Wasserstein GAN Martin Arjovsky, Soumith Chintala, and Leon Bottou

Presented by: Aditya Kumar Akash and Peyman Morteza

Part I: Motivation and theoretical aspects of WGAN

Unsupervised Learning Problem

- A sample data points from a hidden support is given.
- How to develop an algorithm to "learn" the hidden structure?

Unsupervised Learning Problem

- structure has a complicated support?
- Why to study complexified version of the problem?

Image Data

• What if the underlying data points are in high dimension and the underlying

Music Data

Problem formulation

- Let X be a compact metric space and let Σ denotes the Borel sets of X and P denotes the set of all probability measures on (X, Σ).
- Let $p_r \in P$ be a hidden probability measure that generates the real data.
- Let $X_p^n = \{x_1^p, \dots, x_n^p\}$ be a given i.i.d sample generated by p_r .

Problem formulation

• $p_{\theta}, \theta \in \Theta$: a parametrized family of probability distributions.

•
$$\theta^* := argmin_{\theta \in \Theta} (d(p_r, p_{\theta}))$$

• What is a good candidate for *d*?

Looking for "metric" *d* such that $d(p_{\theta}, p_r) \rightarrow 0 \text{ as } \theta \rightarrow 0$

 p_r : measure on $[0,1]^2$ that is uniformly distributed on $\{(0,y) \in [0,1]^2 | 0 \le y \le 1\}$

"Distance" functions on P

$$KL(p \mid \mid q) := \int_{\mathcal{X}} \log(\frac{f_p(x)}{f_q(x)}) f_p(x) dx$$

 $JS(p,q) := KL(p,\frac{p+q}{2}) + KL(q,\frac{p+q}{2})$

 $\delta(p,q) := \sup_{K \in \Sigma} |p(K) - q(K)|$

Kullback–Leibler divergence: Shows up as asymptotic of MLE

Jensen–Shannon divergence: Symmetrized version of KL

Total variation between two measures

Looking for a "metric", d, such that $d(p_{\theta}, p_r) \to 0$ as $\theta \to 0$ If $\theta > 0 \implies p_r$ and p_{θ} have disjoint support \implies $KL(p_r, p_{\theta}) = \infty \implies KL$ is not even defined

in this particular example.

 p_r : measure on $[0,1]^2$ that is uniformly distributed on $\{(0,y) \in [0,1]^2 | 0 \le y \le 1\}$

JS Divergence

Looking for a "metric", d, such that $d(p_{\theta}, p_r) \to 0$ as $\theta \to 0$ If $\theta > 0 \implies \frac{p_r + p_{\theta}}{2}$ has mass $\frac{1}{2}$ on $y = 0, y = \theta$ $\implies JS(p_r, p_{\theta}) = \frac{1}{2}\log(2) + \frac{1}{2}\log(2) = \log(2)$ \implies JS is constant and does not change by θ .

 p_r : measure on $[0,1]^2$ that is uniformly distributed on $\{(0,y) \in [0,1]^2 | 0 \le y \le 1\}$

Total Variation

Looking for a "metric", d, such that $d(p_{\theta}, p_r) \to 0$ as $\theta \to 0$

If $\theta > 0 \implies \delta(p_r, p_{\theta}) = 1$ is constant and does not change by θ .

If $\theta = 0 \implies \delta(p_r, p_{\theta}) = 0.$

 p_r : measure on $[0,1]^2$ that is uniformly distributed on $\{(0,y) \in [0,1]^2 | 0 \le y \le 1\}$

- Transport each blue ball and match it to a yellow ball.
- c(x, y) = |x y| cost of moving a ball located at position x to position y. • Find a transportation plan with minimal cost.

Optimal Transportation Plan

Transportation Plan

A transportation plan can be viewed as a probability measure on $\mathcal{X} \times \mathcal{X}$ with specified marginals.

 $\begin{array}{ccc}
\vdots \\
\mu(x,y) = \begin{cases} \frac{1}{2} & (x,y) = (1,2) \\
\frac{1}{3} & (x,y) = (3,4), \\
\frac{1}{6} & (x,y) = (5,4) \\
\end{array}$

 $c(x, y)d\mu(x, y) = 1$ $JX \times X$

Number of balls that is transported from position 3 to position 4.

