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Goals

Learn about microarray technology
See some ML problem formulations
in the computational-biology literature
A little on experimental pitfalls to avoid
Overviews of newest “high-throughput” 
molecular-level data being gathered
Very little on the details of 
machine learning algorithms
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Outline

Molecular Biology and Microtechnology
Machine Learning Applications

Technological: Designing Microarrays
Medical: Predicting Disease (Diagnosis, 

Prognosis, & Treatment)
Biological: Constructing Pathway Models

Looking Ahead: Related Technologies
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Outline

Molecular Biology and Nanotechnology
Machine Learning Applications

Technological: Designing Microarrays
Medical: Predicting Disease (Diagnosis, 

Prognosis, & Treatment)
Biological: Constructing Pathway Models

Looking Ahead: Related Technologies
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Combining Three “Hot” Technologies

Information Technology

Biotechnology

“Nanotechnology”
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image from the DOE Human Genome Program
http://www.ornl.gov/hgmis
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The “Central Dogma” of Mol Bio
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The Big Picture

We’d like to know which proteins are 
present in a given type of cell, under 
some conditions, etc 

eg, cancerous vs. non-cancerous cells

However, currently can only measure 
RNA well
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probes

surface

Microarrays (“Gene Chips”)

Specific probes synthesized at
known spot on chip’s surface

Probes complementary to 
RNA of genes to be measured

Typical gene (1kb+) MUCH longer 
than typical probe (24 bases)

10

Microarray Technologies

Alternate technologies exist
(eg, “spotted arrays”)

We won’t cover them all

We’ll focus on the “market leader”
(Affymetrix)
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Probes (DNA)

Gene Chip Surface

Hybridization

Labeled Sample (RNA)

How Microarrays Work
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UV
light

DNA nucleotide

Photolabile protecting
group

DNA Synthesis can be 
Controlled by Light



13

UV
light

DNA Synthesis can be 
Controlled by Light (cont.)
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UV
light

DNA Synthesis can be 
Controlled by Light (cont.)
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DNA Synthesis can be 
Controlled by Light (concluded)

16

Example: NimbleGen, Inc

Maskless Array Synthesizer

DNA Chip being
written

Digital Light
Processor

Light (UV) SourceFilter

e:\illustrations\dna_chip_mirrors.fh8

From DNA
Synthesizer



17

Springtip

Micro Mirrors from TI
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From Probes Back to Genes

Need algorithm for converting 
measured probe intensities into 
gene-expression levels

Could simply use average probe value

More (too?) complicated approaches 
exist (eg, Affymetrix’)
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Cleaning Up the Data –
“Controlling Variance”

Often look at relative expression levels
Measurement(cancerCell) / Measurement(normalCell)

Often correct for small values
MeasurementToUse(Gene1)

= ActualMeasurement(Gene1) + Constant

Often use a mismatch (“near miss”) probe
MeasurementToUse(Probe1)

=    ActualMeasurement(Probe1) 
– ActualMeasurement(MismatchProbe1) 
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The Probe-Selection Task

Need to pick 5-15 probes for each gene 
we want to monitor

Recall, genes about 1000 “bases” long
Can only create probes about 24-bases long

Gene

Probes . . .
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Goals

Probes should bind tightly to target

Probes should not bind well to other
mRNAs … cross-hybridization
should be rare
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Probes: Good vs. Bad

good probe bad probe

Blue = Probe
Red = Sample
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Supervised Learning Task 1

Given: probes as examples

DNA sequence features describe each 
example; class is good or bad

Probe is good if it binds tightly to target 
and bad otherwise

Do: learn model that accurately predicts
probe-quality class of new probes
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The Data

Gene Sequence: GTAGCTAGCATTAGCATGGCCAGTCATG…

Complement: CATCGATCGTAATCGTACCGGTCAGTAC…

Probe 1: CATCGATCGTAATCGTACCGGTCA

Probe 2: ATCGATCGTAATCGTACCGGTCAG

Probe 3: TCGATCGTAATCGTACCGGTCAGT

… …

Tilings of 8 genes (from E. coli & B. subtilus)
Every possible probe (~10,000 probes)
Genes known to be “expressed” in sample
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Microarray that Created Examples
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The Features (Tobler et al., ISMB 2002)
Feature Name Description

fracA, fracC, fracG, fracT The fraction of A, C, G, or T in the 
24-mer

fracAA, fracAC, fracAG, fracAT, 
fracCA, fracCC, fracCG, fracCT, 
fracGA, fracGC, fracGG, fracGT,
fracTA, fracTC, fracTG, fracTT

