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Catastrophic Forgetting

e Goal of class-incremental learning is to learn a model that performs well on
previous and new tasks without task boundaries. But it suffers from

catastrophic forgetting.

e Training Neural Networks on new tasks causes it to forget information learned
from previously trained tasks, degrading model performance on earlier tasks.

e Primary reason for catastrophic forgetting is limited resources for scalability.



Contributions

* Novel class-incremental learning scheme that uses large stream of unlabeled
data.

* Global knowledge distillation
 Learning strategy to avoid overfitting to most recent task

» Confidence based sampling method to effectively leverage unlabeled dataset



Class Incremental Learning Setting

(x,y) € D

T is a supervised task mapping x — y

For task T, corresponding dataset is ID; and coreset is D¢ _ 4 € Dy U D% 5
contains representative data of previous tasks Ty.t.1y = {T1, ... , Tt } . For task T;
corresponding labeled training data used is represented as D™ = D; U D" .

M; = {60, @4+ } is a set of learnable parameters of a model where 6 indicates
shared task parameters and @4 = {0, ..., @; } are task specific parameters.



Class Incremental Learning: Approach

e The goal at each task t is to train a model M; to perform the current task T; as
well as previous tasks Tj..1) without any task boundaries.

e The input at each task stage is the previous model M, , coreset D" 4 ,
training dataset D; and large stream of unlabeled data DWid

e Output at each task stage is a new coreset D", and model M, = {0, @4 }



Local Knowledge Distillation

Train the model M; by minimizing the classification loss: Ly(6, @4 ; D{M ).

In the class incremental learning setting, the limited capacity of coreset
causes the model to suffer from catastrophic forgetting. To overcome this
issue, utilize previously trained model M., , that contains knowledge of
previous tasks to generate soft labels.

Optimize »..27 Lgst (0, @s ; Py, Dy ), where Py = {6F , ®Py.11)} = M4 is a previous
trained model



Local Knowledge Distillation (Cont.)
e Minimize the joint objective: Lys(0, @1 ; DM ) + X 21 Ly (6, O ; Py, Dy )

e Solving the above optimization problem is called local knowledge distillation.
Transfers the knowledge within each of the tasks.

e The issue with local knowledge distillation is that is defined in a task-wise
manner and misses the knowledge about discriminating between classes in
different tasks.



Global Knowledge Distillation

e Distill the knowledge of reference models globally by minimizing the following
loss: Lgst(6, 1.1y ; Pr, DM U Dexty )

e Learning using the above function causes bias, since P; does not have
knowledge regarding the current task, hence performance on the current task is
degraded.

e Introduce teacher model C; = {#C, ®C,} specialized to learn the current task T,
Lgsi(0, @ ; G, D™ U DXt ).

e Teacher model (; is trained by minimizing Ls(6€,0C; D)



Global Knowledge Distillation (Cont.)
e P, learns to perform tasks T,.t.1y and C; learns to perform the current task T; ,

but knowledge distillation between Ty.+.4y and T; is not captured by the either
of the reference models.

e Define Q;, an ensemble of reference models P; and (;

e Ensemble Qt . Ldst(gl ®1:t ; Qt; ]DeXtt )

e The global distillation model learns by optimizing the following loss:
LCls(Q' ®1:t : ID)ttm ) + LdSt(Q; ®1:(t—1) , Ptr ID)ttrn U ]D)eXtt ) + Ldst(e, @t ; Cb ]Dttm U ID)eXtt ) +
Lgst(0, @11 5 Qr, DX )



Fine-Tuning and Normalization

e Since the amount of data from the previous tasks is smaller than the current
task, model prediction is biased towards the current task.

e To remove the bias, fine tune the model after the training phase by scaling
the computed gradient from the data with label k.

o wWpy= - , scaling the gradient is similar to feeding data multiple

() ED|y=k}]
times (data weighting).

e Normalizing weights by multiplying them with lDl/ITI to balance the dataset D



Fine-Tuning and Normalization (Cont.)

e Fine- tuning task-specific (@4.1) using data weighting to remove any bias from
training data and to equally weigh training data for all tasks.

e Fine-tuning shared parameters (€) is not required since it already contains
relevant information from all training data.

e Loss Weight: balance the contribution of each loss by the relative size of

T
|T1:t|

each task learned in the loss; wl =



3-step Learning Algorithm

e |Learning strategy has three steps
o Training C; specialized for learning the current task T,
o Training M, through global knowledge distillation of reference models P, , Q; ,

o Fine-tuning model parameters using data weighting.



