
CS 540 (Shavlik) HW 2 – Ensembles and Searching for Solutions

Assigned: 9/27/2016
Due: 10/13/2016 (not accepted after 11:55pm on 10/20/2016)
Points: 100

1) (20 points) Extend your HW1 code for decision-tree learning to the ensemble method called
‘bagging.’ (Email TA Sam if you did not get your HW1 code to work properly and he’ll
provide some ID3 code for your use. Please do not share this code with anyone else.)

Note that we will not be doing the full random-forests approach described in class. Instead,
we will only do the part where we use ‘copied with replacement’ replicates of the training
set. Such datasets are often called “bootstrap” replicates; see
https://en.wikipedia.org/wiki/Bootstrapping_(statistics) if you are curious. (If you are a CS
graduate student, I recommend you also implement the part of random forests where at each
call to ID3, including recursive ones, you first randomly select i features and then select the
one of these with the highest information gain. This will not impact your grade, though.)

We will not be running your code during grading, but we want you to turn it in as HW2.java.
I suggest you copy your HW1.java file and then edit it. Add some reasonable comments.
The explanation below talks about the possible outputs being “lowToMid” and
“midToHigh.” This is done for clarity, but aim to write your code to work for any two output
labels, for tune and test sets of any (non-negative) size, and for any (odd-numbered and
positive) size of the forest (ie, the ‘101’ below).

Here is what you need to do:

a. Copy the 101 ‘copied with replacement’ replicates of the training set from
http://pages.cs.wisc.edu/~shavlik/cs540/HWs/HW2/wine-bagged-unzipped/

b. There is also a *zip file (http://pages.cs.wisc.edu/~shavlik/cs540/HWs/HW2/wine-
bagged.zip) that contains all 101 files; it might be easier to copy this to your computer
and then unzip. Be sure to note the repeated pattern in the file names, which makes
reading 101 files much easier. Hint: use a FOR LOOP from 1 to 101.

c. Copy the TUNE set from
http://pages.cs.wisc.edu/~shavlik/cs540/HWs/HW0/red-wine-quality-tune.data

d. Copy the TEST set from
http://pages.cs.wisc.edu/~shavlik/cs540/HWs/HW0/red-wine-quality-test.data

e. Train ID3 on all 101 replicated trainsets (you’ll probably want to turn printing off!).
f. Collect the predictions of the 101 trees on each of the 298 tune-set and 298 test-set

examples. Store these in your code, e.g. in two 2D arrays where array cell i,j holds
the predicted output of tree i on tune-set (test-set) example j. Store the predictions
(i.e., lowToMid or midToHigh), rather than if the prediction was correct. This will
make the next step easier.

g. Compute and plot the accuracy of the following ‘combination rule’ for L in 1, 3, 5, 7,
…, 99, 101 (i.e., all odd-numbered values from 1 to 101) for both the tune set and the
test set:

https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
http://pages.cs.wisc.edu/%7Eshavlik/cs540/HWs/HW2/wine-bagged-unzipped/
http://pages.cs.wisc.edu/%7Eshavlik/cs540/HWs/HW2/wine-bagged.zip
http://pages.cs.wisc.edu/%7Eshavlik/cs540/HWs/HW2/wine-bagged.zip
http://pages.cs.wisc.edu/%7Eshavlik/cs540/HWs/HW0/red-wine-quality-tune.data
http://pages.cs.wisc.edu/%7Eshavlik/cs540/HWs/HW0/red-wine-quality-test.data

If at least L of the 101 learned trees predict lowToMid then output lowToMid
otherwise output midToHigh

I assume everyone has access to either Microsoft Office or wants to use the free
Google Docs, but hand-plotting is ok. Be sure to label you axes.

Note you are creating two curves (but plot both in the same figure so you can visually
compare them), one for the tune-set accuracy and one for the test-set accuracy.
Clearly mark the location of the BEST tune-set results (if ties, use the smallest L, in
an application of Occam’s Razor).

