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Part I: Motivation and 
theoretical aspects of WGAN



Unsupervised Learning Problem

• A sample data points from a hidden 
support is given. 

• How to develop an algorithm to “learn” 
the hidden structure?

sample points 

Hidden support

ℝ2



Unsupervised Learning Problem
• What if the underlying data points are in high dimension and the underlying 

structure has a complicated support?  

• Why to study complexified version of the problem?

Music DataImage Data



Problem formulation

• Let  be a compact metric space 
and let  denotes the Borel sets of 

 and  denotes the set of all 
probability measures on . 

• Let  be a hidden probability 
measure that generates the real 
data.         

• Let  be a given 
i.i.d sample generated by .
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Problem formulation

• , : a parametrized family of 
probability distributions. 

•  

• What is a good candidate for ?

pθ θ ∈ Θ

θ* := argminθ∈Θ(d(pr, pθ))
d

pr

Xn
p

pθ

𝒳



gθ : [0,1] → [0,1] × [0,1]

gθ(x) = (θ, x)Equip with 

uniform measure 

μ pθ := (gθ)*μ

Motivating Example

𝒳 = [0,1] × [0,1]

0 1

1

 :  measure on  that is uniformly  
distributed on 

pθ [0,1]2

{(θ, y) ∈ [0,1]2 |0 ≤ y ≤ 1}

 :  measure on  that is uniformly  
distributed on 

pr [0,1]2

{(0,y) ∈ [0,1]2 |0 ≤ y ≤ 1} Θ = [0,1]

pθpr
Looking for “metric”  such that 

 as  
d

d(pθ, pr) → 0 θ → 0

θ



“Distance” functions on P

KL(p | |q) := ∫𝒳
log(

fp(x)
fq(x)

)fp(x)dx

JS(p, q) := KL(p,
p + q

2
) + KL(q,

p + q
2

)

δ(p, q) := sup
K∈Σ

|p(K) − q(K) |

Kullback–Leibler 
divergence: 

Shows up as asymptotic of 
MLE

Jensen–Shannon 
divergence: 

Symmetrized version of KL 

Total variation between 
two measures 



KL Divergence

0
1

1

 :  measure on  that is uniformly  
distributed on 

pr [0,1]2

{(0,y) ∈ [0,1]2 |0 ≤ y ≤ 1}

pθprLooking for a “metric” , , such 
that  as  

d
d(pθ, pr) → 0 θ → 0

If  and  have disjoint support 

  is not even defined 
in this particular example.

θ > 0 ⟹ pr pθ
⟹ KL(pr, pθ) = ∞ ⟹ KL

KL(pr, pθ) = ∞

θ

 :  measure on  that is uniformly  
distributed on 

pθ [0,1]2

{(θ, y) ∈ [0,1]2 |0 ≤ y ≤ 1}



JS Divergence

0
1

1

 :  measure on  that is uniformly  
distributed on 

pr [0,1]2

{(0,y) ∈ [0,1]2 |0 ≤ y ≤ 1}

pθprLooking for a “metric” , , such 
that  as  

d
d(pθ, pr) → 0 θ → 0

If  has mass  on  

 

 is constant and does not change by .

θ > 0 ⟹
pr + pθ

2
1
2

y = 0,y = θ

⟹ JS(pr, pθ) =
1
2

log(2) +
1
2

log(2) = log(2)

⟹ JS θ

JS(pr, pθ) = log(2)

JS does not have an 
informative gradient!

θ

 :  measure on  that is uniformly  
distributed on 

pθ [0,1]2

{(θ, y) ∈ [0,1]2 |0 ≤ y ≤ 1}



Total Variation

0
1

1

 :  measure on  that is uniformly  
distributed on 

pr [0,1]2

{(0,y) ∈ [0,1]2 |0 ≤ y ≤ 1}

pθprLooking for a “metric” , , such 
that  as  

d
d(pθ, pr) → 0 θ → 0

If  is constant and does not 

change by .

