R. Maclin & J. Shavlik (1993).
Using Knowledge-based Neural Networks To Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.
Machine Learning, 11, pp. 195-215.
This publication is available remotely and available in postscript.
Abstract:
This paper describes a connectionist method for refining algorithms represented as generalized finite-state automata. The method translates the rule-like knowledge in an automaton into a corresponding artificial neural network, and then refines the reformulated automaton by applying backpropagation to a set of examples. This technique for translating an automaton into a network extends the KBANN algorithm, a system that translates a set of propositional rules into a corresponding neural network. The extended system, FSKBANN, allows one to refine the large class of algorithms that can be represented as state-based processes. As a test, FSKBANN is used to improve the Chou-Fasman algorithm, a method for predicting how globular proteins fold. Empirical evidence shows that the multistrategy approach of FSKBANN leads to a statistically significantly more accurate solution than both the original Chou-Fasman algorithm and a neural network trained using the standard approach. Extensive statistics report the types of errors made by the Chou-Fasman algorithm, the standard neural network, and by the FSKBANN network.
Computer Sciences Department
College of Letters and Science
University of Wisconsin - Madison
INFORMATION
~ PEOPLE
~ GRADS
~ UNDERGRADS
~ RESEARCH
~ RESOURCES
5355a Computer Sciences and Statistics ~ 1210 West Dayton Street, Madison,
WI 53706
cs@cs.wisc.edu ~ voice: 608-262-1204 ~
fax: 608-262-9777