R. Maclin & J. Shavlik (1992).
Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 165-170, San Jose, CA.
This publication is available in PDF and available in postscript.
Abstract:
We describe a method for using machine learning to refine algorithms represented as generalized finite-state automata. The knowledge in an automaton is translated into an artificial neural network, and then refined with backpropagation on a set of examples. Our technique for translating an automaton into a network extends KBANN, a system that translates a set of propositional rules into a corresponding neural network. The extended system, FSKBANN, allows one to refine the large class of algorithms that can be represented as state-based processes. As a test, we use FSKBANN to refine the Chou-Fasman algorithm, a method for predicting how globular proteins fold. Empirical evidence shows the refined algorithm FSKBANN produces is statistically significantly more accurate than both the original Chou-Fasman algorithm and a neural network trained using the standard approach.
Computer Sciences Department
College of Letters and Science
University of Wisconsin - Madison
INFORMATION
~ PEOPLE
~ GRADS
~ UNDERGRADS
~ RESEARCH
~ RESOURCES
5355a Computer Sciences and Statistics ~ 1210 West Dayton Street, Madison,
WI 53706
cs@cs.wisc.edu ~ voice: 608-262-1204 ~
fax: 608-262-9777