Wasserstein Distance

$\Pi(p,q) := \{ \mu \in Prob(\mathcal{X} \times \mathcal{X}) | (\pi_1)_*(\mu) = p, (\pi_2)_*(\mu) = q \}.$ $c: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ $c(x, y) = d_{\mathcal{X}}(x, y)$ $W(p,q) := \inf_{\mu \in \Pi(p,q)} \int_{\mathcal{X} \times \mathcal{X}} c(x,y) d\mu$

The set of all transportation plans between p and q

Wasserstein distance is the infimum cost among all transportation plans

Wasserstein Distance

Looking for a "metric", *d*, such that $d(p_{\theta}, p_r) \rightarrow 0$ as $\theta \rightarrow 0$

$W(p_r, p_{\theta}) = \theta \to 0.$

 p_r : measure on $[0,1]^2$ that is uniformly distributed on $\{(0,y) \in [0,1]^2 | 0 \le y \le 1\}$

 $p_{\theta}: \text{ measure on } [0,1]^2 \text{ that is uniformly}$ distributed on $\{(\theta, y) \in [0,1]^2 \mid 0 \le y \le 1, \theta \in (0,1)\}$

General case formulation

Formal Theorem

Theorem.

- If g is continuous in θ then ϕ is continuous.

then ϕ is differentiable almost everywhere.

Theorem 1 in the paper.

everywhere differentiable.

• If g is locally Lipschitz and the local constants $L(\theta, z)$ satisfies,

$$\int_{\mathcal{Z}} L(\theta, z) d\mu(z) < \infty$$

Corollary. If g_{θ} is a neural net and $\int_{\mathcal{Z}} ||z|| d\mu(z) < \infty$ then $\phi(\theta)$ is continuous and almost

Corollary 1 in the paper

Optimizing ϕ

$\phi(\theta) := W(p_{\theta}, p_{r})$

$W(p_{\theta}, p_{r}) := \inf_{\mu \in \Pi(p_{\theta}, p_{r})} \int_{\mathcal{X} \times \mathcal{X}} c(x, y) d\mu$

 $\Pi(p_r, p_\theta) := \{ \mu \in Prob(\mathcal{X} \times \mathcal{X}) \, | \, (\pi_1)_*(\mu) = p_r, (\pi_2)_*(\mu) = p_\theta \} \, .$

Not obvious from this representation how to compute ϕ in general or differentiate it.

Kantorovich-Rubinstein duality

$$\phi(\theta) := W(p_r, p_\theta) = \sup_{\psi \in Lip_1} \left(\int_{\mathcal{X}} \left(\int$$

Theorem 3 in WGAN paper

$$f^* = \operatorname{argmax}_{\psi \in Lip_1} \left(\int_{\mathcal{X}} \psi(x) dp_r(x) \right)$$
$$\frac{\partial \phi}{\partial \theta} = -\int_{\mathcal{Z}} \frac{\partial (f^* \circ g_\theta)(z)}{\partial \theta} d\mu(z)$$

No intractable inf anymore!

 $(x)dp_r(x) - \int_{\infty} \psi(x)dp_{\theta}(x)$

When both sides are defined

 μ : your favorite measure on \mathcal{X} (e.g. gaussian, uniform, etc)

 $g: \mathcal{X} \times \Theta \to \mathcal{X}$

 \mathcal{I} .

 $p_{\theta} := (g_{\theta})_* \mu$

 $\phi(\theta) := W(p_{\theta}, p_{r})$

 $x^i \sim (\mathcal{X}, p_r)$

WGAN Algorithm

 $x_i \sim (\mathcal{X}, p_r)$ $z_i \sim (\mathcal{Z}, \mu)$

 $\phi(\theta) := W(p$ $g_{\theta}: \mathcal{X} \to \mathcal{X}, \theta \in \Theta$

A neural net that generates samples

Want to minimize with gradient descent

Needs to be compact $f_w: \mathcal{X} \to \mathbb{R}, w \in \mathcal{W}$ $f_w(x)$