The fraction of each of these dimers
in the 24-mer

n1, n2, …., n24 The particular nucleotide (A, C, G, or 
T) at the specified position in the 24-
mer

d1, d2, …, d23 The particular dimer (AA, AC,…TT) 
at the specified position in the 24-mer
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Information Gain per Feature
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0 99

Defining Categories

Normalized Probe Intensity

Low Intensity = 
BAD Probes 

(45%)

High Intensity = 
GOOD Probes 

(32%)

Mid-Intensity = 
Not Used in 
Training Set 

(23%)

Fr
eq

ue
nc

y

0 .05 .15 1.0
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The Machine Learning Techniques

Naïve Bayes (Mitchell 1997)

Neural Networks (Rumelhart et al. 1995)

Decision Trees (Quinlan 1996)

Can interpret predictions of each learner 
probabilistically
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Leave-One-Gene-Out X-Validation

Leave-one-gene-out testing:
For each gene (of the 8)

Train on all but this gene
Test on this gene
Record result
Forget what was learned

Average results across 8 test genes

In mol bio tasks, be carefully how you 
split into train and test sets!
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Typical Probe-Intensity 
Prediction Across Short Region
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Typical Probe-Intensity 
Prediction Across Short Region
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Probe-Picking Results
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Probe-Picking Results
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Two Views of Microarray Data

Data points are genes
Represented by expression levels across 
different samples (ie, features=samples)
Goal: categorize new genes

Data points are samples (eg, patients)
Represented by expression levels of 
different genes (ie, features=genes)
Goal: categorize new samples
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Two Ways to View The Data

 

Person   Gene       A28202_ac    AB00014_at    AB00015_at      . . .     
 
Person  1               1142.0                321.0             2567.2            . . .    
    
Person  2                 586.3                586.1               759.0            . . .    
 
Person  3                 105.2                559.3             3210.7            . . .    
 
Person  4                   42.8                692.1               812.0            . . .       
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
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Data Points are Genes

 

Person   Gene       A28202_ac    AB00014_at    AB00015_at      . . .     
 
Person  1               1142.0                321.0             2567.2            . . .    
    
Person  2                 586.3                586.1               759.0            . . .    
 
Person  3                 105.2                559.3             3210.7            . . .    
 
Person  4                   42.8                692.1               812.0            . . .       
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
 
 

 

40

Data Points are Samples

 

Person   Gene       A28202_ac    AB00014_at    AB00015_at      . . .     
 
Person  1               1142.0                321.0             2567.2            . . .    
    
Person  2                 586.3                586.1               759.0            . . .    
 
Person  3                 105.2                559.3             3210.7            . . .    
 
Person  4                   42.8                692.1               812.0            . . .       
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
 
.             .         .            .                      .                       .                  . . . 
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Supervision: Add Class Values

 

Person   Gene       A28202_ac    AB00014_at    AB00015_at  . . .       Class     
 
Person  1               1142.0                321.0             2567.2        . . .      normal    
    
Person  2                 586.3                586.1               759.0        . . .      cancer   
 
Person  3                 105.2                559.3             3210.7        . . .      normal   
 
Person  4                   42.8                692.1               812.0        . . .      cancer      
 
.             .         .            .                      .                       .              . . . 
 
.             .         .            .                      .                       .              . . . 
 
.             .         .            .                      .                       .              . . . 
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Supervised Learning Task 2

Given: a set of microarray experiments, each 
done with mRNA from a different patient
(same cell type from every patient) 

Patient’s expression values for each gene
constitute the features, and patient’s disease
constitutes the class

Do: Learn a model that accurately predicts
class based on features
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               Data Points are: 
       Genes                     Samples 

Clustering 
 
 
 
 
Supervised 
Data Mining 

Predict the class 
value for a patient 

based on the 
expression levels 
for his/her genes 

Location in Task Space
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Leukemia (Golub et al., 1999)

Classes
Acute Lymphoblastic Leukemia (ALL)
and Acute Myeloid Leukemia (AML)

Approach
Weighted voting (essentially naïve Bayes)

Cross-Validated Accuracy
Of 34 samples, declined to predict 5,
correct on other 29
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Cancer vs. Normal

Relatively easy to predict accurately, 
because so much goes “haywire” in  
cancer cells

