HW2 Solution

2a - breadth first

step	open	closed	x	children	rem children
1	S		s	ACD	ACD
2	ACD	S	Α	B G1	B G1
3	CDBG1	SA	С	BDFJ	FJ
4	DBG1FJ	SAC	D	E	Е
5	BG1FJE	SACD	В	G1	
6	G1 F J E	SACDB	G1		

2b - depth first

step	open	closed	x	children	rem children
1	S		S	ACD	ACD
2	ACD	S	Α	B G1	B G1
3	B G1 C D	SA	В	G1	
4	G1 C D	SAB	G1		

2c - iterative deepening

note: no need to use closed for iterative deepening since the depth limit will handle loops

k=0

step	open	closed	x	children	rem children
1	S		s	none at k=0	

k=1

step	open	closed	x	children	rem children
1	S		S	ACD	ACD
2	ACD	S	Α	none at k=1	
3	CD	SA	С	none at k=1	
4	D	SAC	D	none at k=1	

k=2

step	open	closed	x	children	rem children
1	S		s	ACD	ACD
2	ACD	S	Α	B G1	B G1
3	B G1 C D	SA	В	none at k=2	
4	G1 C D	SAB	G1		

2d - uniform cost (i.e, using f=g)

note: you should keep track of parents for all searches, since they are needed to produce the solution path, but we'll only do so for Uniform Cost due to the clutter

step	open	closed	x	children	rem
1	S ₀		S ₀	AS ₄ CS ₃ DS ₁	AS ₄ CS ₃ DS ₁
2	DS ₁ CS ₃ AS ₄	S ₀	DS ₁	ED ₄	ED ₄
3	CS ₃ AS ₄ ED ₄	S ₀ D ^S ₁	CS3	$B_{5}^{c} D_{5}^{c} E_{5}^{c} J_{7}^{c}$	$\mathrm{BC}_5\mathrm{FC}_5\mathrm{JC}_7$
4	AS ₄ ED ₄ BC ₅ FC ₅ JC ₇	S ₀ DS ₁ CS ₃	AS ₄	BA ₇ G1A ₁₂	G1 ^A ₁₂
5	E ^D ₄ B ^C ₅ F ^C ₅ J ^C ₇ G1 ^A ₁₂	S ₀ DS ₁ CS ₃ AS ₄	ED ₄	FE ₇ G2E ₁₀	G2 ^E ₁₀
6	B ^C ₅ F ^C ₅ J ^C ₇ G1 ^A ₁₂ G2 ^E ₁₀	$S_0 D_{1} C_{3} A_{4} E_{4}$	BC ₅	G1 ^B ₉	G1 ^B ₉
7	F ^C ₅ J ^C ₇ G1 ^B ₉ G2 ^E ₁₀	$S_0 D_{1} C_{3} A_{4} E_{4} B_{5}$	FC ₅	G2F ₉	G2 ^F ₉
8	J ^C ₇ G1 ^B ₉ G2 ^F ₉	S ₀ DS ₁ CS ₃ AS ₄ ED ₄ BC ₅ FC ₅	J ^C ₇	FJ ₁₂ G1J ₁₀	
9	G1 ^B ₉ G2 ^F ₉	$S_0 D_{1} C_{3} A_{4} E_{4} B_{5} F_{5} J_{7}$	G1 ^B 9		

2e - best-first (using f=h)

step	open	closed	x	children	rem children
1	S ₉		S ₉	A ₆ C ₂ D ₅	A ₆ C ₂ D ₅
2	C ₂ D ₅ A ₆	S ₉	C ₂	B ₂ D ₅ F ₃ J ₁	B ₂ F ₃ J ₁
3	J ₁ B ₂ F ₃ D ₅ A ₆	S ₉ C ₂	J ₁	F ₃ G1 ₀	G1 ₀
4	G1 ₀ B ₂ F ₃ D ₅ A ₆	$S_9 C_2 J_1$	G1 ₀		

