ó
Ê½÷Xc           @` sT   d  Z  d d l m Z m Z m Z d d l Z d d l m Z	 d g Z
 d „  Z d S(   sV   Some more special functions which may be useful for multivariate statistical
analysis.i    (   t   divisiont   print_functiont   absolute_importN(   t   gammalnt   multigammalnc      	   C` sò   t  j |  ƒ }  t  j | ƒ s4 t  j | ƒ | k rC t d ƒ ‚ n  t  j |  d | d k ƒ r t d |  d | d f ƒ ‚ n  | | d d t  j t  j ƒ } | t  j t	 g  t
 d | d ƒ D] } |  | d d ^ qÃ ƒ d d	 ƒ7} | S(
   s™  Returns the log of multivariate gamma, also sometimes called the
    generalized gamma.

    Parameters
    ----------
    a : ndarray
        The multivariate gamma is computed for each item of `a`.
    d : int
        The dimension of the space of integration.

    Returns
    -------
    res : ndarray
        The values of the log multivariate gamma at the given points `a`.

    Notes
    -----
    The formal definition of the multivariate gamma of dimension d for a real
    `a` is

    .. math::

        \Gamma_d(a) = \int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA

    with the condition :math:`a > (d-1)/2`, and :math:`A > 0` being the set of
    all the positive definite matrices of dimension `d`.  Note that `a` is a
    scalar: the integrand only is multivariate, the argument is not (the
    function is defined over a subset of the real set).

    This can be proven to be equal to the much friendlier equation

    .. math::

        \Gamma_d(a) = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma(a - (i-1)/2).

    References
    ----------
    R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in
    probability and mathematical statistics).

    s*   d should be a positive integer (dimension)g      à?i   s+   condition a (%f) > 0.5 * (d-1) (%f) not metg      Ð?g      ð?i   t   axisi    (   t   npt   asarrayt   isscalart   floort
   ValueErrort   anyt   logt   pit   sumt   loggamt   range(   t   at   dt   rest   j(    (    s8   /tmp/pip-build-7oUkmx/scipy/scipy/special/spfun_stats.pyR   -   s    *%"K(   t   __doc__t
   __future__R    R   R   t   numpyR   t   scipy.specialR   R   t   __all__R   (    (    (    s8   /tmp/pip-build-7oUkmx/scipy/scipy/special/spfun_stats.pyt   <module>"   s
   	