Primary barrier is noise in the data… 
impure RNA, cross-hybridization, etc

Studies include breast, colon, prostate, 
lymphoma, and multiple myeloma
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X-Val Accuracies for Multiple 
Myeloma (74 MM vs. 31 Normal)

 

Trees 

Boosted Trees 

      SVMs 

       Vote 

  Bayes Nets 

  98.1 

  99.0 

100.0 

 97.0 

100.0 
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Prognosis and Treatment

Features same as for diagnosis

Rather than disease state, class value
becomes life expectancy with a given 
treatment (or positive response vs. 
no response to given treatment)
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Breast Cancer Prognosis
(Van’t Veer et al., 2002)

Classes
good prognosis (no metastasis within
five years of initial diagnosis)  vs. poor prognosis

Algorithm
Ensemble of voters

Results
83% cross-validated accuracy on 78 cases
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A Lesson

Previous work selected features to use in  
ensemble by looking at the entire data set
Should have repeated feature selection on 
each cross-val fold
Authors also chose ensemble size by seeing 
which size gave highest cross-val result
Authors corrected this in web supplement;
accuracy went from 83% to 73%
Remember to “tune parameters” separately 
for each cross-val fold!
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Prognosis with Specific Therapy 
(Rosenwald et al., 2002)

Data set contains gene-expression 
patterns for 160 patients with diffuse 
large B-cell lymphoma, receiving 
anthracycline chemotherapy
Class label is five-year survival
One test-train split 80/80
True positive rate:   60% 
False negative rate: 39%
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Some Future Directions

Using gene-chip data to select therapy
Predict which therapy gives 
best prognosis for patient

Comparing cancer with related benign 
conditions, rather than with normal 

Tougher, but may give more insight
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Unsupervised Learning Task 1

Given: a set of microarray experiments 
under different conditions

Do: cluster the genes, where a gene 
described by its expression levels in  
different experiments
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               Data Points are: 
       Genes                     Samples 

Clustering 
 
 
 
 
Supervised 
Data Mining 

Group genes into 
clusters, where all 

members of a 
cluster tend to go 

up or down together 

Location in Task Space
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Example
(Green = up-regulated, Red = down-regulated)

G
en

es

Experiments (Samples)
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Visualizing Gene Clusters 
(eg, Sharan and Shamir, 2000)

Time (10-minute intervals)

N
o

rm
al

iz
ed

ex
p

re
ss

io
n

Gene Cluster 1, size=20 Gene Cluster 2, size=43
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Unsupervised Learning Task 2

Given: a set of microarray experiments 
(samples) corresponding to different 
conditions or patients

Do: cluster the experiments
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               Data Points are: 
       Genes                     Samples 

Clustering 
 
 
 
 
Supervised 
Data Mining 

Group samples by 
gene expression 

profile 

Location in Task Space
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Examples

Cluster samples from mice subjected to 
a variety of toxic compounds 
(Thomas et al., 2001)

Cluster samples from cancer patients, 
potentially to discover different 
subtypes of a cancer
Cluster samples taken at different 
time points
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Some Biological Pathways

Regulatory pathways
Nodes are labeled by genes
Arcs denote influence on transcription
G1 codes for P1, P1 inhibits G2’s transcription

Metabolic pathways
Nodes are metabolites, large biomolecules (eg, 
sugars, lipids, proteins and modified proteins)
Arcs from biochemical reaction inputs to outputs
Arcs labeled by enzymes (themselves proteins)
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Metabolic Pathway Example

Fumarate

Malate

Oxaloacetate

Citrate cis-Aconitate

Isocitrate

α-Ketoglutarate

Succinyl-CoA
Succinate

fumarase

succinate thikinase

MDH

citrate synthase aconitase

IDH

α-KDGH

FAD

FADH2

H20

NAD+

NADH

Acetyl CoA
HSCoA

H20

H20

NAD+

NADH + CO2

NAD+ + HSCoA

NADH + CO2

GDP + PiGTP
+ HSCoA

(Krebs Cycle,

TCA Cycle,

Citric Acid Cycle)

62

Regulatory Pathway (KEGG)
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Using Microarray Data Only

Regulatory pathways
Nodes are labeled by genes
Arcs denote influence on transcription
G1 codes for P1, P1 inhibits G2’s transcription

Metabolic pathways
Nodes are metabolites, large biomolecules (eg, 
sugars, lipids, proteins, and modified proteins)
Arcs from biochemical reaction inputs to outputs
Arcs labeled by enzymes (themselves proteins)
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Supervised Learning Task 3

