HW2 Solution ### 2a - breadth first | step | open | closed | x | children | rem children | |------|----------|--------|----|----------|--------------| | 1 | S | | s | ACD | ACD | | 2 | ACD | S | Α | B G1 | B G1 | | 3 | CDBG1 | SA | С | BDFJ | FJ | | 4 | DBG1FJ | SAC | D | E | Е | | 5 | BG1FJE | SACD | В | G1 | | | 6 | G1 F J E | SACDB | G1 | | | # 2b - depth first | step | open | closed | x | children | rem children | |------|----------|--------|----|----------|--------------| | 1 | S | | S | ACD | ACD | | 2 | ACD | S | Α | B G1 | B G1 | | 3 | B G1 C D | SA | В | G1 | | | 4 | G1 C D | SAB | G1 | | | # 2c - iterative deepening note: no need to use closed for iterative deepening since the depth limit will handle loops ## k=0 | step | open | closed | x | children | rem children | |------|------|--------|---|-------------|--------------| | 1 | S | | s | none at k=0 | | ### k=1 | step | open | closed | x | children | rem children | |------|------|--------|---|-------------|--------------| | 1 | S | | S | ACD | ACD | | 2 | ACD | S | Α | none at k=1 | | | 3 | CD | SA | С | none at k=1 | | | 4 | D | SAC | D | none at k=1 | | #### k=2 | step | open | closed | x | children | rem children | |------|----------|--------|----|-------------|--------------| | 1 | S | | s | ACD | ACD | | 2 | ACD | S | Α | B G1 | B G1 | | 3 | B G1 C D | SA | В | none at k=2 | | | 4 | G1 C D | SAB | G1 | | | # 2d - uniform cost (i.e, using f=g) note: you should keep track of parents for all searches, since they are needed to produce the solution path, but we'll only do so for Uniform Cost due to the clutter | step | open | closed | x | children | rem | |------|---|--|-----------------------------|---|---| | 1 | S ₀ | | S ₀ | AS ₄ CS ₃ DS ₁ | AS ₄ CS ₃ DS ₁ | | 2 | DS ₁ CS ₃ AS ₄ | S ₀ | DS ₁ | ED ₄ | ED ₄ | | 3 | CS ₃ AS ₄ ED ₄ | S ₀ D ^S ₁ | CS3 | $B_{5}^{c} D_{5}^{c} E_{5}^{c} J_{7}^{c}$ | $\mathrm{BC}_5\mathrm{FC}_5\mathrm{JC}_7$ | | 4 | AS ₄ ED ₄ BC ₅ FC ₅ JC ₇ | S ₀ DS ₁ CS ₃ | AS ₄ | BA ₇ G1A ₁₂ | G1 ^A ₁₂ | | 5 | E ^D ₄ B ^C ₅ F ^C ₅ J ^C ₇ G1 ^A ₁₂ | S ₀ DS ₁ CS ₃ AS ₄ | ED ₄ | FE ₇ G2E ₁₀ | G2 ^E ₁₀ | | 6 | B ^C ₅ F ^C ₅ J ^C ₇ G1 ^A ₁₂ G2 ^E ₁₀ | $S_0 D_{1} C_{3} A_{4} E_{4}$ | BC ₅ | G1 ^B ₉ | G1 ^B ₉ | | 7 | F ^C ₅ J ^C ₇ G1 ^B ₉ G2 ^E ₁₀ | $S_0 D_{1} C_{3} A_{4} E_{4} B_{5}$ | FC ₅ | G2F ₉ | G2 ^F ₉ | | 8 | J ^C ₇ G1 ^B ₉ G2 ^F ₉ | S ₀ DS ₁ CS ₃ AS ₄ ED ₄ BC ₅ FC ₅ | J ^C ₇ | FJ ₁₂ G1J ₁₀ | | | 9 | G1 ^B ₉ G2 ^F ₉ | $S_0 D_{1} C_{3} A_{4} E_{4} B_{5} F_{5} J_{7}$ | G1 ^B 9 | | | # 2e - best-first (using f=h) | step | open | closed | x | children | rem children | |------|---|-------------------------------|-----------------|---|--| | 1 | S ₉ | | S ₉ | A ₆ C ₂ D ₅ | A ₆ C ₂ D ₅ | | 2 | C ₂ D ₅ A ₆ | S ₉ | C ₂ | B ₂ D ₅ F ₃ J ₁ | B ₂ F ₃ J ₁ | | 3 | J ₁ B ₂ F ₃ D ₅ A ₆ | S ₉ C ₂ | J ₁ | F ₃ G1 ₀ | G1 ₀ | | 4 | G1 ₀ B ₂ F ₃ D ₅ A ₆ | $S_9 C_2 J_1$ | G1 ₀ | | | ## 2f - best-first (using