θ > 0 ⟹ δ(pr, pθ) = 1
θ

δ(pr, pθ) ≡ 1
Total variation does 

not have an 
informative gradient!

If .θ = 0 ⟹ δ(pr, pθ) = 0 θ

 :  measure on  that is uniformly  
distributed on 

pθ [0,1]2

{(θ, y) ∈ [0,1]2 |0 ≤ y ≤ 1}



Wasserstein Distance

1 2 3 4 5

𝒳

• Transport each blue ball and match it to a yellow ball. 

•  cost of moving a ball located at position  to position .  

• Find a transportation plan with minimal cost.

c(x, y) = |x − y | x y



Wasserstein Distance

1 2 3 4 5

1 2 3 4 5

𝒳

𝒳 Optimal Transportation Plan



Wasserstein Distance

1 2 3 4 5
𝒳

p(x) =

1
2 x = 1
1
3 x = 3
1
6 x = 5

, q(x) =
1
2 x = 2
1
2 x = 4

,

Each distribution of balls can 
be viewed as a probability 

measure on 𝒳



Transportation Plan

μ(x, y) =

1
2 (x, y) = (1,2)
1
3 (x, y) = (3,4)
1
6 (x, y) = (5,4)

,

A transportation plan can be 
viewed as a probability 

measure on  with 
specified marginals.

𝒳 × 𝒳

𝒳 × 𝒳

∫𝒳×𝒳
c(x, y)dμ(x, y) = 1

p

q

Number of balls that is transported 
from position 3 to position 4.



Wasserstein Distance

Π(p, q) := {μ ∈ Prob(𝒳 × 𝒳) | (π1)*(μ) = p, (π2)*(μ) = q} .

c : 𝒳 × 𝒳 → ℝ

c(x, y) = d𝒳(x, y)

W(p, q) := inf
μ∈Π(p,q) ∫𝒳×𝒳

c(x, y)dμ

The set of all 
transportation 
plans between 

 and p q
Wasserstein 

distance is the 
infimum cost 

among all 
transportation 

plans



Wasserstein Distance

0
1

1

 :  measure on  that is uniformly  
distributed on 

pθ [0,1]2

{(θ, y) ∈ [0,1]2 |0 ≤ y ≤ 1 , θ ∈ (0,1)}

 :  measure on  that is uniformly  
distributed on 

pr [0,1]2

{(0,y) ∈ [0,1]2 |0 ≤ y ≤ 1}

pθprLooking for a “metric” , , such 
that  as  

d
d(pθ, pr) → 0 θ → 0

.W(pr, pθ) = θ → 0

W(pr, pθ) = θ
Wasserstein distance 

looks to be a good 
candidate!

θ



pr

pθ

𝒳

General case formulation

𝒵

: your favorite measure on  (e.g. 
gaussian, uniform, etc)

μ 𝒵

g : 𝒵 × Θ → 𝒳
pθ := (gθ)*μ

ϕ(θ) := W(pθ, pr)

gθ



Theorem 1 in the paper.

Corollary 1 in the paper

Formal Theorem



Optimizing ϕ

ϕ(θ) := W(pθ, pr)

W(pθ, pr) := inf
μ∈Π(pθ,pr) ∫𝒳×𝒳

c(x, y)dμ

Π(pr, pθ) := {μ ∈ Prob(𝒳 × 𝒳) | (π1)*(μ) = pr, (π2)*(μ) = pθ} .

Not obvious from 
this representation 
how to compute  

in general or 
differentiate it.

ϕ



Kantorovich-Rubinstein duality

ϕ(θ) := W(pr, pθ) = sup
ψ∈Lip1

(∫𝒳
ψ(x)dpr(x) − ∫𝒳

ψ(x)dpθ(x))

∂ϕ
∂θ

= − ∫𝒵

∂(f* ∘ gθ)(z)
∂θ

dμ(z)

f* = argmaxψ∈Lip1(∫𝒳
ψ(x)dpr(x) − ∫𝒳

ψ(x)dpθ(x))

When both sides are defined

No intractable inf anymore!