Given: a set of microarray experiments 
for same organism under different 
conditions

Do: Learn graphical model that 
accurately predicts expression of some 
genes in terms of others
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Some Approaches to 
Learning Regulatory Networks

Bayes Net Learning 
(Friedman & Halpern, 1999)

Boolean Networks (Akutsu, Kuhara, Maruyama 
& Miyano, 1998; Ideker, Thorsson & Karp, 2002)

Related Graphical Approaches 
(Tanay & Shamir, 2001; Chrisman, Langley, Baay & 
Pohorille, 2003)
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Note: direction of arrow
indicates dependence
not causality

P(geneA)

P(geneB)

P(
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parent node
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Problem: Not Causality

A  B

A is a good predictor of B.  But is A regulating B??

Ground truth might be:

B  A A  C B

B  C A

B

C

A Or a more complicated variant
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Approaches to Get Causality

Use “knock-outs” (Pe’er, Regev, Elidan and 
Friedman, 2001). But not available in most 
organisms.
Use time-series data and Dynamic Bayesian 
Networks (Ong, Glasner and Page, 2002). But 
even less data typically.
Use other data sources, eg sequences 
upstream of genes, where transcription 
regulators may bind.  (Segal, Barash, Simon, 
Friedman and Koller, 2002).
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R

Transcription Regulation

DNA

geneA geneB geneCP TO

Operon

geneRP O T

Operon OperonOperon

R

mRNA
mRNA
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Another Way Around Limitations

Identify smaller part of the task that is 
a step toward a full regulatory pathway

Part of a pathway
Classes or groups of genes

Example: 
Predicting the operons in E. coli
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The E. Coli Genome
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Finding Operons in E. coli
(Craven, Page, Shavlik, Bockhorst and Glasner, 2000)

Given: known operons and other E. coli data

Do: predict all operons in E. coli

Additional Sources of Information
gene-expression data
functional annotation

g1

g2 g3
g5

g4

promoter terminator
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Comparing Naive Bayes 
and Decision Trees (C5.0)

74

Using Only Individual Features
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Single-Nucleotide Polymorphisms

SNPs: Individual positions in DNA where
variation is common

Now 1.8 million known SNPs in humans

Easier/faster/cheaper to measure SNPs
than to completely sequence everyone

Motivation …
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Not Succeptible or Not Responding

Succeptible to Disease D or Responds to Treatment T

If We Sequenced Everyone…
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Example of SNP Data

 

Person   SNP               1                       2                     3             . . .    CLASS 
 
Person  1                  C      T            A        G          T         T       . . .     old 
 
Person  2                  C      C           A        G          C         T       . . .     young 
 
Person  3                  T       T           A        A           C         C       . . .     old 
 
Person  4                  C       T          G       G           T          T       . . .     young 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
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Phasing (Haplotyping)
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Advantages of SNP Data

Person’s SNP pattern does not change 
with time or disease, so it can give 
more insight into susceptibility

Easier to collect samples (can simply 
use blood rather than affected tissue)
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Challenges of SNP Data

Unphased
Algorithms exist for phasing (haplotyping), 
but they make errors and typically need 
related individuals, dense coverage

Missing values are more common 
than in microarray data
More expensive than microarray data if 
we want similar level of completeness
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Example

Multiple Myeloma, 3000 SNPs, 
Young (susceptible) vs. Old (less susceptible)
SVMlight with feature selection 
(repeated on every fold of cross-validation)
Result significantly better than chance

Old

Young

Old Young

Actual
31 9

14 26
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Proteomics

Microarrays are useful primarily because 
mRNA concentrations serve as surrogate for 
protein concentrations
Like to measure protein concentrations 
directly, but at present cannot do so in
same high-throughput manner
Proteins do not have obvious direct 
complements
Could build molecules that bind, but binding 
greatly affected by protein structure
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Time-of-Flight (TOF) 
Mass Spectrometry

Laser

+V
Sample

Measures the time for an 
ionized particle, starting 
from the sample plate, to 
hit the detector

Detector
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Time-of-Flight (TOF) 
Mass Spectrometry 2

Laser

+V
Sample

Matrix-Assisted Laser 
Desorption-Ionization
(MALDI) 
Crystalloid structures 
made using proton-
rich matrix molecule
Hitting crystalloid with 
laser causes molecules 
to ionize and “fly” 
towards detector

Detector
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Time-of-Flight Demonstration 0