2f - best-first (using f=g+h)

step	open	closed	x	children	rem
1	S ₉		S ₉	A ₄₊₆ C ₃₊₂ D ₁₊₅	A ₁₀ C ₅ D ₆
2	C ₅ D ₆ A ₁₀	S ₉	C ₅	B ₅₊₂ D ₅₊₅ F ₅₊₃ J ₇₊₁	B ₇ F ₈ J ₈

step	open	closed	x	children	rem
3	D ₆ B ₇ F ₈ J ₈ A ₁₀	S ₉ C ₅	D ₆	E ₄₊₅	E ₉
4	B ₇ F ₈ J ₈ E ₉ A ₁₀	S ₉ C ₅ D ₆	B ₇	G1 ₉₊₀	G1 ₉
5	F ₈ J ₈ E ₉ G1 ₉ A ₁₀	$S_9 C_5 D_6 B_7$	F ₈	G2 ₉₊₀	G2 ₉
6	J ₈ E ₉ G1 ₉ G2 ₉ A ₁₀	$S_9 C_5 D_6 B_7 F_8$	J ₈	F ₁₂₊₃ G1 ₁₀₊₀	
7	E ₉ G1 ₉ G2 ₉ A ₁₀	S ₉ C ₅ D ₆ B ₇ F ₈ J ₈	E ₉	F ₇₊₃ G2 ₁₀₊₀	
8	G1 ₉ G2 ₉ A ₁₀	S ₉ C ₅ D ₆ B ₇ F ₈ J ₈ E ₉	G1 ₉		

2g - beam search (with beam width=2 and f=h)

step	open	closed	x	children	rem children
1	S ₉		S ₉	A ₆ C ₂ D ₅	A ₆ C ₂ D ₅
2	C ₂ D ₅ A ₆	S ₉	C ₂	B ₂ D ₅ F ₃ J ₁	B ₂ F ₃ J ₁
3	J ₁ B ₂ F₃ D₅	S ₉ C ₂	J ₁	F ₃ G1 ₀	F ₃ G1 ₀
4	G1 ₀ B ₂ F ₃	$S_9 C_2 J_1$	G1 ₀		

2h - hill climbing (using the h function only)

step	open	closed	x	children	rem children
1	S ₉		S ₉	A ₆ C ₂ D ₅	A ₆ C ₂ D ₅
2	C ₂ D ₅ A ₆	S ₉	C ₂	B ₂ D ₅ F ₃ J ₁	B ₂ D ₅ F ₃ J ₁
3	J ₁ B ₂ F ₃ D ₅	S ₉ C ₂	J ₁	F ₃ G1 ₀	F ₃ G1 ₀
4	G1 ₀ F ₃	S ₉ C ₂ J ₁	G1 ₀		

2i - admissibility

This h function is admissible. For all nodes n, $h(n) \le h^*(n)$, where $h^*(n)$ is the actual cost to reach the goal from node n.

Node	h	h*
S	9	9
Α	6	7
В	2	4
С	2	6
D	5	9

Node	h	h*
E	5	6
F	3	4
J	1	3

3a

The temperature is 100
The score at node **C** is -2
The score at node **J** is -1

Since the score of $\bf J$ is greater than the score of $\bf C$, simulated annealing would accept $\bf J$ with a probability of 1.

3b

The temperature is 100 The score at node **C** is -2 The score at node **F** is -3

Since the score of ${\bf F}$ is **not** greater than the score of ${\bf C}$, simulated annealing would accept ${\bf F}$ with the probability of:

$$e (score(F) - score(C)) / temperature = e (-3 - -2) / 100 = e -1 / 100 = 0.99$$

4a

4b

The leaf node with SBE=4 need not be computed. The parent of that leaf is a maximizer and would therefore not select any value less than 8. The root of the tree is a minimizer and would therefore not select any value greater than 7. Since the right subtree has a minimum value of 8

(and no value less than 8 would ever be selected for that subtree), there is no need to compute any more values in that subtree after the 8 is encountered.			