3-step Learning Algorithm

Algorithm 1 3-step learning with GD.

. t=1
2: while true do

3:

—_— [
w N

__.
v ok

16:

A B A A A

Input: previous model P, = M,_4, coreset D54,
training dataset D;, unlabeled data stream Dy+1d
Output: new coreset Ds°*, model M; = {0, 1.+ }
DErs = D, U D",
Ne = |Di% |, Np = |Dg™|
Sample Dg** from Dy using Algorithm 2
Train C; by minimizing Eq. (12)
if t > 1 then
Train M, by minimizing Eq. (9)
Fine-tune ¢1.; by minimizing Eq. (9),
with data weighting in Eq. (10)
else
Mt - Ct
end if
Randomly sample Dg°* C D™ such that
{(2,9) € D=y = k}| = Neo/|Trudl for k € Ti.
t=t+1

17: end while



Sampling External Dataset

e The main issues with using unlabeled data in knowledge distillation.
o Training is computationally expensive

o Most of the unlabeled data might be irrelevant to the tasks the model learns

e The paper proposes a sampling method to sample an external dataset from
large stream of unlabeled data that benefits knowledge distillation.



Sampling for Confidence Calibration

e Sampling external data that is expected to be in previous tasks is desirable,
since it alleviates catastrophic forgetting.

e Neural Nets tend to be highly overconfident as they produce prediction with
high confidence for OOD data.

e To achieve confidence calibrated outputs, model learns from certain amount
of OOD data and data from previous tasks.



Confidence Calibration

e For the model to produce confidence calibrated outputs, following confidence

loss function is considered: Lqys (6,0 ;D ) = Wlmzxem Yyerl—logp(ylx; 6, 0)]

e During 3-step learning, training (; has no reference model hence it learns
from confidence loss. By optimizing on confidence loss, model learns to
produce predictions with low confidence for OOD data.

e (; learns by optimizing Lqs(6°,0%; D) + Ly (0€,0C; D4 U Dext)



Sampling External Dataset: Algorithm

Algorithm 2 Sampling external dataset.

1: Input: previous model P, = {67, o7, 4%},
unlabeled data stream DyY1+1<, sample size Np,
number of unlabeled data to be retrieved /V,, .«

2: Output: sampled external dataset Dg**

3. Pprev Q’ DOOD J— @

4: Nprcv = 0.3/Np, Noop = 0. 7Np

5: N(k) 2 [{(a,y.p) € D]y — Kk}

7: Get z € Dy*'< and update DO°P = DO°P y {«}
3: end while

9: Niet = Noob

10: while V.ot << NVNimax do

11: Get = € Dy*1'9 and compute the prediction of P:

P = max, p (y|:r;; or, ¢ﬁ(1’71)> .
Y = arg max,, p (y|.r, o7, q‘)ﬁ(til))

12: if NV(9) < Nprev/|71:(+—1)| then

13: D]‘)I‘SV p— DPI‘SV U {(m, ;L/)’p)}

14: else

15: Replace the least probable data in class 7:

(', 9, p") = argming ..y p)epr|y=g} P

16: if p/ < p then

17: DrreY = (DP\{(z’, g.p) ) U {(x,.9.P)}
18: end if

19: end if
20: Nier = ret + 1

21: end while
22: Return Dg=* = DOP U {z|(x,y,p) € DV}



Global Distillation Model
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Related Work

Continual lifelong learning: class/task/data incremental learning
Methods: model-based and data-based

‘Model based: parameters for new tasks are directly constrained to be around that
for previous tasks

-‘Data based: data distribution from previous tasks are used to distill knowledge for
later tasks; previous works focus on task-wise local distillation (eq.2), previous
state-of-art: LwF, DR, E2E.