Second neural net for estimating f^*

Want to maximize with gradient ascent

WGANAlgorithm

$$\mathcal{P}_{r}, \mathcal{P}_{\theta}) \qquad \frac{\partial \phi}{\partial \theta} = -\int_{\mathscr{Z}} \frac{\partial (f^{*} \circ g_{\theta})(z)}{\partial \theta} d\mu(z) \quad \frac{\partial}{\partial \theta} (\frac{1}{n} \sum_{i=1}^{n} f^{*} \circ g_{\theta}) d\mu(z)$$
Want to estimate Need to estimate f^{*}

$$f_{\mathcal{X}}(x) - \int_{\mathcal{X}} f_{w}(x) dp_{\theta}(x) \Big)$$

$$\frac{\partial}{\partial w} \Big(\sum_{i=1}^{n} \frac{1}{n} f_w(x^i) - \frac{1}{n} \sum_{i=1}^{n} f_w(g_e) \Big)$$

We can compute gradient of the estimation with respect

to *W*

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$. **Require:** : α , the learning rate. c, the clipping parameter. m, the batch size. $n_{\rm critic}$, the number of iterations of the critic per generator iteration. **Require:** : w_0 , initial critic parameters. θ_0 , initial generator's parameters. 1: while θ has not converged do for $t = 0, ..., n_{\text{critic}}$ do 2: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. 3: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 4: $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$ 5: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)$ 6: $w \leftarrow \operatorname{clip}(w, -c, c)$ 7:end for 8: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. 9: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_w(g_{\theta}(z^{(i)}))$ 10: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})$ 11:12: end while

Part II: Training and empirical aspects of WGAN

Training WGAN

A better GAN loss function

- EM distance is continuous and differentiable a.e
- Reliable gradients with better trained critic

No mode collapse for WGAN

Mode collapse for Standard GAN

Training WGAN

Explanations for mode collapse?

- Standard GAN
 - For a fixed discriminator, generator uses few modes to fool it
 - Training critic til optimality provides less meaningful gradients
- WGAN
 - For critic trained till optimality, we get more reliable gradients

Empirical Results

Datasets & Baselines

- Image generation Datasets
 - LSUN-Bedroom dataset

- Baselines
 - DCGAN GAN with conv architectures

Standard GAN Training

Objective

$\min_{C} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log(D(x))] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$

DCGAN Generator

- Replace pooling layers with convolutions
- Use batchnorm
- Remove FC hidden layers
- Use ReLU for G
- Use Leaky ReLU for D

WGAN as Meaningful loss

For DCGAN generator sample quality better,

Increasing error (JS Estimate) for MLP generator (FC Network) But no correlation to JS estimates

For MLP gen and disc, Curve fluctuates regardless of quality

WGAN as Meaningful loss

Wasserstein estimates with WGAN training

Negative Result

- Training unstable with
 - Momentum based optimizer eg ADAM
 - High learning rates
- Since critic loss is non-stationary
 - momentum a potential cause
 - Works with RMSProp -

WGAN Training

$$E[g^{2}]_{t} = \beta E[g^{2}]_{t-1} + (1-\beta)(\frac{\delta C}{\delta w})^{2}$$
$$w_{t} = w_{t-1} + (\frac{\eta}{\sqrt{E[g^{2}]_{t}}} \frac{\delta C}{\delta w}$$

Adaptive LR

Improved Stability - WGAN

WGAN vs Standard GAN

WGAN training

Standard GAN training

High quality samples for both

Improved Stability - WGAN

WGAN vs Standard GAN

WGAN training - Able to produce samples

Standard GAN training - fails

DCGAN Generator without batch normalization and constant number of filter each layer

Improved Stability - WGAN

WGAN vs Standard GAN

WGAN training - Able to produce good samples

Standard GAN training - Lower quality images

Notice the mode collapse for standard GAN samples

MLP Generator

Related Works

Works with Integral Probability Metrics (IPM)