Theorem 3 in WGAN paper



pr

pθ

𝒳

WGAN Algorithm

𝒵

: your favorite measure 
on  (e.g. gaussian, 

uniform, etc)

μ
𝒵

g : 𝒵 × Θ → 𝒳
pθ := (gθ)*μ

ϕ(θ) := W(pθ, pr)

zi ∼ (𝒵, μ)

gθ

gθ(zi) ∼ (𝒳, pθ)

xi ∼ (𝒳, pr)



WGAN Algorithm

fw : 𝒳 → ℝ, w ∈ 𝒲

gθ : 𝒵 → 𝒳, θ ∈ Θ

(∫𝒳
fw(x)dpr(x) − ∫𝒳

fw(x)dpθ(x)) ∂
∂w (

n

∑
i=1

1
n

fw(xi) −
1
n

n

∑
i=1

fw(gθ(zi)))

ϕ(θ) := W(pr, pθ) ∂ϕ
∂θ

= − ∫𝒵

∂(f* ∘ gθ)(z)
∂θ

dμ(z)
∂
∂θ ( 1

n

n

∑
i=1

f* ∘ gθ)(zi))

xi ∼ (𝒳, pr) zi ∼ (𝒵, μ)

A neural net that 
generates samples

Want to minimize with 
gradient descent Want to estimate Need to estimate f*

Second neural net for 
estimating  f*

Want to maximize with 
gradient ascent

We can compute 
gradient of the 

estimation with respect 
to w

Needs to be compact



The algorithm from WGAN paper



Part II: Training and 
empirical aspects of WGAN



Training WGAN
A better GAN loss function

• EM distance is continuous and differentiable a.e 

• Reliable gradients with better trained critic

Critic trained 
till optimality



Training WGAN
No mode collapse for WGAN

• Mode collapse for Standard GAN 

Single mode learnt



Training WGAN
Explanations for mode collapse ?

• Standard GAN 

• For a fixed discriminator, generator uses few modes to fool it 

• Training critic til optimality provides less meaningful gradients 

• WGAN 

• For critic trained till optimality, we get more reliable gradients



Empirical Results



Datasets & Baselines

• Image generation Datasets 

• LSUN-Bedroom dataset  

• Baselines 

• DCGAN - GAN with conv architectures



• Data distribution 

• Discriminator D 

• Generator G

Standard GAN Training

Objective

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log(D(x))] + 𝔼z∼pz(z)[log(1 − D(G(z)))]



DCGAN Generator

• Replace pooling layers with convolutions  

• Use batchnorm 

• Remove FC hidden layers 

• Use ReLU for G  

• Use Leaky ReLU for D



WGAN as Meaningful loss 
JS estimates with standard GAN training

Increasing error (JS Estimate)  
for MLP generator (FC Network)

For DCGAN generator  
sample quality better,  

But no correlation to JS estimates

For MLP gen and disc, 
Curve fluctuates regardless   

of quality

Loss close to log(2)=0.69



WGAN as Meaningful loss 
Wasserstein estimates with WGAN training

Wasserstein loss decreases, 
as image quality increases

High Learning Rate used,  
Loss and quality are constant



WGAN Training
Negative Result

• Training unstable with  

• Momentum based optimizer eg ADAM 

• High learning rates 

• Since critic loss is non-stationary  

• momentum a potential cause 

• Works with RMSProp
Adaptive LR



Improved Stability - WGAN
WGAN vs Standard GAN

WGAN training

Standard GAN training

High quality samples for both



Improved Stability - WGAN
WGAN vs Standard GAN

WGAN training 
- Able to produce samples

Standard GAN training 
- fails

DCGAN Generator without batch normalization  
and constant number of filter each layer