Scalability: sampling from an external dataset; discarded after learning



Related Work for Comparison

Previous knowledge distillation in data based methods: only distill the task-wise
knowledge

‘Lw, task incremental--class incremental
‘Dr, task incremental, learning with two teachers--class incremental

‘E2E, class incremental with fine tuning, but sacrifices the diversity of frequent
classes--data weighting

-Orthogonal to model based; can be combined

Proposed methods: GD



Experiments

Datasets:

Labeled:CIFAR_100,ImageNet ILSVRC 2012

Unlabeled: Tinylmages, ImageNet2011

Design tasks: total 100 classes, divide into splits of 5,10,20--task size: 20,10,5

Hyper parameters: WRN-16-2, coreset size=2000, temperature for smoothing
softmax probabilities: 2 for P,C, 1 for Q



Experiments

Evaluation metric

1 .

The accuracy of the A, = D] Z I(§(z; My) =
s-th model at r-th d (z,y)EDrest
task, s>=r
ACC: weighted ACC = |T|
combination of all t—1 ; ,2:1 Ut
tasks and all
models: C et

FoT= 33 T4, —a,)
FGT: performance t—1 1Ts| " T8/

decay:



Experiments

Evaluation:

Overall performance:

Table 1. Comparison of methods on CIFAR-100 and ImageNet. We report the mean and standard deviation of ten trials for CIFAR-100
and nine trials for ImageNet with different random seeds in %. 1 ({) indicates that the higher (lower) number is the better.

Dataset

CIFAR-100

ImageNet

Task size

5

10

20

5

10

20

Metric

ACC (1)

FGT (1)

ACC (1)

FGT (1)

ACC (1)

FGT (})

ACC (1)

FGT (})

ACC (1)

FGT (})

ACC (1)

FGT (1)

Oracle

78.6 = 0.9

33402

77.6 0.8

3.1 +02

75.7 £ 0.7

28 +02

68.0 = 1.7

33+02

66.9 + 1.6

3.1+03

65.1 £12

27%02

Baseline
LwF [24]
DR [12]
E2E [3]

57412
584+ 13
59.1 £ 14
60.2 + 1.3

21.0 £ 05
193 £05
19.6 £ 05
16.5 £ 05

56.8 & 1.1
595+12
60.8 = 1.2
62.6 £ 1.1

19.7 £ 0.4
169 £ 04
17.1 £ 04
128 £ 0.4

56.0 £ 1.0
60.0 = 1.0
61.8 0.9
65.1 0.8

18.0 £03
145 £ 04
143 £ 04
89 +02

442+ 1.7
456 =19
465+ 1.6
47719

23.6 =04
215+ 04
220405
179 £ 04

441+ 16
473+ 15
487+ 1.6
50.8 &£ 1.5

215+ 05
185 £05
18.8 £05
134 +04

447+ 12
48.6 = 1.2
50.7 £12
539+12

184 £ 05
153 £ 06
15.1 £05
88 +03

GD (Ours)
+ ext

62.1 £12
66.3 + 1.2

154 +04
9.8 £03

65.0 £ 1.1
68.1 + 1.1

12.1 03
7.7 £ 03

67.1 £09
68.9 + 1.0

85+03
55+04

50.0 £ 1.7
552+ 18

16.8 + 0.4
9.6 + 04

53.7%+15
57.7 £ 1.6

128 £ 05
74+03

565+ 12
58.7 +1.2

84 +04
54+03




Experiments
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Figure 2. Experimental results on CIFAR-100. (a,b) Arrows show the performance gain in the average incremental accuracy (ACC) and

average forgetting (FGT) by learning with unlabeled data, respectively. (c,d) Curves show ACC and FGT with respect to the number of
trained classes when the task size is 10. We report the average performance of ten trials.