Sample Plate
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Time-of-Flight Demonstration 1

Matrix Molecules

88

Time-of-Flight Demonstration 2

Protein Molecules
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Time-of-Flight Demonstration 3

Laser
Detector

+10KV
Positive Charge
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Time-of-Flight Demonstration 4

+10KV

+

Proton kicked off matrix 
molecule onto another 
molecule

Laser pulsed directly 
onto sample
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Time-of-Flight Demonstration 5

+10KV

+
+

+

+ +

Lots of protons kicked 
off matrix ions, giving 
rise to more positively 
charged molecules
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Time-of-Flight Demonstration 6

+10KV

+
+

+

+ +

The high positive 
potential under sample 
plate, causes 
positively charged 
molecules to 
accelerate towards 
detector
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Time-of-Flight Demonstration 7

+10Kv

+

+

+

+

+

+

Smaller mass 
molecules hit detector 
first, while heavier 
ones detected later
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Time-of-Flight Demonstration 8

+10KV

+

+

+

+

+

+

The incident time
measured from 
when laser is 
pulsed until 
molecule hits 
detector
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Time-of-Flight Demonstration 9

+10KV

++ + + ++

Experiment repeated a 
number of times, counting 
frequencies of “flight-times”
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Example Spectra from Duke

These are different 
fractions from the same 
sample.

M/Z

In
te

n
si

ty
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Trypsin-Treated Spectra

M/Z

F
re

q
u

en
cy
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Challenges of Proteomics Data

Noise
M/Z values may not align exactly across 
spectra (resolution ~0.1%)
Intensities not calibrated across spectra

Must identify proteins from “signatures” 
… best results if proteins broken down
Cannot get all proteins… typically 
several hundred
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Peak Picking

Want to pick peaks that are statistically 
significant from the noise signal

• Fortunately, data from 
Duke had peaks picked 
from spectra already

• Page Group working on 
a peak-picking algorithm

• Want sensitivity to 
peaks, while filtering out 
peaks tdue to noise

Want to use these as 
features in our 
learning algorithms.
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Metabolomics

Measures concentration of each low-
molecular weight molecule in sample

These typically are “metabolites,” or 
small molecules produced or consumed 
by reactions in biochemical pathways

These reactions typically catalyzed by 
proteins (specifically, enzymes)
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Lipomics

Analogous to metabolomics, but 
measuring concentrations of lipids
rather than metabolites

Potentially help induce biochemical 
pathway information or to help 
disease diagnosis or treatment choice

102

Final Wrapup

Molecular biology collecting lots and lots of 
data in post-genome era

Opportunity to “connect” molecular-level 
information to diseases and treatment

Need analysis tools to interpret

Machine learning opportunities abound

Hopefully this tutorial provided solid start 
toward applying ML to biological data
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Some Additional Readings

Molla, Waddell, Page & Shavlik, 
Using Machine Learning to Design and 
Interpret Gene-Expression Microarrays
(to appear in the AI Magazine special 
issue on Bioinformatics) 

Special issue of Machine Learning
journal (Volume 52:1/2, 2003) on 
Machine Learning in the Genomics Era

104
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Some Useful Datasets             Brief Description
www.ebi.ac.uk/arrayexpress/ EBI microarray data repository

www.ncbi.nlm.nih.gov/geo/ NCBI microarray data  repository

genome-www5.stanford.edu/MicroArray/SMD/ Stanford microarray database 

rana.lbl.gov/EisenData.htm Eisen-lab’s yeast data, (Spellman et al. 1998)

www.genome.wisc.edu/functional/microarray.htm University of Wisconsin E. coli Genome Project

llmpp.nih.gov/lymphoma/data.shtml Diffuse large B-cell lymphoma   (Alizadeh et al. 2000)

llmpp.nih.gov/DLBCL/ Molecular profiling (Rosenwald et al. 2002)

www.rii.com/publications/2002/vantveer.htm Breast cancer prognosis (Van't Veer et al. 2002)

www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi MIT Whitehead Center for Genome
Research, including data in Golub et al. (1999)

lambertlab.uams.edu/publicdata.htm Lambert Laboratory data for multiple myeloma

www.cs.wisc.edu/~dpage/kddcup2001/ KDD Cup 2001 data; Task 2 includes correlations
in genes’ expression levels

clinicalproteomics.steem.com/ Proteomics data (mass spectrometry of proteins)

snp.cshl.org/ Single nucleotide polymorphism (SNP) data
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