Improved Stability - WGAN
WGAN vs Standard GAN

WGAN training 
- Able to produce good 

samples

Standard GAN training 
- Lower quality images

Notice the mode collapse for standard GAN samples

MLP Generator



Related Works



Works with Integral Probability Metrics (IPM)

• IPM with class  : 

•  : 1-Lipschitz  gives   

• : {   }  gives   (Total variation distance) 

• : {   }  for Energy-based GANs (EBGANs) 

• Same behavior as Total variation distance

ℱ

ℱ W(ℙr, ℙθ)

ℱ f : f(x) ∈ [−1,1]∀x dℱ(ℙr, ℙθ) = δ(ℙr, ℙθ)

ℱ f : f(x) ∈ [0,m]∀x

dℱ(ℙr, ℙθ) = sup
f∈ℱ

𝔼x∼ℙr
[ f(x)] − 𝔼x∼ℙθ

[ f(x)]



Works with Integral Probability Metrics (IPM)

•  = ,  for some RKHS    associated with kernel   
gives  Maximum Mean Discrepancy (MMD) 

• MMD is a proper metric & no need to maximize the inner supremum  

• Disadvantage: quadratic computational cost  

• Linear approximations have worse sample complexity 

• Generative Moment Matching Networks (GMMs): Generative networks using MMD 

• Quadratic cost as a function of samples 

• Vanishing gradients for low-bandwidth kernels

ℱ {f ∼ ℋ : | | f | |ℋ ≤ 1} ℋ k : 𝒳 × 𝒳 → ℝ



Follow-up Works



WGAN with Gradient Penalty

• Difficulties with weight constraints: 

• Optimization difficulties - Resulting critic can have a pathological value surface 

Value surface of WGAN critics

Weight clipping critic fail to

capture higher moments

Critic with Gradient Penalty



WGAN with Gradient Penalty

• A differentiable function is 1-Lipschitz iff it has gradients with norm at most 1 everywhere. 

• Stable training

Soft constraint



Sliced WGAN

• Wasserstein computation in dual involves solving saddle point problem 

• Another variant of Wasserstein uses random projections and is a single minimization 

•  Wasserstein:         W2
2(D, F) =

1
|F |

min
σ∈Σ|F|

|F|

∑
i=1

| |Dσ(i) − F | |2
2

Can be solved by sorting 

for 1D case

min
θ

1
|Ω̂ | ∑

ω∈Ω̂

W2
2(Dω, Fω)Sliced Wasserstein:

Random projection directions



Summary
• Introduced Wasserstein distances for GANs 

• Theoretical analysis of EM distance behavior in comparison to popular divergences 
like KL, JS 

• Define a form of GAN using duality : Wasserstein GAN  

• Meaningful loss metric for distributions 

• Stable training of GAN 

• Gets rid of issues like mode collapse 

• Experiments show stable learning of image generators 



Thank You!



Questions ?



Quiz Problems

• KL divergence 

• JS divergence 

• Total variation distance(TV) 

• Wasserstein distance (Earth-Mover)

According to the paper, which of the following gives a more sensible cost 
function for learning probability distribution that are supported in low 

dimensional submanifolds? 



Quiz Problems

• In WGAN, we can train the critic till optimality.   

• WGAN solves the mode collapse issue in GAN. 

• WGAN training is not stable when one uses momentum based 
optimizer or high learning rate. 

• All of the above. 

Which of the following statements is true:



Quiz Problems
Which of the following found to be true in empirical evaluation of WGANs?

• Experiments illustrate that Wasserstein estimates correlates well with the 
quality of the generated samples. 

• WGAN training is reported to be stable with Adam optimizer. 

• It is observed that WGANs are much more stable than GANs when one 
varies the generator architecture. 

• JS estimates follow the same correlation with image quality as the 
Wasserstein estimates.
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