Experiments

Effect of the reference models

Table 2. Comparison of models learned with different reference
models on CIFAR-100 when the task size is 10. “P.” “C.,” and “Q”
stand for the previous model, the teacher for the current task, and
their ensemble model, respectively.

Pl C | Q| ACC(1) FGT ()
v 629+ 12| 14.7 =04
v |V 67.0 09 | 10.7 £ 03
v

65.7+09 | 11.2 +02
68.1 11| 7.7+ 03

< S




Experiments

Effect of the teacher
for the current task

Table 3. Comparison of models learned with a different teacher
for the current task C on CIFAR-100 when the task size is 10.
For “c1s,” C is not trained but the model learns by optimizing
the learning objective of C directly. The model learns with the
proposed 3-step learning for “dst.” The confidence loss is added
to the learning objective for C for “cnf.” We do not utilize Q for

this experiment, because “c1s” has no explicit C.

C Confidence | ACC (1) | FGT ()
X 629 +12 | 147 £ 04
cls 629 +13 | 145+ 05
cls cnf 653410 | 11.7 + 03
dst 66.2 +10 | 11.2 +03
dst cnf 67.0 £ 09 | 10.7 £+ 03




Experiments

Effect of balanced fine-
tuning

Table 4. Comparison of different balanced learning strategies on
CIFAR-100 when the task size 1s 10. “DW,” “FT-DSet,” and “FT-
DW?” stand for training with data weighting in Eq. (10) for the
entire training, fine-tuning with a training dataset balanced by re-
moving data of the current task, and fine-tuning with data weight-
ing, respectively.

Balancing | ACC (1) FGT (])
X 67.1 09 | 11.5+ 03
DW 67.9 09 | 9.6 02

FT-DSet | 67.2 +1.1 | 84 402
FT-DW 68.1+11 | 7.7+ 03




Experiments

Table 5. Comparison of different external data sampling strate-
gies on CIFAR-100 when the task size is 10. “Prev” and “O0D”
columns describe the sampling method for data of previous tasks
and out-of-distribution data, where “Pred” and “Random” stand
for sampling based on the prediction of the previous model P and
random sampling, respectively. In particular, for when sampling
OOD by “Pred,” we sample data minimizing the confidence loss
Lcne. When only Prev or OOD is sampled, the number of sampled
data is matched for fair comparison.

Effect of external data
sampling

Prev OOD ACC (1) FGT ()
X X 65.0+ 1.1 | 12.1 03
X Random | 67.6 09 | 9.0 +03

Pred X 66.0+12 | 7.8+ 03

Pred Pred 65.7 1.1 | 10.2 £ 02

Pred | Random | 68.1 + 1.1 | 7.7 £+ 03




Conclusion

-‘Leverage a large stream of unlabeled data

-Global distillation aims to keep the knowledge of the reference models without
task boundaries, leading better knowledge distillation

-3-step learning scheme effectively leverages the external dataset sampled by the
confidence-based sampling strategy from the stream of unlabeled data



Quiz Questions
Which of the following statements are true about the global distillation model

A) Training a reference teacher’s model to specialize in learning only the current
task

B) Knowledge distillation for the ensemble model is performed over both the
training data and sampled external unlabeled data

C) Fine-tuning using data weighting is performed over all model parameters

D) Global distillation model is trained through knowledge distillation over 3
reference models.

Answer: A and D



Which of the following statements are true about confidence calibration for
sampling:

A) Confidence calibration is performed on all reference models

B) It prevents the model from making overconfident predictions on OOD data by
optimizing over the confidence loss

C) Confidence calibrated outputs are produced by optimizing the loss function
over only the sampled external dataset.

D) Confidence calibrations increase the overall accuracy of the model by
sampling better external data from a stream of unlabeled data

Answer: B and D



Which external data sampling strategy provides the highest model accuracy:

A) Random sampling of OOD data and sampling based on predictions of
previous model

B) Only random sampling of OOD data

C) sampling based on predictions of previous model and sampling OOD data
based on predictions of previous model
D) No external data sampling.

Answer: A



