University of Wisconsin Computer Sciences Header Map (repeated with 
textual links if page includes departmental footer) Useful Resources Research at UW-Madison CS Dept UW-Madison CS Undergraduate Program UW-Madison CS Graduate Program UW-Madison CS People Useful Information Current Seminars in the CS Department Search Our Site UW-Madison CS Computer Systems Laboratory UW-Madison Computer Sciences Department Home Page UW-Madison Home Page

F. DiMaio & J. Shavlik (2004).
Learning an Approximation to Inductive Logic Programming Clause Evaluation. Proceedings of the Fourteenth International Conference on Inductive Logic Programming, pp. 80-97, Porto, Portugal.
Slides (PPT).



This publication is available in PDF and available in Microsoft Word.

The slides for this publication are available in Microsoft PowerPoint.

Abstract:

One challenge faced by many Inductive Logic Programming (ILP) systems is poor scalability to problems with large search spaces and many examples. Randomized search methods such as stochastic clause selection (SCS) and rapid random restarts (RRR) have proven somewhat successful at addressing this weakness. However, on datasets where hypothesis evaluation is computationally expensive, even these algorithms may take unreasonably long to discover a good solution. We attempt to improve the performance of these algorithms on datasets by learning an approximation to ILP hypothesis evaluation. We generate a small set of hypotheses, uniformly sampled from the space of candidate hypotheses, and evaluate this set on actual data. These hypotheses and their corresponding evaluation scores serve as training data for learning an approximate hypothesis evaluator. We outline three techniques that make use of the trained evaluation-function approximator in order to reduce the computation required during an ILP hypothesis search. We test our approximate clause evaluation algorithm using the popular ILP system Aleph. Empirical results are provided on several benchmark datasets. We show that the clause evaluation function can be accurately approximated.


return Return to the publications of the Univ. of Wisconsin Machine Learning Research Group.

Computer Sciences Department
College of Letters and Science
University of Wisconsin - Madison


INFORMATION ~ PEOPLE ~ GRADS ~ UNDERGRADS ~ RESEARCH ~ RESOURCES

5355a Computer Sciences and Statistics ~ 1210 West Dayton Street, Madison, WI 53706
cs@cs.wisc.edu ~ voice: 608-262-1204 ~ fax: 608-262-9777