- IPM with class \mathscr{F} : $d_{\mathscr{F}}(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$ f∈ℱ
- \mathcal{F} : 1-Lipschitz gives $W(\mathbb{P}_r, \mathbb{P}_{\rho})$
- $\mathcal{F}: \{f: f(x) \in [0,m] \forall x\}$ for Energy-based GANs (EBGANs)
 - Same behavior as Total variation distance

• $\mathcal{F}: \{f: f(x) \in [-1,1] \forall x\}$ gives $d_{\mathcal{F}}(\mathbb{P}_r, \mathbb{P}_{\theta}) = \delta(\mathbb{P}_r, \mathbb{P}_{\theta})$ (Total variation distance)

Works with Integral Probability Metrics (IPM)

- $\mathcal{F} = \{ f \sim \mathcal{H} : ||f||_{\mathcal{H}} \leq 1 \}$, for some RKHS \mathcal{H} associated with kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ gives Maximum Mean Discrepancy (MMD)
 - MMD is a proper metric & no need to maximize the inner supremum
 - Disadvantage: quadratic computational cost
 - Linear approximations have worse sample complexity
- Generative Moment Matching Networks (GMMs): Generative networks using MMD
 - Quadratic cost as a function of samples
 - Vanishing gradients for low-bandwidth kernels

Follow-up Works

WGAN with Gradient Penalty

- Difficulties with weight constraints:

Weight clipping critic fail to capture higher moments

Critic with Gradient Penalty

Value surface of WGAN critics

• Optimization difficulties - Resulting critic can have a pathological value surface

25 Gaussians

Swiss Roll

WGAN with Gradient Penalty

$$L = \underbrace{\mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_{g}} \left[D(\tilde{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_{r}} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}}$$

• Stable training

• A differentiable function is 1-Lipschitz iff it has gradients with norm at most 1 everywhere.

 $+ \lambda \mathop{\mathbb{E}}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right].$ Our gradient penalty Soft constraint

Sliced WGAN

- Wasserstein computation in dual involves solving saddle point problem

Sliced Wasserstein:

• Another variant of Wasserstein uses random projections and is a single minimization

Summary

- Introduced Wasserstein distances for GANs
 - like KL, JS
- Define a form of GAN using duality : Wasserstein GAN
 - Meaningful loss metric for distributions
 - Stable training of GAN
 - Gets rid of issues like mode collapse
- Experiments show stable learning of image generators

• Theoretical analysis of EM distance behavior in comparison to popular divergences

Thank You!

Questions?

Quiz Problems

- KL divergence
- JS divergence
- Total variation distance(TV)
- Wasserstein distance (Earth-Mover)

According to the paper, which of the following gives a more sensible cost function for learning probability distribution that are supported in low dimensional submanifolds?

Quiz Problems

- In WGAN, we can train the critic till optimality.
- WGAN solves the mode collapse issue in GAN.
- WGAN training is not stable when one uses momentum based optimizer or high learning rate.
- All of the above.

Which of the following statements is true:

- Experiments illustrate that Wasserstein estimates correlates well with the quality of the generated samples.
- WGAN training is reported to be stable with Adam optimizer.
- It is observed that WGANs are much more stable than GANs when one varies the generator architecture.
- JS estimates follow the same correlation with image quality as the Wasserstein estimates.

Quiz Problems

Which of the following found to be true in empirical evaluation of WGANs?

References

- The slides have materials from following works:
- Wasserstein GANs <u>https://arxiv.org/abs/1701.07875</u>
- Generative Adversarial Networks https://arxiv.org/abs/1406.2661
- lacksquare
- Unrolled Generative Adversarial Networks <u>https://arxiv.org/abs/1611.02163</u>
- Generative Modelling using the Sliced Wasserstein Distance <u>https://arxiv.org/abs/1803.11188</u>
- Improved Training of Wasserstein GANs <u>https://arxiv.org/abs/1704.00028</u>
- LSUN Dataset: <u>https://www.yf.io/p/lsun</u>
- Image Sources at slide 4: https://www.pinterest.com/pin/382383824583177634/ and https://www.pinterest.com/pin/ \bullet 161777811601964865/

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks - <u>https://arxiv.org/abs/1511.06434</u>

Understanding RMSprop - https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a