive Activation Thresholding: Dynamic Routing Type Behavior fgr Interpretability in Convolutional Neural Networks”. ICCV 2019.



ROUTING ALGORITHM

TSNEofX  TSNEofW™ %X Gog Before Dynamic-K Activation After
1

Selection Selection

W1(d°g)X1

selection
box

oo 0 >

[1] Yiyou et al. “Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks”. ICCV 2019.



-X

D

-RIM

N

CONCEPT COMPOSABILITY

Airplain Cabin Box Ring Campus
airplane cabin boxing ring park
unit 237 (scene) loU 0.22 unit 169 (scene) loU 0.12 unit 162 (scene) loU 0.04
. = £ a3 & A
| I [l | g ‘
cockpit bar T
unit 483 (scene) loU 0.19 unit 134 (scene) loU 0.15 building
2 unit 104 (object) loU 0.04
laundromat m
unit 388 (scene) Canal/Natural highway
unit 359 (scene) loU 0.13
water
unit 311 (object) loU 0.08| |

Ball Pit
ball pit dam
unit 13 (scene) loU 0.34 unit 322 (scene) loU 0.08
poolroom-home castle
unit 327 (scene) loU 0.14 unit 360 (scene) loU 0.07
toyshop sea
unit 97 (scene) loU 0.09 unit 411 (object) loU 0.14
1 g

i

courthouse
unit 150 (scene)

conference room
unit 238 (scene)

loU 0.12

stadium-baseball
unit 241 (scene) loU 0.10

[1] Yiyou et al. “Adaptive Activation Thresholding: Dynamic Routing Type Behavior for Interpretability in Convolutional Neural Networks”. ICCV 2019.
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ProgressiveGAN

[1] http://xai.unist.ac.kr/static/img/event/ICCV_2019_VXAI_David_Talk.pdf



Layer 4, Neuron 201

- = "N g A
1SEDALOU ¢hoola tiin ‘ | 1% Lehosnncwnt s sem thetea A k. LELEAL2 Othwols srm (851320 1] | 1280326 chools ann inere A L LALLM AL ANT (23144 0wl

> e _— P =

S L— ¢ 2 ~ =
18 scwontacom - LDIBLERRY 120028 chmnla o - LRIEEEZR2LDY 1263328 oorx shieticaIGLLAR) 1S882325 . eonalblannninst sww grashomimalonem - LOIECE20)

[1] http://xai.unist.ac.kr/static/img/event/ICCV_2019_VXAI_David_Talk.pdf
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upsample

featuremap
single unit u
m
ru,P
generated image
generate 23

rif

Z I
generator

G

segment

GAN Dissection

thresholded

?
r, >t

segmentation

[1] David et al. “GAN Dissection: Visualizing and Understanding Generative Adversarial Networks.” ICLR 2019.

agreement

loU

u,c



[1] David et al. “GAN Dissection: Visualizing and Understanding Generative Adversarial Networks.” ICLR 2019.



Orientation on LSUN Cars (StyleGAN)

Body Pose on LSUN Cats (StyleGAN)

A~ A S [
- Background removal +

[Andrey et al. arxiv: 2002.03754] B il r—-}E l'l—lm. | !

Pose on ImageNet Magpies (BigGAN) Layout on LSUN Bedrooms (StyleGAN2)

[Yujun et al. arXiv:2007.06600]
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