University of Wisconsin Computer Sciences Header Map (repeated with 
textual links if page includes departmental footer) Useful Resources Research at UW-Madison CS Dept UW-Madison CS Undergraduate Program UW-Madison CS Graduate Program UW-Madison CS People Useful Information Current Seminars in the CS Department Search Our Site UW-Madison CS Computer Systems Laboratory UW-Madison Computer Sciences Department Home Page UW-Madison Home Page

David W. Opitz (1995).
An Anytime Approach to Connectionist Theory Refinement: Refining the Topologies of Knowledge-Based Neural Networks. PhD thesis, Department of Computer Sciences, University of Wisconsin-Madison.
(Also appears as UW Technical Report CS-TR-95-1281)(
Data.

This publication is available in PDF and available in postscript.

The data associated with this publication is available online.

Abstract:

Many scientific and industrial problems can be better understood by learning from samples of the task at hand. For this reason, the machine learning and statistics communities devote considerable research effort on generating inductive-learning algorithms that try to learn the true ``concept'' of a task from a set of its examples. Often times, however, one has additional resources readily available, but largely unused, that can improve the concept that these learning algorithms generate. These resources include available computer cycles, as well as prior knowledge describing what is currently known about the domain. Effective utilization of available computer time is important since for most domains an expert is willing to wait for weeks, or even months, if a learning system can produce an improved concept. Using prior knowledge is important since it can contain information not present in the current set of training examples.
In this thesis, I present three ``anytime'' approaches to connectionist theory refinement. Briefly, these approaches start by translating a set of rules describing what is currently known about the domain into a neural network, thus generating a knowledge-based neural network (KNN). My approaches then utilize available computer time to improve this KNN by continually refining its weights and topology. My first method, TopGen, searches for good ``local'' refinements to the KNN topology. It does this by adding nodes to the KNN in a manner analogous to symbolically adding rules and conjuncts to an incorrect rule base. My next approach, REGENT, uses genetic algorithms to find better ``global'' changes to this topology. REGENT proceeds by using (a) the domain-specific rules to help create the initial population of KNNs and (b) crossover and mutation operators specifically designed for KNNs. My final algorithm, ADDEMUP, searches for an ``ensemble'' of KNNs that work together to produce an effective composite prediction. ADDEMUP works by using genetic algorithms to continually create new networks, keeping the set of networks that are as accurate as possible while disagreeing with each other as much as possible. Empirical results show that these algorithms successfully achieve each of their respective goals.


return Return to the publications of the Univ. of Wisconsin Machine Learning Research Group.

Computer Sciences Department
College of Letters and Science
University of Wisconsin - Madison


INFORMATION ~ PEOPLE ~ GRADS ~ UNDERGRADS ~ RESEARCH ~ RESOURCES

5355a Computer Sciences and Statistics ~ 1210 West Dayton Street, Madison, WI 53706
cs@cs.wisc.edu ~ voice: 608-262-1204 ~ fax: 608-262-9777