f=g+h) | step | open | closed | x | children | rem | |------|---|----------------|----------------|---|---| | 1 | S ₉ | | S ₉ | A ₄₊₆ C ₃₊₂ D ₁₊₅ | A ₁₀ C ₅ D ₆ | | 2 | C ₅ D ₆ A ₁₀ | S ₉ | C ₅ | B ₅₊₂ D ₅₊₅ F ₅₊₃ J ₇₊₁ | B ₇ F ₈ J ₈ | | step | open | closed | x | children | rem | |------|---|--|-----------------|--------------------------------------|-----------------| | 3 | D ₆ B ₇ F ₈ J ₈ A ₁₀ | S ₉ C ₅ | D ₆ | E ₄₊₅ | E ₉ | | 4 | B ₇ F ₈ J ₈ E ₉ A ₁₀ | S ₉ C ₅ D ₆ | B ₇ | G1 ₉₊₀ | G1 ₉ | | 5 | F ₈ J ₈ E ₉ G1 ₉ A ₁₀ | $S_9 C_5 D_6 B_7$ | F ₈ | G2 ₉₊₀ | G2 ₉ | | 6 | J ₈ E ₉ G1 ₉ G2 ₉ A ₁₀ | $S_9 C_5 D_6 B_7 F_8$ | J ₈ | F ₁₂₊₃ G1 ₁₀₊₀ | | | 7 | E ₉ G1 ₉ G2 ₉ A ₁₀ | S ₉ C ₅ D ₆ B ₇ F ₈ J ₈ | E ₉ | F ₇₊₃ G2 ₁₀₊₀ | | | 8 | G1 ₉ G2 ₉ A ₁₀ | S ₉ C ₅ D ₆ B ₇ F ₈ J ₈ E ₉ | G1 ₉ | | | ## 2g - beam search (with beam width=2 and f=h) | step | open | closed | x | children | rem children | |------|--|-------------------------------|-----------------|---|--| | 1 | S ₉ | | S ₉ | A ₆ C ₂ D ₅ | A ₆ C ₂ D ₅ | | 2 | C ₂ D ₅ A ₆ | S ₉ | C ₂ | B ₂ D ₅ F ₃ J ₁ | B ₂ F ₃ J ₁ | | 3 | J ₁ B ₂ F₃ D₅ | S ₉ C ₂ | J ₁ | F ₃ G1 ₀ | F ₃ G1 ₀ | | 4 | G1 ₀ B ₂ F ₃ | $S_9 C_2 J_1$ | G1 ₀ | | | ## 2h - hill climbing (using the h function only) | step | open | closed | x | children | rem children | |------|---|--|-----------------|---|---| | 1 | S ₉ | | S ₉ | A ₆ C ₂ D ₅ | A ₆ C ₂ D ₅ | | 2 | C ₂ D ₅ A ₆ | S ₉ | C ₂ | B ₂ D ₅ F ₃ J ₁ | B ₂ D ₅ F ₃ J ₁ | | 3 | J ₁ B ₂ F ₃ D ₅ | S ₉ C ₂ | J ₁ | F ₃ G1 ₀ | F ₃ G1 ₀ | | 4 | G1 ₀ F ₃ | S ₉ C ₂ J ₁ | G1 ₀ | | | ## 2i - admissibility This h function is admissible. For all nodes n, $h(n) \le h^*(n)$, where $h^*(n)$ is the actual cost to reach the goal from node n. | Node | h | h* | |------|---|----| | S | 9 | 9 | | Α | 6 | 7 | | В | 2 | 4 | | С | 2 | 6 | | D | 5 | 9 | | Node | h | h* | |------|---|----| | E | 5 | 6 | | F | 3 | 4 | | J | 1 | 3 | #### 3a The temperature is 100 The score at node **C** is -2 The score at node **J** is -1 Since the score of $\bf J$ is greater than the score of $\bf C$, simulated annealing would accept $\bf J$ with a probability of 1. #### 3b The temperature is 100 The score at node **C** is -2 The score at node **F** is -3 Since the score of ${\bf F}$ is **not** greater than the score of ${\bf C}$, simulated annealing would accept ${\bf F}$ with the probability of: $$e (score(F) - score(C)) / temperature = e (-3 - -2) / 100 = e -1 / 100 = 0.99$$ #### 4a #### 4b The leaf node with SBE=4 need not be computed. The parent of that leaf is a maximizer and would therefore not select any value less than 8. The root of the tree is a minimizer and would therefore not select any value greater than 7. Since the right subtree has a minimum value of 8 | (and no value less than 8 would ever be selected for that subtree), there is no need to compute any more values in that subtree after the 8 is encountered. | | | | |---|--|--|--| |