Discuss (1) how much, if at all, bagging helped, (2) how much, if at all, it helped to
use a tune set (compared to simply using a majority vote, i. e., L=51), and (3) how
well the tune set selected the best L for the test set. Note that the tune set is an
independent sample of the original dataset and does not overlap the train nor test sets.
(If you did not get HW0 to work, assume that an unpruned decision tree on this task
would get 75% test-set accuracy.)

Notice that in Part 1e we created two ‘predictions’ arrays. Use them here, rather
than, for each value of L, having the 101 decision trees process the tune and test sets
anew.

h. Turn in your plot and (ideally, typed) discussion in the file HW2_part1.pdf

The remaining questions on this homework are “paper and pencil” ones, but you need to turn
in the PDF file HW2_part2_part3_part4.pdf.

2) (60 points) Consider the search space below, where S is the start node and G1 and G2 satisfy
the goal test. Arcs are labeled with the cost of traversing them and the estimated cost to a
goal (i.e., the h function) is reported inside nodes (so lower scores are better).

For each of the following search strategies, indicate which goal state is reached (if any) and
list, in order, all the states popped off of the OPEN list. When all else is equal, nodes
should be removed from OPEN in alphabetical order.

Show your work using the columns headers used in the lecture notes.

(a) Breadth First
(b) Depth First
(c) Iterative Deepening
(d) Uniform Cost (i.e., using f = g)
(e) Best-First (using f = h)
(f) Best-First (using f = g + h)
(g) Beam Search (with beam width = 2 and f = h)
(h) Hill Climbing (using the h function only) // Be sure to notice part (i) below.

(i) Is this h function admissible? Explain your answer.

General Pseudocode for Searching (for use with Problem 2)

The following is the basic outline for the various search algorithms (some steps need to be
modified depending on the specifics of the search being used).

OPEN = { startNode } // Nodes under consideration.
CLOSED = { } // Nodes that have been expanded.
While OPEN is not empty

{ Remove the first item from OPEN. Call this item X.
If goalState?(X) return the solution found.

// Expand node X if it isn’t a goal state.

Add X to CLOSED.
Generate the immediate neighbors (i.e., children) of X.
Eliminate those children already in OPEN or CLOSED.
Based on the search strategy, insert the remaining
 children into OPEN.

}
Return FAILURE // Failed if OPEN exhausted w/o a goal found.

G2
 0

G1
 0

 D
 5

 E
 5

4

3

1

6

4

3

2

2

3

 B
 2

3

2

4

8

3

5 F
 3

 C
 2

 J
 1

4

 S
 9

 A
 6

3) (10 points) Using the same search space as in Problem 2, consider using Simulated
Annealing as your search strategy. Assume the current temperature is 100. Remember to
negate the node scores since Simulated Annealing goes “uphill” in the textbook.

(a) If you are at Node C and simulated annealing has randomly selected node J for

consideration, what is the probability this node is accepted?

(b) If you are at Node C and simulated annealing has randomly selected node F for

consideration, what is the probability this node is accepted?

4) Game Playing (10 points)

(a) Apply the minimax algorithm to the partial game tree below, where it is the

minimizer’s turn to play and the game does not involve randomness. The values
estimated by the static-board evaluator (SBE) are indicated in the leaf nodes (lower
scores are better for the minimizer). Write the estimated values of the intermediate
nodes inside their circles, and indicate the proper move of the minimizer by circling
one of the root’s outgoing arcs.

(b) List one (1) leaf node in the above game tree whose SBE score need not be computed.

Explain why.

 -5 -9

 6 7

 8
 -4 -2

8

 4

	(a) Breadth First
	(b) Depth First
	(c) Iterative Deepening
	(d) Uniform Cost (i.e., using f = g)
	(e) Best-First (using f = h)
	(f) Best-First (using f = g + h)
	F
	J
	G2
	G1
	B

	3) (10 points) Using the same search space as in Problem 2, consider using Simulated Annealing as your search strategy. Assume the current temperature is 100. Remember to negate the node scores since Simulated Annealing goes “uphill” in the textbook.
	(a) If you are at Node C and simulated annealing has randomly selected node J for consideration, what is the probability this node is accepted?
	(b) If you are at Node C and simulated annealing has randomly selected node F for consideration, what is the probability this node is accepted?

